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Grouping Similar Sensors Based on their Sent Data
in a Massive IoT Scenario

Gwen Maudet, Mireille Batton-Hubert, Patrick Maillé, Laurent Toutain

Abstract—The expanding Internet of Things landscape, com-
bined with a significant reduction in the cost of connected devices,
has enabled the widespread deployment of sensors. These sensors,
often situated in close proximity to each other, frequently produce
overlapping data.

This paper aims to identify such overlaps in sensor data
to effectively cluster similar sensors. The benefits of clustering
include enhanced detection of sensor failures and a reduction in
data transmissions. We examine a typical scenario where sensors
are deployed asynchronously, operate for a limited time within
the environment, and emit data that is noisy, irregular, and
unsynchronized.

To overcome these challenges, we have developed a similarity
metric that employs interpolation techniques to manage noisy,
irregular, and unsynchronized data. This metric supports a hi-
erarchical clustering algorithm featuring a novel linkage method
tailored to the dynamic nature of sensor deployments. The goal is
to cluster sensors that monitor the same phenomenon, regardless
of their active periods not coinciding.

Through simulations, we demonstrate the superiority of our
method compared to the state-of-the-art Dynamic Time Warping
distance and a hierarchical clustering with complete linkage
inspired by related works. Our results establish a mean improve-
ment of 23% from our approach in terms of V-Measure. We
provide comprehensive experiments assessing the robustness of
our solution under various sensor measurement noise levels and
employing different stopping criterion strategies.

Index Terms—Constrained Devices, Efficient Communications
and Networking, Network Architecture, Data Management and
Analytics, Smart Cities, Smart Environment, Sensor Phenomenon
and Characterization, Low Cost Sensors and Devices.

I. INTRODUCTION

The Internet of Things (IoT) has significantly transformed
the landscape of extensive monitoring solutions by providing a
plethora of methodologies applicable across various scenarios,
such as optimizing resources and flows, managing risks, and
facilitating precise tracking [1]. These technologies find utility
in a wide array of sectors, including but not limited to
agriculture [2], industrial applications [3], and the development
of smart cities [4]. Advances in electronic engineering, com-
bined with the advent of networks characterized by stringent
constraints, have paved the way for the creation of embedded
sensors. These devices are engineered to execute specific,
straightforward tasks, such as the measurement of temperature,
humidity, or CO2 levels [5]. Owing to their battery-powered
nature and affordability, these sensors are readily deployable
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on a grand scale, potentially being integrated into common-
place objects [6].

Given the extensive deployment of these sensors, it is
common for several of them to be situated in proximity to one
another, hence transmitting data that are closely related. This
phenomenon is advantageous for several reasons: it facilitates
the swift identification of malfunctioning sensors through the
comparison of their data against that of similar sensors [7],
and it provides an opportunity to diminish the volume of
transmitted data by leveraging the similarity in the collected
data, as investigated in several studies [8-10].

This paper endeavors to establish a methodology for identi-
fying clusters of similar sensors based on the analysis of their
data. The environment in question is considered to comprise
multiple phenomena, each exhibiting distinct temporal varia-
tions in a given physical quantity, with each sensor monitoring
a specific phenomenon. The goal is to aggregate sensors that
are observing identical phenomena.

This research departs from previous studies [7-10] by
proposing new hypotheses that tackle the challenges arising
from the extensive deployment of embedded devices. We
address issues such as measurement noise, lack of synchro-
nization, and irregular data transmission, which challenge the
application of traditional similarity metrics. Additionally, the
transient nature of sensor operations, with some only active in
the initial stages and others introduced later, complicates the
process. Determining whether such sensors are monitoring the
same phenomena, especially when their operational periods do
not overlap, presents a novel and complex clustering challenge
that has yet to be explored.

To address these issues, our proposed solution is structured
around two primary components: a metric to quantify the simi-
larity between sensors and a hierarchical clustering mechanism
aimed at grouping sensors based on similarity. Initially, we
adopt Kriging (a geostatistical technique) to define an interpo-
lator for sensor data. Following this, we ascertain the distance
between two sensors over their shared interval by evaluating
the difference in the average magnitude of their respective
interpolations. Additionally, we introduce an Agglomerative
Hierarchical Clustering (AHC) approach. Given the potential
variability in the significance of the measurement interval, we
propose a methodology for determining the distance between
clusters, factoring in the duration of the shared definition
interval.

The incorporation of Dynamic Time Warping (DTW)
as an alternative similarity metric, alongside a clustering
technique rooted in the principles documented in previous
research [9,10], underscores the novelty of our approach.
Through simulations, the superiority of both our proposed
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metric and clustering methodology over these alternatives is
demonstrated. Moreover, the performance of our clustering
approach is evaluated across different levels of measurement
noise, including a comparison of two distinct stopping criteria
for the AHC method.

The structure of the paper is as follows: the discussion
commences with an exploration of related works in Section II,
followed by the delineation of our assumptions in Section III.
The definition of our distance metric is presented in Sec-
tion IV, with the clustering methodology detailed in Section V.
Simulations are subsequently outlined in Section VI, culminat-
ing in our conclusions in Section VII.

II. RELATED WORKS

Studies such as those by [11] introduce methods for assess-
ing similarities between sensors based on geographical prox-
imity, further substantiating these connections with similarity
metrics derived from sensor data. Metrics employed include
the Jaccard coefficient, cosine similarity, and the Pearson
correlation coefficient.

