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Abstract – When a drop is placed on a surface it fully wets, it usually spreads until the height of
the drop is comparable to the size of a single fluid molecule. However, when some fluid is absorbed
by the substrate, the drop will first spread to a given radius before receding and eventually
disappearing completely. In this study, we consider the spreading and absorption of a silicone
oil drop on a swelling elastomeric substrate. We observe that the maximal radius of the drop
does not depend on the fluid viscosity and can be predicted from the droplet volume and material
properties. We rationalize our observations with a scaling analysis and a model coupling the
spreading to a linear poroelastic description of the elastomer.

Copyright c© 2023 EPLA

Introduction. – The canonical case of a drop spread-
ing on an ideal flat and fully wetting surface has been
extensively examined in the past, leading to various scal-
ings for the radius in time [1–8]. Depending on the condi-
tions, the spreading dynamics are dominated by inertial,
viscous, or gravitational effects. In principle, the drop
spreads until its height becomes comparable to the molec-
ular size. However, in most real systems, the substrate
is not an ideally flat and inert surface and the spread-
ing is affected by its roughness, deformations, chemical
interactions or by its absorption of fluid. On rough sur-
faces, such as a paper sheet or wood, the spreading of
the drop may be prevented due to pinning of the contact
line [6,9]. When placed on a liquid film containing surfac-
tants, the spreading of the drop may even be followed by
a recoiling phenomenon [10]. On very elastic substrates,
such as hydrogels [11,12] or soft elastomers [13], the lo-
cal deformation of the surface can pin the contact line or
slow down the spreading. Free chains in the elastomer
may even be affected by these deformations and induce
further dissipations. Liquids spreading on absorbing sub-
strates are common to a variety of systems such as inkjet
printers [9], face masks [14] or drops impacting porous
walls [15] for example. How far a drop spreads and how
long it takes for the liquid to penetrate the substrate are
naturally arising questions when it can absorb the liquid.
In this work, we will consider the effect of an absorb-
ing, swelling substrate on the spreading of a drop. The
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drop volume is hence no longer constant which leads to a
decrease of the drop radius. Studies on idealized porous
surfaces have examined the coupled spreading and absorp-
tion problem both theoretically [16–19], numerically [16]
and experimentally [6]. In the particular case of swellable
substrates, the absorption of the drop leads to a local and
transient deformation of the solid. Several experimental
studies have described the absorption of solvent drops on
flat elastomeric surfaces, describing the resulting macro-
scopic deformations [20] or the appearance of creases at
the polymer surface [21]. Other works have described the
absorption of water drops into thin hydrogel slabs [12] or
the absorption of droplet trains impacting an elastomeric
cylinder [22]. In most studies describing the absorption of
drops on swelling substrates, the drop is pinned and has
a non-zero contact angle. To the best of our knowledge, a
study of the coupled spreading and absorption problem in
the case of a fully wetting fluid on a swellable substrate is
still lacking. In this letter, we observe the spreading dy-
namics of a drop placed on an initially flat but swellable
elastomeric surface. The equilibrium contact angle is close
to zero and the contact line is free to move throughout the
experiment. The drop first spreads before retracting as it
is absorbed by the elastomer. We find that the maximal
radius of the drop is independent of the fluid viscosity
and rationalize this observation by a scaling analysis. We
then develop a model coupling the spreading of the drop
to a linear poroelastic theory describing the absorption of
the fluid into the polymeric network, capturing the main
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physical ingredients of the problem and accurately pre-
dicting the maximal spreading radius.