[7] tackles fault detection by leveraging similarities among
sensors. Through correlation analysis, potentially overlapping
sensor groups are formed. A sensor deviating from its cluster
indicates a fault, a method tested in an industrial environment
with 17 sensors, showing superior fault detection capabilities
over conventional methods.

Strategies proposed by [8-10] aim to minimize data trans-
missions by employing scheduling based on observations’
similarities.

In the method proposed by [8], a transfer function estimates
the observation of one sensor from another’s measurement.
When this function can accurately predict one sensor’s data
from another’s, a directed similarity link is established. Their
experiments with 54 temperature and humidity sensors demon-
strated the feasibility of significantly reducing message trans-
missions without compromising precision.

Other proposals emphasize the use of clustering based on
sensor similarities to decrease data transmissions. Here, sen-
sors within the same cluster are activated sequentially rather
than all at once. Such methodologies align closely with this
paper’s objectives, as they create distinct clusters of sensors
meant to monitor identical phenomena.

[9] sets up links between sensors when their observations
stay within a specific threshold of difference, and their trend
directions match over a certain period. Clusters are then
formed through a graph-based approach, leading to efficient
clustering via a greedy algorithm. This method, tested with
light sensors, effectively reduce energy consumption while
maintaining accuracy.

Similarly, [10] applies these concepts in mesh networks,
where a link is formed between two sensors if their Pearson
correlation coefficient exceeds a threshold, and their average
differences remain within set limits. The clustering approach,
reminiscent of [9], employs a greedy algorithm for choosing
cluster heads, thus optimizing network performance.

However, the assumptions underpinning these methodolo-
gies are challenged by the emergence of the Massive IoT

paradigm [6]. The challenges include: (i) Facilitating ex-
tremely simplified protocols that do not require synchroniza-
tion between sensors, with sensors having variable trans-
mission periods. (ii) Accounting for potentially significant
measurement errors due to the considerable miniaturization
of measuring devices. (iii) Addressing the dynamic nature
of Massive IoT environments where sensors may be active
only temporarily and new sensors may join over time, unlike
traditional settings where all sensors are present from the
outset.

III. HYPOTHESES AND OBJECTIVES

Massive IoT typically encompasses a vast number of IoT
devices dispersed within an environment. These devices are
often embedded in everyday objects, allowing for easy de-
ployment without the need for professional installation. This
deployment strategy involves the use of miniaturized, low-cost
sensors, often battery-powered and capable of moving within
the environment. A pertinent example is the management of a
logistics platform with temperature control, where temperature
sensors integrated into pallets provide real-time monitoring of
the goods they carry.

However, such IoT solutions may suffer from measurement
uncertainties. Yet, the sheer number of devices can create data
redundancy, thereby enhancing reliability.

When a pallet enters a new environment, such as a cold
storage area, and finds itself among other similar pallets,
identifying relationships between them becomes crucial. This
not only helps in assessing the quality of each sensor and
potentially identifying faulty ones but also aids in reducing
the total number of messages sent, thus conserving battery
life.

This section delves deeper into the objectives and hy-
potheses related to the deployment of sensors and their data
collection.

A. Identifying Sensors Observing the Same Phenomenon

In environments exhibiting multiple distinct phenomena,
each with unique variations over time, sensors are strategically
deployed to monitor these variations. For instance, temperature
changes might differ from one room to another. Our objective
is to cluster sensors monitoring the same phenomenon into
exclusive groups, ensuring each sensor is grouped based on
the specific phenomenon it observes.

This grouping of similar sensors addresses two well-known
challenges in IoT networks. Firstly, with such a cluster struc-
ture, we can implement energy-saving mechanisms among
sensors. Sensors belonging to the same similar cluster send
redundant messages, so it is not essential for all sensors to
consume their energy for message transmission. In previous
studies [12,13], we presented methods tailored to highly
constrained networks that distribute the transmission workload
among a cluster of similar sensors. Secondly, it is crucial to
assess the failure of an object, especially considering miniature
embedded objects. Having groups of similar sensors provides a
reliable reference for measurements, enabling the use of robust
anomaly detection techniques.
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B. Incoming and Outgoing Sensors
In large-scale IoT deployments, sensors are often integrated

into mobile everyday objects, allowing them to enter or exit the
monitoring environment over time. Additionally, sensors may
deactivate due to hardware malfunctions or battery depletion.

Therefore, each sensor’s operational life is limited, and the
similarity between two sensors can only be evaluated when
they coexist in the environment. Notably, this coexistence
period can vary or may not occur at all.

C. Observations Sent by a Sensor
Sensors transmit observations over time to the terminal. An

observation is defined by a time and a value. The observation
value represents the value of the phenomenon that the sensor
is following, with added noise due to imprecise measuring
devices.

As highlighted in [14], synchronizing transmissions among
sensors is challenging due to clock drift, requiring frequent
synchronization. With the large number of sensors and lim-
ited communication capabilities, maintaining constant syn-
chronization is energy-intensive. However, as demonstrated in
[13], lack of synchronization does not inherently compromise
monitoring quality, leading us to not assume synchronization
between sensor transmissions.

Moreover, we consider a scenario where a sensor does not
necessarily send periodic messages. This could be due to
significant clock drift, loss of messages during transmission,
or the adoption of alternative data collection methods such as
trigger-based or model-based approaches [15].

D. Challenges Addressed in This Paper
We consider the scenario presented above, where the only

information available is the history of messages sent by sensors
from the initiation of the solution until a given time t. By
considering all sensors active since the deployment’s start,
we aim to identify groups of sensors that have observed (or
are currently observing) the same phenomenon. The primary
challenges include: (i) developing a reliable metric that can
assess similarities between sensors despite their data being
noisy, transmitted irregularly and without synchronization; (ii)
the ability to cluster together all sensors that have tracked the
same phenomenon, specifically including those sensors that
have not had overlapping periods of operation.

IV. SIMILARITY METRIC: MEAN DIFFERENCE BETWEEN
INTERPOLATIONS OF SENSORS OBSERVATIONS

As part of our assumptions, we consider that a sensor sends
unsynchronized observations to other sensors with a variable
transmission period. Furthermore, this sensor remains within
the environment for a limited duration. An example of the
observations sent by two sensors, which we aim to compare,
is illustrated in Fig. 1.

In this section, we introduce a distance metric that relies
on two key components. Firstly, we utilize an interpolation
method named Kriging to convert irregular observations into
a continuous representation. Subsequently, we define the dis-
tance between two sensors over their common time interval as
the mean magnitude difference between their interpolations.

Time

Value

Fig. 1. Representation of two sets of observations. Orange diamonds and
dashed green squares represent observations from two sensors, with time on
the x-axis and observation values on the y-axis.

A. Kriging-Based Interpolation of an Observation Set

The observations are sent irregularly spaced and noisy,
making direct comparisons challenging. Therefore, as an ini-
tial step, we propose to employ an interpolation method to
transforms a set of observations into a continuous function,
facilitating comparisons.

1) Justification of the Kriging Choice: An interpolation
function is a mathematical function defined over all time
points based on a set of noisy observations. Its objective is
to minimize the average discrepancy between the interpolated
function and the measured phenomenon. Numerous interpola-
tion methods exist, as documented in [16]. Since the observed
data is subject to noise, we aim to relax the constraint of
passing through all data points. Consequently, certain methods
like Spline are not applicable.

Kriging is an interpolation method based on Gaussian
processes governed by prior covariances [17]. This approach
is particularly well-suited for various noise reduction appli-
cations, as summarized in [18], as it allows the estimation
and incorporation of measurement errors into the modeling.
For instance, in [19], an experimental study demonstrated the
superiority of Kriging over the inverse distance weighting
method. Kriging has been applied in the domain of the IoT as
well, such as in [20], where it was used to propose a sensor
positioning solution based on the data they provide.

2) Principle of the Kriging and the Variogram: Kriging is
an interpolation method based on Gaussian processes, where
each observation is treated as a random variable. Thus, the
variogram is a function that measures the variance between
two observation values based on their temporal separation. It
is employed in the Kriging model to estimate an interpolated
value at a target time from known observations that are
correlated (temporally close).

Since the true variogram is typically unknown, it is esti-
mated using known observations. This estimation is obtained
by initially calculating the experimental variogram. We denote
by θ = {θt, t ∈ T} the set of known observations, where
T represents the set of measurement time instants and θt is
an observation value made at time t. Then, the experimental
variogram γθ is computed for each pair of points, so that:

∀(t1, t2) ∈ T 2, γθ(|t1 − t2|) = 0.5(θt1 − θt2)
2

The data points of the experimental variogram are shown
in Fig. 2 as red squares. Here, the horizontal axis represents the
temporal distance between two observations, while the vertical
axis displays the measurement of the experimental variogram
between these two observations.



4

Fig. 2. Illustration of the variogram model based on experimental variogram
points. The variogram consists of three parameters: nugget, sill, and range.
The closer (temporally) the distance between two observations, the more
correlated the values. Beyond a certain threshold, defined by the range,
observations that are too distant are no longer correlated.

To create a continuous representation from this discrete
experimental variogram, we fit these data points to a math-
ematical function known as the variogram model, denoted as
γ̂θ, and visualized in Fig. 2 by the black curve. This model
serves to evaluate the correlation between two observations
based on their temporal separation.

For example, spherical, exponential, and Gaussian models
are characterized by three parameters and illustrated in Fig. 2:

• The nugget n: Signifies the variogram value when there
is zero temporal distance between observations. It quan-
tifies the amount of short-range variability in the data,
essentially capturing measurement noise.

• The sill s: Represents the variogram value when the tem-
poral distance becomes extensive enough that observation
values are no longer correlated.

• The range r: Denotes the temporal distance at which the
variogram reaches the sill value.

The generic version of the Gaussian variogram is for exam-
ple given by:

γ̂(t1, t2) = n+ s

(
1− e−

(t1−t2)2

r2

)
(1)

3) Calculations for the Simple Kriging: Kriging is an
interpolation method rooted in statistical modeling. It assumes
that each observation is a random variable with a finite mean
and variance.

We present the result for the simple Kriging. The strong
assumption here is that the mean expectation of values at all
time instances is the same and known, assumed to be zero.
In the case of ordinary Kriging (another Kriging modeling),
the expectation is similar across all points and unknown; for
universal Kriging, a polynomial trend model is incorporated.

Here, θ = (θt)t∈T constitutes the vector representing the
set of known observations. Under the given assumptions, we
assume E[θt] = 0. The covariance matrix of the observation
history vector is defined using the variogram model γ̂θ as
follows: K = E[θθ⊤] = (γ̂θ(t1, t2))t1,t2∈T .

Our objective is to evaluate the value at the point t̂. Let Θt̂
denote the random variable representing the value at t̂ (with
E[Θt̂] = 0). The covariance vector between the observation
value to evaluate at t̂ and the set of known observations
is defined based on the variogram model: kt̂ = E[θΘt̂] =
(γ̂θ(t̂, t))t∈T .