Spreading and retraction of a drop on a flat sub-
strate. – We fabricate flat elastomeric substrates out
of either polyvinylsiloxane (PVS, Zhermack Elite Dou-
ble 8, E = 0.2MPa or 32, E = 0.9MPa) or poly-
dimethylsiloxane (PDMS, Corning, E = 1MPa). Both
are silicone-based elastomers that swell in contact with a
low-viscosity silicone oil. We combine the liquid elastomer
with a catalyst before pouring the obtained solution into
cylindrical molds and degassing to avoid the presence of
air bubbles in the final polymer. After reticulation, the
polymeric cylinders (of diameter 2.3 cm) are pulled out of
the wells. No chemical treatment is done to the molds.
To realize the experiments, a polymeric cylinder is placed
onto a small support ensuring its upper surface is per-
pendicular to gravity. We then carefully place a drop
of fully wetting liquid silicone oil (Carl Roth, viscosity
η = 2.3–10.5 mPa · s, surface tension γ = 0.018 N · m−1)
on the surface with zero initial velocity using a needle
connected to a syringe pump (Aladdin, SyringeONE). To
measure the deposited volume of oil precisely, the poly-
mer blocks are weighed using a precision balance (Mettler
Toledo, 0.00001 g precision) before and after the experi-
ment. We track the evolution of the drops during their
spreading and absorption using a digital camera (Nikon
D810) with a 105mm macro lens taking an image every
two seconds.

Typical images for a drop of 4 µl are presented in fig. 1.
The drop fully wets the substrate, and initially spreads
quickly, forming a relatively flat drop (fig. 1(a)). After
several seconds, the spreading slows down until the drop
reaches its maximal radius Rmax at t = 12 s (fig. 1(b)).
The drop then retracts until it is completely absorbed by
the PVS (fig. 1(c)). The final result is a small bump at
the surface of the PVS (fig. 1(d)) which relaxes within
a few hours by diffusion of the oil within the block. To
enhance the contrast and to track the drop radius pre-
cisely, we place an obstacle, such as an opaque sheet of
paper in the light path between the led panel shown on
the drop. As is the case for a dark field microscope, only
light that is deflected or reflected by the drop will ap-
pear on the images. Figures 2(A) and (B) show typical
images during the drop spreading and receding. To get
the evolution of R in time, we perform a reslice along the
long axis of the drop using ImageJ and obtain an image
showing the edge of the drop during spreading and retrac-
tion, giving readily R(t). Figure 3 presents measurements
of R(t) obtained for different oil viscosities and drop vol-
umes. The error bars correspond to measurement errors
during the image post-processing. During the retraction
phase in particular, the edge of the drop becomes diffi-
cult to track as it becomes irregular and less sharp on the
images (fig. 2(B)). Nonetheless, we can get a good estima-
tion of R(t) as the wet parts of the polymer appear darker
than their surrounding dry parts. Controlling the exact

Fig. 1: Spreading of a drop. A drop of low-viscosity silicone
oil (η = 2.3 mPa · s, V = 4 µl) is deposited onto a flat PVS
substrate. The drop spreads rapidly until it reaches its max-
imal radius Rmax at t = 12 s. From there, it retracts as it is
progressively absorbed by the PVS substrate.

Fig. 2: Measuring the drop radius. Pictures used to measure
the drop radius during spreading and retraction. To enhance
the contrast, an obstacle is placed between the drop and the
backlight to show only light that is deflected by the drops.

deposited value is also difficult as some fluid remains on
the needle tip after deposition. For comparable volumes
(∆V < 0.1 µl), the differences in R(t) are of the same
order as the measurement error (about ±1mm). For all
experiments, the drop radius first sharply increases up to
an inflection point where the slope of R(t) decreases slowly
until it finally reaches a maximum value Rmax at a time
we call τmax. From there, the absorption of the drop dom-
inates the spreading, and R(t) begins to decrease until the
drop is fully absorbed at t = τf . τf increases both with
drop volume and viscosity, which is intuitive as both the
spreading and the absorption are slower for more viscous
fluids. Figure 4(A) shows the value of Rmax depending on
the volume for the three considered viscosities. Interest-
ingly, the scattering of the data points shows that Rmax

does not depend on the liquid viscosity. However Rmax

increases with V and its exact dependence remains to be
understood. In the next section, we attempt to estimate
the value of Rmax using a scaling analysis.