The core principle of Kriging is that interpolation at a point
is defined as a linear combination of the observation values.
Hence, the estimator at the point t̂, denoted by θ̂t̂, is the sum
of observation values weighted by the coefficient vector ψt̂ =
(ψt,t̂)t∈T :

θ̂t̂ =
∑
t∈T

ψt,t̂θt = ψ⊤
t̂
θ

From the definition of θ̂t̂, we can already establish through
its expectation calculation that it is unbiased: E[θ̂t̂] =∑
t∈T ψt,t̂E[Θt] = 0.
The weights are defined to minimize the expectation of the

squared difference between the estimator and the quantity to
predict at this new point t̂: ∆(t̂) = E[(θ̂t̂ −Θt̂)

2]
By expanding this squared difference, we have:

∆(t̂)=E[(ψ⊤
t̂
θ −Θt̂)

2]

=E[ψ⊤
t̂
θθ⊤ψt̂ −Θt̂θ

⊤ψt̂ − ψ⊤
t̂
θΘt̂ +Θ2

t̂
]

=ψ⊤
t̂
E[θθ⊤]ψt̂ − 2E[Θt̂θ

⊤]ψt̂ + E[Θ2
t̂
]

=ψ⊤
t̂
Kψt̂ − 2k⊤

t̂
ψt̂ + σ2

t̂

Where σt̂ =
√
E[Θ2

t̂
], independent of ψt̂.

We aim to find the vector ψt̂ that minimizes ∆(t̂). The
derivative with respect to each ψt,t̂ is zero, resulting in:

∂∆(t̂)
∂ψt̂

=2Kψt̂ − 2kt̂ = 0

⇔ ψt̂=K
−1kt̂

K is a symmetric matrix, so K−1 is a symmetric matrix,
leading us to the expression of the estimation θ̂t̂:

θ̂t̂ = k⊤
t̂
K−1θ

Therefore, for the computation of t̂, it is necessary to define
K and kt̂ based on the variogram model γθ and invert the
matrix K. For any new estimate of observation, it is only
necessary to redefine k.

B. Distance Based on Mean Magnitude Difference

Let the sets of observations from sensors i and j defined
by i : {θi,t, t ∈ Ti} and j : {θj,t, t ∈ Tj}, so that θ̂i(t) and
θ̂j(t) be the interpolations obtained using the Kriging-based
interpolation. We use the mean magnitude difference to evalu-
ate the distance between two interpolations over their common
definition interval, as schematically represented in Fig. 3.

Firstly, the interpolations can only be compared over their
common definition interval. If there exists a common definition
interval between i and j, we denote it by [a(i, j), b(i, j)]. This
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Time

Value

a(.,.) b(.,.)

Fig. 3. Interpolations of the sets of observations illustrated in Fig. 1, depicted
as solid orange and dashed green lines. The vertical dashed lines indicate
the common temporal domain of the two interpolations [a(., .), b(., .)]. The
area between the two interpolations over the common definition interval is
represented by the red filling.

interval begins at the time of the sensor that arrived the latest
and ends at the time of the sensor that leaves the earliest:

a(i, j) = max{min{t ∈ Ti},min{t ∈ Tj}}
b(i, j) = min{max{t ∈ Ti},max{t ∈ Tj}}

Hence, the duration of the common definition interval, denoted
by δ(i, j), is defined by:

δ(i, j) = max{0, (b(i, j)− a(i, j))} (2)

Furthermore, since the interpolation method aims to min-
imize the average difference between the ground truth and
the estimation, we define the distance d(i, j) as the mean
magnitude difference between the interpolations. If the du-
ration of the common definition interval is not zero, it can be
mathematically expressed as:

dinterp-mean(i, j) =
1

δ(i, j)

∫ b(i,j)

a(i,j)

|θ̂i(t)− θ̂j(t)|dt (3)

V. WEIGHED MEAN LINKAGE HIERARCHICAL
CLUSTERING

In this section, we propose a method that relies on the
presented similarity measure to cluster together sensors that
are considered similar, using a AHC approach.

A. Specification of the Clustering Problem

In a typical clustering problem, objects are considered with
n variables, and the goal is to group together objects that are
close when represented in a space where each variable con-
stitutes a dimension. Commonly, standard similarity metrics
based on vectors are employed for such clustering tasks [21-
23].

In our specific context, an object represents a sensor, its set
of observations, and its interpolation based on Kriging defined
over a specific time interval. Here, the calculation of distance
is not as straightforward, which is why we have dedicated a
specific section to it. Thus, we were able to define a distance
(which can be None) d(., .) and a common definition interval
duration δ(., .) between two sensors.

This change implies specific considerations in devising a
clustering solution:

• Some pairs of sensors may have an unknown distance:
they are defined over disjoint intervals, making it impos-
sible to determine their proximity,

• The duration of the common definition interval is an
essential indicator for defining the quality of the distance
measure: a distance calculated over a longer period car-
ries more significance than one computed over a very
short duration.

B. Agglomerative Hierarchical Clustering Basics

Algorithm Principles: For this problem, we choose to focus
on solutions based on AHC. This clustering method involves
iteratively merging clusters together [24].

Initially, each object (sensor) is considered as its own
cluster. At each iteration, the two closest clusters are merged to
form a new cluster. Consequently, in each iteration, we obtain
one less cluster than in the previous iteration. The merging
process terminates when the stopping criterion is met; this
stopping criterion can be the final number of clusters or based
on intra-cluster and inter-cluster distances.