Scaling analysis for Rmax. – To explain the indepen-
dence of Rmax on the viscosity, we construct two charac-
teristic time scales. Generally, the spreading of a drop is
driven by capillary forces as well as external forces, such
as gravity. During the spreading, energy is dissipated ei-
ther through viscous effects located mainly in the corner of
the drop [5], or through molecular dissipation at the triple
line [7]. Generally, the spreading of a drop is well captured
by a power-law scaling such that R ∼ tβ where β ranges
from 1

8 to 1
10 . At very short times, inertia is competing

against the capillary forces, leading to β = 1
2 [1,2]. This
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Fig. 3: Measured drop radius in time. Radius of the drop
measured for different initial drop volumes and viscosities. All
experiments are performed on PVS (E = 0.9 MPa) For all ex-
periments, the drop radius starts by increasing before reaching
a maximal radius Rmax and starting to retract until it is fully
absorbed. Larger drop volumes or viscosities lead to longer
absorption times.

rapid inertial spreading lasts only for a few milliseconds
and we do not capture it in our experiments due to the
camera resolution in time. In this study we focus on later
stages of the spreading, once inertial effects become negli-
gible. Indeed after this rapid initial spreading, we capture
the first image at t = 2 s. The drop has already reached a
significant radius and continues to spread slowly. Models
combining the different theories tend to consider a second
spreading regime, lasting for several seconds, based on the
molecular theory giving β = 1

7 [8]. At longer timescales,
the spreading is well captured by a hydrodynamic theory
leading to β = 1

10 also known as Tanner’s law [5]: in-
deed by comparing the energy gain from the wetting to
the dissipated power by viscosity in the corner close to

Fig. 4: Maximal drop radius. (A) Values of Rmax obtained
from our experiments on different substrate materials (x :
PVS E = 0.2 Mpa, ◦ : PVS E = 0.9 Mpa, ! : PDMS
E = 1 Mpa) and oil viscosities (η = 2.3, yellow; 5.4: blue;
and 10.5 mPa · s: purple). Rmax seems independent on the oil
viscosity. (B) Rescaled values according to eq. (6). The blue
line is a guide for the eye.

the contact line, one gets

R10 ∼ γV 3t

η
. (1)

As a best guess, we construct our spreading time from
Tanner’s law giving us a characteristic spreading time for
our problem:

τspread =
R10

maxη

γV 3
. (2)

The swelling on the other hand can be considered as a
pseudo-diffusive phenomenon. We can then construct a
characteristic time as

τswell =
L2η

D∗ , (3)

where L is an appropriate lengthscale and D∗ is a material-
dependend constant defined such that D = D∗/η is a diffu-
sion coefficient. The value of D∗ is estimated by measuring
the swelling dynamics of immersed elastomeric fibers and
fitting its value in an empirical model [23]. To construct
L, we consider a cylindrical drop of volume V and radius
Rmax giving us L = V/(πR2

max) and thus

τswell =
V 2η

R4
maxD∗ . (4)
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By equaling our two timescales, we obtain the following
scaling for Rmax:

R10
maxη

γV 3
∼ V 2η

R4
maxD∗ , (5)

or

Rmax ∼
( γ

D∗V 5
) 1

14
. (6)

Figure 4(B) shows the value of Rmax against
( γ

D∗ V 5
) 1

14 ,
where all the points seem to collapse on a line fitted from
the origin (blue line). The results were obtained for three
different materials (PVS 8 and 32 and PDMS) having sim-
ilar diffusion coefficients. The results remained consistent
with our scaling but more experiments would be needed
to validate the exact dependency on D∗. We can note
that our scaling predicts a very weak dependence on D∗

and γ as the value of ( γ
D∗ )

1
14 will always be very close

to 1. The maximal swelling radius thus seems to depend
almost solely on the initial drop volume. The prefactor
for this scaling seems to be of the order of 1 (fig. 4(B)).
More data would be necessary to confirm this value. The
main limitation to the experiments comes from the dif-
ficulty of depositing very large or very small droplets on
the substrate in a controlled manner, which would help to
further validate this scaling. However, it exhibits clearly
the independence of Rmax from the viscosity and gives us
confidence in the chosen mechanisms at play.

In the next section, we develop a model combining Tan-
ner’s law for the spreading with a linear poroelastic model
for the absorption in order to describe the evolution of the
drop radius over time.