Linkage Method: An essential aspect here is the definition
of the distance between clusters. The method that relies on
inter-object distances to determine the inter-cluster distance
is referred to as the linkage method. In Fig. 4, we illustrate
several linkage methods: Simple-link defines the distance
between clusters as the smallest distance between any pair of
objects from a different cluster; complete-link uses the largest
distance between any pair of objects from a different cluster;
average-link calculates the average of all pairwise distances
between objects from a different cluster.

Fig. 4. Examples of single, complete and average linkage methods. from [25].

C. Weighted Mean Linkage Method

In the literature, various common linkage methods exist, all
of which involve linear combinations of distances between the
elements of the clusters being compared. Here, we choose to
adapt the average-link to better suit our problem. We weigh
the distances by the duration of the common definition interval
to give more importance to distances calculated over longer
periods.

Let d(i, j) be the distance between sensors i and j calcu-
lated using the method described in Eq. (3), and δ(i, j) be
the duration of their common definition interval, as defined
in Eq. (2). When two sensors are not directly comparable,
δ(i, j) = 0, and d(i, j) = None, and our convention dictates
δ(i, j)d(i, j) = 0.

We define the distance between two clusters as the mean
of distances between pairs of objects from different clusters,
weighted by their common definition interval duration. Con-
sidering i ∈ I as the set of sensors included in cluster I , and
j ∈ J for J , the distance between clusters I and J is given
by:
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D(I, J) =

∑
i∈I

∑
j∈J δ(i, j)d(i, j)∑

i∈I
∑
j∈J δ(i, j)

(4)

(If all distances between i and j are unknown, then by
convention, we will have D(I, J) = None, and we will not
merge I and J .)

For this linkage method, we employed the Lance-Williams
algorithm as a reference for hierarchical clustering imple-
mentation [26]. This algorithm updates the distance between
clusters at each merging step. First, we extend the notation
δ(.), with δ(I, J) being the sum of the duration of the common
definition interval between each sensor from I and from J .
Mathematicaly, this means: δ(I, J) =

∑
i∈I

∑
j∈J δ(i, j).

Denoting the cluster composed of elements from clusters I
and J by I+J , after this merging, we update its distance with
another cluster K. The update formulas are as follows:

D(I + J,K)= δ(I,K)
δ(I,K)+δ(J,K)D(I,K)

+ δ(J,K)
δ(I,K)+δ(J,K)D(J,K)

δ(I + J,K) = δ(I,K) + δ(J,K)

As a reminder of the AHC algorithm, in each round, we
choose to merge clusters with the smallest distance D based
on this distance definition.

D. Stopping Criterion

We will delve into the stopping criterion for this AHC
method in the simulation section, as this criterion plays a
crucial role in the performance of such methods. We will
consider two types of stopping criteria.

Firstly, since we will introduce in the simulation part a
comparative clustering method to evaluate the performance of
the proposed approach in this paper, we aim to compare these
methods fairly. Therefore, the first stopping criterion will be
the maximum number of clusters.

On the other hand, arbitrarily defining the final number of
clusters is not always the best option for achieving optimal
performance [26]. Therefore, we also propose a stopping
criterion that fix a threshold to the maximum distance between
clusters. This threshold is specific to our distance definition
and is therefore not relevant for the comparative clustering
method.

VI. SIMULATIONS

In this section, we perform simulations by generating two
distinct continuous phenomena, each sensor consistently fol-
lowing one of the two phenomena. Specifically, an observation
is the value of the corresponding phenomenon at the time of
measurement, with added random noise.

We use Poisson processes to simulate sensor arrivals in the
system, and measurement instants. Similarly, the total duration
in the system of each sensor is generated using an exponential
distribution. We vary the measurement noise to study the
extent to which our solution can identify similarities and group
sensors following the same phenomenon.

To assess the performance of our solution, we construct
alternative propositions. We leverage DTW as an algorithm

symbol Meaning Value(s)
Phenomena Parameters Section VI-A1

ωi, ϕi Frequencies of signal i U(0, 2π
30

)
αi, βi Amplitudes of signal i U(−100, 100)

Rescaling of the phenomena values [−1, 1]
Sensors Observations Section VI-A2

λ Sensor arrival rate 0.1
1/γ Average number of sent observations 1
µ Sensor existing time rate 0.01

End of Simulation t = 1000
Sensors Considered in simulation Alive at t = 200

V-measure Parameter Section VI-C
a Weight given for Homogeneity 1

Evaluation Using a Comparative Method Section VI-D
Max nb of clusters 3

σ Std of Gaussian noise 0.2
Robustness to Noise Variations Section VI-E

C Zero noise threshold 0.1
k Noise dependent threshold 0.8

σ Std of Gaussian noise {0 + 0.05i,
0 ≤ i ≤ 10}

TABLE I
PARAMETERS OF THE SIMULATION

that computes distance, taking into account the peculiarities
of the considered time series. Additionally, we implement a
AHC algorithm based on the principle of clique partitioning.
We demonstrate the superiority of our approach over this com-
peting solution. Additionally, we explore the performance of
our solution across a range of measurement noises, examining
its robustness using various stopping criterion strategies.

The parameters of all the simulation part are summarized
in Table I.

A. Generation of Phenomena and Sensor Observations

The assumptions regarding the phenomena, sensor inputs
and outputs, as well as the transmitted observations, are
presented here in detail, and visible in Fig. 5.

Fig. 5. Representation of the phenomena, sensor inputs and outputs, and the
transmitted noisy observations.

1) Generation of Phenomena:
We define a phenomenon using a continuous function over

time. In this study, we consider two phenomena, each gen-
erated in the same way. Specifically, the generic function is
given by:

f(t) =

30∑
i=1

(αi cosωit+ βi sinϕit)
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For each i ∈ {1, 30} and for each of the two phenomena,
the constants αi and βi are chosen from a uniform distribution
U(−100, 100), and the frequencies ωi and ϕi are chosen
from a uniform distribution U(0, 2π30 ) (ensuring a minimum
oscillation period of 30, limiting the variability). Then, we
rescale the function to the range [−1, 1], compressing the
phenomena values into a small value segment. We keep the
same phenomena for all the simulation parts, and they are
depicted in Fig. 6.
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Fig. 6. Value variations of the Phenomena: (a) in their entirety, (b) zoomed
between t = 200 and 400.

2) Generation of Sensors Observations:
Each sensor follows one of the two phenomena, the same

one for its total time in the system, and sends noisy obser-
vations of the phenomenon, with Gaussian noise of standard
deviation σ. New sensors enter the environment over time,
following a Poisson process with a rate of λ = 0.1 arrival
per time unit, and each of them follows one of the two
phenomena with equal probability. The duration of a sensor’s
stay in the environment follows an exponential distribution
with a parameter of µ = 0.01. While in the environment, a
sensor transmits observations following a Poisson process with
a parameter of γ = 1 per time unit.

We terminate the simulation at t = 1000. To mitigate cases
where a phenomenon ceases to be tracked by a sensor, we
initiate the evaluation when a sufficient number of sensors
have entered the environment. Specifically, we consider only
sensors that remain active after t = 200.

We define an ”observation sampling” as the generation of
a new dataset from the sensors’ observations. Observation
sampling follows a random process; to achieve average results,
we repeatedly run the simulation, generating new observation
samplings each time. When comparing different methods, they
are evaluated using the same set of observation samplings to
ensure consistency.

An example of observation sampling is shown in Fig. 7,
which documents the total presence of 88 sensors. In Fig. 7(a),
sensor observations between t = 400 and t = 600 are
displayed, where 25 sensors are active during this interval.
A more focused view between t = 400 and t = 420 shows 7
sensors present. The sampling illustrates significant variations
induced by the use of random processes, particularly high-
lighted through the observations marked with solid squares in
yellow and black.

In Fig. 7(a), the sensor depicted in black with solid squares
is active only from t = 413 to t = 428, while the sensor shown
in yellow with solid squares remains active from t = 410 to
t = 710. On average, a sensor remains in the environment for
a duration of 1

µ = 100, which often results in many sensor
pairs having no overlapping periods of operation.

Additionally, as shown in Fig. 7(b), sensor messages are
not transmitted at regular intervals—for instance, among the
15 messages shown in black, there is less than 0.01 seconds
between two messages at t = 413 and more than 1.6 seconds
between t = 415 and t = 417. This irregularity reduces
the effectiveness of distance metrics based on point-to-point
calculations.

The messages are also quite noisy, with values reaching 1.5
at t = 412 for the yellow square messages, even though the
maximum value of the phenomenon is 1. This level of noise
makes distance metrics that evaluate maximum deviations or
trends (such as increases or decreases between consecutive
points) unreliable.

B. Kriging Parameter Settings
The Kriging requires fitting the experimental variogram to

the variogram model. We have chosen the Gaussian model
defined in Eq. (1). In the survey [18], it was established that the
choice of variogram model is relatively unimportant compared
to the parameters associated with this model. Hence, we
propose a robust method for fixing the variogram parameters.

In our simulations, we used the PyKrige package in Python,
which we utilized to create Kriging interpolations. This mod-
ule can estimate the parameters of nugget n, sill s, and
range r based on a given variogram model. However, since
the sensor observations are randomly generated with random
measurement noise, the parameter estimation was not always
accurate. In some cases, the parameter estimation led to very
strong variations in the interpolation (e.g., small range r),
while in other cases, it resulted in a nearly linear interpolation
(e.g., very large range r).

To address this issue, for a given observation sampling, we
assume that sets of observations from each sensor have the
same underlying form since they are generated using the same
random laws; therefore, they should be interpolated with the
same variogram model. To achieve this, for a given observation
sampling, we fix the parameters n, s, and r that will be the
same for all interpolations to make.

For one observation sampling, for each sensor i, we estimate
the triplet of parameters ni, si, and ri using the fitting function
provided by the PyKrige package. Consequently, for each
parameter, we define the value for the variogram model across
all sensors in the observation sampling as the median value.
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Fig. 7. One observation sampling with a noise level of σ = 0.2, (a) targets the time interval between t = 400 and t = 600, and (b) focuses on the shorter
span from t = 400 to t = 420. Each sensor’s observations are color-coded for distinction. Sensors tracking phenomenon 1 are represented by square markers,
while those monitoring phenomenon 2 are indicated by circles. Solid squares colored in yellow and black, unlike others that have hollow markers, are selected
as examples to demonstrate the variabilities encountered in the simulation.

C. Using V-measure to Evaluate Clustering Performance

To evaluate the performance of a clustering solution,
we assess the clustering results in comparison to the true
membership of sensors to their corresponding phenomenon. A
so-called class is defined by one phenomenon and its related
sensors, and we compare this set of classes with the set of
clusters formed by the evaluated clustering method.

A method to evaluate the performance of a clustering
algorithm when true labels are known relies on two measures:
Completeness and Homogeneity, forming the V-measure.
These measures are based on conditional entropy and provide
a score ranging from 0 to 1; the mathematical expressions are
developed in [27].