Modeling the spreading and absorption dynam-
ics. – The scaling obtained in the previous section con-
firms the idea that the maximal radius of the drop is a
result of the competition between viscous spreading and
poroelastic absorption of the drop. We now wish to write
the equations describing both the spreading and the ab-
sorption of the drop. This will allow us to calculate the
evolution of the drop radius with time as well as the max-
imal drop radius. By linking the change in drop volume
to the total fluid flux across the interface of the polymer,
we can obtain a differential equation for the drop radius.
The notations used for the model are shown in fig. 5.

Drop spreading. We thus consider the spreading of a
drop with variable volume, that fully wets the substrate
(i.e., the equilibrium contact angle is 0). In all that follows
z = 0 is defined at the initial substrate surface. We assume
the drop has the shape of a spherical cap at all times
(except in a very small region close to the contact line)
with an apparent contact angle θ(t). We thus have the
relation between its volume V (t), its radius R(t) and its
apparent contact angle θ(t) at the triple line,

V =
πR3

3 sin3 θ
(2 + cos3 θ − 3 cos θ). (7)

Fig. 5: Notations used to model the spreading and absorp-
tion. µ0,b denotes the chemical potential in the bulk and in the
polymer (before any swelling). The grey portion represents the
fluid that has penetrated the substrate. Due to the swelling,
the substrate is tilted by an angle θtilt close to the contact line.
θ is the apparent contact angle deduced by eq. (8). The surface
flux is called Js.

For small angles (i.e., very thin drops), we can rewrite this
as

R3 =
4V

πθ
. (8)

This formula gives a relation between R(t) as a function
depending on time through θ(t) and V (t) only. Taking the
time derivative of (8) one obtains

dR

dt
= −1

3

(
4V

πθ4

)1/3 dθ

dt

∣∣∣∣∣V +
1

3

(
4

πV 2θ

)1/3 dV

dt

∣∣∣∣∣
θ

=

v+ − v−, (9)

where dθ
dt |V (dV

dt |θ) stands for the time derivative of θ
(V ) for constant V (θ). Inspired by the works of Starov
et al. [18], we decompose this expression into an advancing
(v+ > 0) and a receding (v− > 0) velocity contribution.
In the initial steps, we consider that the dynamics is dom-
inated by the viscous spreading. We thus calculate the
advancing velocity v+ using the Tanner’s law determined
initally for constant volume but computed at each time us-
ing the actual drop volume V (t). However the swelling of
the material leads to an additional decrease of the contact
angle in the vicinity of the contact line. To take this effect
into account, we introduce the tilting angle of the sub-
strate which is estimated as θtilt = −∂uz

∂r (R, 0, t), where
uz(r, z, t) is the vertical displacement of the elastomer and
thus uz(r, 0, t) its surface displacement (see fig. 5), giving
us the modified contact angle as

θ =
4V

πR3
+

∂uz

∂r
(R, 0, t), (10)

and thus

v+ =
γω

η

(
4V

πR3
+

∂uz

∂r
(R, 0, t)

)3

, (11)

33001-p4

suzie
Rectangle 



Spreading and absorption of a drop on a swelling surface

where ω is an apparent friction coefficient with an expres-
sion that depends on the substrate. For porous materials,
as the fluid present in the material may allow slip, it is
hard to estimate [24]. We thus use it as a fitting param-
eter in our calculations. To find v−, we need to calculate
the variation in time of the drop volume. As the liquid
is absorbed by the elastomer, the drop volume decreases.
We call Js(r, t) the fluid flux across the polymer surface
such that the variation of the drop volume V writes

∂V

∂t
= −2π

∫ R

0
Js(r, t)rdr. (12)

We will now find an expression for Js using a linear poroe-
lastic model of the substrate.