On the one hand, Homogeneity evaluates the proportion of a
cluster containing elements from the same class. In the extreme
case, a clustering with perfect Homogeneity would involve
constructing a cluster for each object.

On the other hand, Completeness evaluates the proportion
of a class being grouped into the same cluster. In the extreme
case, a clustering with perfect Completeness would involve
constructing a single cluster containing all objects.

A score of 1 corresponds to perfect Completeness (re-
spectively Homogeneity), while 0 indicates null Completeness
(Homogeneity).

These two metrics characterize two main aspects of a
clustering performance. The weighted harmonic mean by a
(that we choose a = 1), known as V-measure, is defined as:

V-measure =
(1 + a)Homogeneity × Completeness
a× Homogeneity + Completeness

D. Evaluation Using a Comparative Method

We begin by assessing our proposal in comparison to
alternatives found in the literature, introducing a comparative
similarity metric and clustering algorithm.

Subsequently, we evaluate the various possible combina-
tions, opting for either our proposed method or the compar-
ative one, for each of the two components of the clustering
methodology. We demonstrate the effectiveness of each pro-
posal compared to the alternative ones.

1) Comparison Similarity - Dynamic Time Warping: Due
to the non-synchronicity of observations, conventional distance
metrics for time series, which rely on observations at identical
instances, are not directly applicable. In [9,10], which also
aim to create groups of similar sensors, the similarity metric
between two sets of observations is based on the maximum
difference between pairs of observations made at the same
instants and on similar trends (rise or fall). However, ob-
servations between sensors are not synchronized, and with
measurement noise, neither of these metrics seems to be
suitable.

Still, algorithms based on time series that could address
such variability exist, with DTW being a notable example.
DTW aims to measure the similarity between two time series,
accommodating temporal shifts or differences in sampling
between the compared time series [28].

Considering sets of observations from sensors i and j
as θi and θj , assumed without loss of generality to be
defined over the same interval (otherwise, we constrain
Ti, Tj to their common definition set), DTW relies on
the distance matrix between all pairs of observation values
(d(θi,ti , θj,tj ))ti∈Ti,tj∈Tj

. In this simulation, we choose the
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distance function as the absolute difference between the two
compared values d(θi,ti , θj,tj ) = |θi,ti − θj,tj |.

A path is defined in that matrix, starting from the earliest
instants of both historical observations (top left corner of
the matrix) and progressing in proximity (vertical, horizontal,
diagonal, always forward) until reaching the opposite end of
the matrix (bottom right corner). The value associated with
this path is the sum of the matrix values it traverses. In this
matrix representation, for example, the Manhattan distance is
defined thanks to the path along the diagonal of the matrix
when the matrix is square. The DTW chooses the path with
the smallest value - and in its normalized form, divided by the
sum of the matrix sides |Ti|+ |Tj | = ni+nj . The pseudocode
of this algorithm is presented in Algorithm 1.

Algorithm 1 Normalized DTW algorithm. Abuse have been
made, representing observation times with indexes respectively
[1..ni] and [1..nj ] in order to facilitate the understanding.
Require: θi = (θi,k)k∈1..ni

, θj = (θj,l)l∈1..nj

1: DTW := array k ∈ 1..ni, l ∈ 1..nj , DTW [k, l] = |θi,k −
θj,l|

2: for k ∈ [2..ni] do
3: DTW [k, 1] = DTW [k, 1] +DTW [k − 1, 1]
4: end for
5: for l ∈ [2..nj ] do
6: DTW [1, l] = DTW [1, l] +DTW [1, l − 1]
7: end for
8: for k ∈ [2..ni] do
9: for l ∈ [2..nj ] do

10: DTW [k, l] = DTW [k, l] + min{DTW [k −
1, l], DTW [k, l − 1], DTW [k − 1, l − 1]}

11: end for
12: end for
13: return DTW [ni,nj ]

ni+nj

2) Comparison Clustering - AHC with Complete Linkage:
Talking about the clustering method, we propose to compare
our solution to an approach extracted from the literature,
specifically the solution proposed in [9,10]. In these references,
the sensors transmit observations at exactly the same time
points. Two sensors are defined as similar if the maximum
amplitude difference between their observations does not
exceed a threshold. The problem is thus formulated as a
sensor graph where the edges represent similarity links. They
have developed an algorithm that performs clique partitioning,
meaning a partition of the sensor set such that each group
contains sensors that are all mutually similar.

To enable a comparison between our approach and the
one proposed in the literature on a common ground, we
keep the main clustering algorithm, and change their features.
Specifically, we decide to adapt this principle to the AHC
algorithm. Drawing an analogy with the clique partitioning
method, we choose a complete linkage method [29]. This
linkage method defines the distance between two clusters as
the maximum existing distance between each pair of objects
from different clusters:

D(I, J) = max{d(i, j), d(i, j) ̸= None, i ∈ I, j ∈ J}

Thus, at each stage, we merge the two clusters that have
the lowest distance, hence restricting the maximum distance
between two sensors that belong to the same cluster.

3) Setting the Maximum Number of Clusters: As mentioned
in Section V-D, to ensure a fair comparison between the two
comparison methods, we need to choose a stopping criterion
that is not dependent on the distance, hence the choice of the
maximum number of clusters.