Poroelastic model of the substrate. The elastomer is
modeled in the framework of linear poroelasticity, to solve
for the chemical potential µ(r, z, t) of the liquid. It has
a constant value µb within the drop and an initial value
µ0 in the polymer prior to swelling. As the drop becomes
almost immediately much wider than thick (θ # 1), we
can consider that the diffusion is dominated by its vertical
contribution and that the radial diffusion can be neglected.
That means that the radial variation of the chemical po-
tential depends only on the initial and boundary condi-
tions. Hence we can consider a purely 1-D diffusion of the
solvent within the elastomer, allowing us to refer to previ-
ous work on one-dimensional swelling of elastomeric slabs
constrained in two directions [25]. In reality, the swelling
may also occur in the radial direction and this may play
a role in particular when the drop radius is close to its
maximal value, as fluid may diffuse away from the drop
edge in the polymer, leading to an increased flux in that
region. While an analytical solution for the fluid distribu-
tion was found for pinned drops [26], that solution is not
valid here since we have a moving contact line. During
the spreading, the drop edge moves much faster than the
fluid within the polymer, while in the receding phase, the
drop edge is rapidly located far away from the radial edge
of the diffusion front, so that we can reasonably neglect
the diffusion in the radial direction. The fluid flow in the
material is thus simply driven by the vertical diffusion of
the chemical potential in the elastomer:

∂µ

∂t
= D

∂2µ

∂z2
, (13)

with initial condition µ(r, z, 0) = µ0 and boundary con-
ditions µ(r, 0, t) = µb and ∂µ

∂z = 0 at z = −H, with H
the height of our cylinder. Technically, the upper bound-
ary condition should be taken at z = uz(r, 0, t) instead of
z = 0, but here we can neglect the small variation in the
elastomer surface position for the diffusive problem at first
approximation. Utilizing the fluid incompressibility and
the poroelastic stress tensor, which depends on the local
concentration (and thus chemical potential), the displace-
ment in the z-direction of the polymer can be deduced

from the following equation (see [25]):

∂uz

∂z
=

(1 − 2ν)(µ − µ0)

2(1 − ν)GΩ
, (14)

where ν is the poroelastic Poisson ratio, G the bulk modu-
lus of the elastomer and Ω the molar volume of the liquid.
The poroelastic Poisson ratio defines the ability of the ma-
terial to absorb fluid by swelling (ν = 1/2 corresponding
to a non-swelling material). The exact value of ν is un-
known but for most elastomers, ν is estimated to be close
to 0.33 [25] which is the value we use in this study. The
linearity assumption is in principle only valid for small de-
formations. In a complete theory, the values of G and D
in particular depend on the local swelling state and could
thus play a role in any elastocapillary deformations or on
the overall absorption dynamics. Nevertheless, as solving
the nonlinear swelling equations would require more com-
plex simulations beyond the scope of the study, we neglect
in our approach these nonlinear effects at first approxima-
tion.

For short times, when
√

Dt # H (which is always valid
in our experiment), the potential obeys a self-similar dy-
namics:

µ(r, z, t) − µb

µ0 − µb
= erfc

(
− z

2
√

D(t − t∗(r))

)
, (15)

starting for each radius r at the time t∗(r) when the elas-
tomer is wetted by the drop. It gives the change in thick-
ness via (14)

uz(r, 0, t)

λmax
= 2

√
D(t − t∗(r))

π
. (16)

λmax is evaluated by comparing the size of a polymer that
has swollen to its equilibrium volume when immersed in a
bath of solvent in the absence of mechanical constraints to
its size in the dry state, such that the volume change can
be estimated as Vmax/V0 = λ3

max. We can then derive (16)
to find the value of Js:

Js(r, t) =
∂uz(r, 0, t)

∂t
= λmax

√
D

π(t − t∗(r))
. (17)

Combining eqs. (9), (12) and (17) we can obtain the fol-
lowing expression for v−:

v− =
2π

3

R

V

∫ R

0
λmax

√
D

π(t − t∗(r))
rdr, (18)

and hence the equation for the spreading dynamics:

dR

dt
=

γω

η

(
4V

πR3
+

∂uz

∂r
(R, 0, t)

)3

− 2π

3

R

V

∫ R

0
λmax

√
D

π(t − t∗(r))
rdr, (19)

which we can integrate numerically. The results are pre-
sented in the next section.
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Model results. We solve eq. (19) using an explicit Eu-
ler scheme of order 1. The values of D (0.45–2.34 · 10−10

m2 ·s−1), λmax (1.5), γ (18 mN·m−1) and η (2.3–10.5 mPa·
s) being known from material specifications or previous
studies [23], ω is the only fitting parameter of this model.
In all that follows, its value is set to 0.05 as the best fit
determined on a single experiment and is consistent with
values previously reported in the literature [24]. The ini-
tial drop radius is calculated considering the drop as a
half-sphere at t = 0 to account for the initial spreading
phase dominated by inertia [1]. Figure 6(A) shows the ob-
tained curves for R(t) for a viscosity of 5 mPa · s and dif-
ferent drop volumes. During the spreading phase, all the
curves are almost identical, with the main differences com-
ing later during the absorption. Qualitatively, we recover
the bell-like curve obtained experimentally and the depen-
dence of the maximal radius on the drop volume. After
a fast initial increase of R, we recover the plateau-like re-
gion which is a direct consequence of the swelling. Indeed,
as R increases, θ becomes smaller and the importance
of θtilt becomes more important leading to a significant
slowing down of the spreading which is also seen in the
experiments. However, quantitatively, we do not retrieve
the experimental values perfectly: nevertheless, our model
captures the main physical ingredients of the spreading
and receding of a drop, as it reproduces their main fea-
tures. The model also allows us to get a good estimation of
Rmax and τf (figs. 6(B), (C)). Panel (A) shows the values
of Rmax obtained numerically (dots) compared to the ex-
perimental values (crosses). We recover the fact that Rmax

depends only slightly on the oil viscosity and increases
with the drop volume in a nonlinear way, which was also
explained earlier. We slightly underestimate Rmax but
get a good prediction of the total absorption time. As
expected, the total absorption time increases with the vis-
cosity as well as the initial drop volume. Some other
physical phenomena might also contribute to the overall
dynamics. Close to the contact line, the capillary forces
may deform the elastic substrate leading to viscoelastic
dissipation within the material [27,28]. On very soft gels,
deformations of the order of several micrometers have been
reported [29,30]. In our case the typical elastocapillary
length is much smaller, δ = γ/E % 20 nm, so that al-
though such elastocapillary ridge might be present and
slow down the spreading, it should be small. To account
for this effect, one would need to add a dissipation term
coming from the solid when calculating the spreading dy-
namics. Furthermore, the presence of the ridge could also
change the contact angle. Finally, the presence of free
chains in the network, evaporation in the vicinity of the
contact line, the strong approximation on the initial drop
shape as well as the exact slope of the substrate close to the
contact line might explain the discrepancies observed be-
tween our theory and the experiments even more. There-
fore, performing more experiments, in particular on much
softer elastomers would be an interesting extension of our
study.

Fig. 6: Model results. (A) Model results for R(t) obtained on
PVS (E = 0.9 MPa) with an oil viscosity of η = 5.3 mPa · s.
(B) Obtained values of Rmax for different oil viscosities with
eq. (19) (circles) compared to the experimental data (crosses).
The maximal radius depends only slightly on the oil viscosity,
which is consistent with our observations. (C) Total absorption
time predicted by the model (lines) vs. experimental values
(circles).

Discussion and conclusion. – In this letter, we have
experimentally described the absorption of a drop by
a swellable flat elastomer substrate. The drop spreads
quickly on the elastomer before reaching a maximal radius
Rmax and retracting as it is absorbed by the polymer. The
value of Rmax is almost independent of viscosity which can
be justified by a scaling argument comparing characteristic
timescales for spreading and swelling and confirmed by a
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more complete model combining a Tanner-like spreading
law on a tilted substrate to a linear poroelastic model of
the polymer. Our model contains the main physical ingre-
dients and can qualitatively reproduce our experimental
data and predict the value of Rmax and the total absorp-
tion time with good accuracy.

We believe the experiments and the theory presented
in this paper will propose a base for further investiga-
tions of the spreading and absorption dynamics of solvent
drops on absorbing and swelling substrates in different
configurations.

Data availability statement : All data that support the
findings of this study are included within the article (and
any supplementary files).
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