For our settings, the ideal number of clusters is 2, one cluster
containing the sensors following the first phenomenon, and the
second containing those following the second phenomenon.
However, due to simulations driven by random variables, the
created objects exhibit significant variability. We conduct a
substantial number of simulations, consistently regenerating
sets of sensor observations, revealing instances where the
decision to have two clusters proved suboptimal. We identified
cases where choosing two clusters yields poor clustering
results.
• Occasionally, a phenomenon might not be monitored by any
sensors at a specific point in the simulation, resulting in the
sensors before and after this point being grouped separately
due to the absence of a common definition interval. In such
cases, ideally, three clusters would better represent the sce-
nario—two for the disjoint periods of the same phenomenon
and one for the other phenomenon.
• When the overlap in the monitoring interval between sensors
is minimal, and the phenomena themselves are overlapping,
a pair of sensors monitoring different phenomena might end
up with a very low measured distance between them. Conse-
quently, these sensors might be mistakenly grouped together.
It becomes crucial to isolate such pairs to avoid incorrect
clustering, potentially necessitating an additional cluster.
• High noise levels or sensors that transmit very few obser-
vations over brief intervals can lead to significantly different
readings compared to other sensors. Our clustering method
sometimes inadvertently groups sensors tracking different phe-
nomena and leaves such an outlier sensor isolated in its own
cluster.

For these reasons, we opt to set 3 clusters. In this case, this
choice is not always optimal, but it is a compromise to obtain
sufficiently consistent groups and comparable results.

4) Simulation Settings: We aim to assess the relevance
of our choices for the similarity metric and linkage method.
With the comparative method we have just presented, we have
the option to choose between two similarity metrics and two
clustering methods. Firstly, for the similarity metric, we can
opt for our proposal – which calculates the average difference
between interpolations – or the DTW method. Secondly, for
the clustering method, the two proposed approaches involve
AHC, either using our weighted mean linkage or the complete
linkage method.

By selecting a similarity metric and a clustering method,
we obtain four different methods, allowing us to investigate
the performance impact of altering one component of the
methodology.

We set the measurement noise to σ = 0.2 and conduct
1000 observation samplings. The average performance along
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Similarity metric Linkage method Homogeneity Completness V-measure
Mean Std Mean Std Mean Std

Mean interpolation difference Weighed mean 0.72 0.23 0.60 0.20 0.65 0.22
Mean interpolation difference Complete 0.70 0.21 0.52 0.16 0.59 0.18

Dynamic Time Warping Weighed mean 0.53 0.34 0.50 0.27 0.50 0.31
Dynamic Time Warping Complete 0.60 0.22 0.43 0.17 0.50 0.19

TABLE II
CLUSTERING PERFORMANCE COMPARISON USING A SIMILARITY METRIC AND A LINKAGE METHOD FOR AHC FROM BOTH OUR PROPOSED SOLUTION

AND THE COMPARATIVE APPROACH, WITH A PREDEFINED NUMBER OF FINAL CLUSTERS SET TO 3 AND SENSOR MEASUREMENT NOISE σ = 0.2.
PRESENTATION OF AVERAGE VALUES AND STANDARD DEVIATIONS OF HOMOGENEITY, COMPLETENESS, AND V-MEASURE. HIGHLIGHTING OUR

CONTRIBUTIONS IN BOLD.

with the standard deviation of Homogeneity, Completeness,
and V-measure can be observed in Table II.

5) Discussion of the Results: Globally, we achieve a 23%
improvement in terms of V-measure performance compared
to the method we have chosen for comparison, demonstrating
its superiority, which is evident in both Homogeneity (+28%)
and Completeness (+16%).

The use of our similarity metric significantly enhances per-
formance, with its application alongside the complete linkage
method proving to be the second-most effective configura-
tion in terms of Homogeneity and Completeness. The key
advantage of our similarity approach is its comprehensive
consideration of all messages sent by a sensor. Unlike tradi-
tional time series-based methods like Dynamic Time Warping
(DTW), which focus only on the sequence of messages,
our interpolation-based method incorporates the dimension
of duration. It’s important to note, however, that while the
interpolation method is robust against irregular and noisy
sensor data, it is a parametric method that performs best
when the phenomena being monitored do not undergo abrupt
changes. Additionally, we have selected the Kriging interpo-
lation method, which is particularly effective at interpolating
functions that are combinations of sinusoids.

Regarding different linkage methods, our linkage method
enhances performance by 9% when combined with the mean
interpolation difference similarity metric, although, interest-
ingly, when using the DTW metric, applying either the com-
plete linkage or the weighted mean linkage results in similar
overall V-measure performance. Our objective was to consider
the duration of the common comparison between compared
sensors, giving more weight to pairs of sensors defined over
a longer common definition interval. In contrast, complete
linkage only retains the most significant distance and does
not incorporate the duration of the common definition interval
into its distance calculation.

E. Robustness of the Solution to Noise Variations

This section evaluates the robustness of our solution against
variations in measurement noise.

The stopping criterion plays a crucial role in determin-
ing measurement performance. Consequently, we have imple-
mented another thresholding method based on the distance
between clusters.

1) Setting of the Threshold Based on Inter-cluster Distance:
As explained in Section VI-D3, the number of ”optimal”
clusters can vary, ranging from a minimum of 2 clusters to a

potentially higher number due to the strong variability inherent
in the considered simulation.

Hence, we propose a stopping criterion that is a threshold
for the maximum distance between clusters.

Firstly, with zero noise, since the distance is based on
interpolations over sets of irregular observations, when sensors
belong to the same phenomenon, the distance is non-zero. The
threshold for zero noise distance must, therefore, have a non-
zero value.

Furthermore, as the noise increases, the distance between
two sensors following the same phenomenon becomes larger.
Analogous to confidence interval definitions, we set the thresh-
old distance proportionally to the intensity of the measurement
noise σ.

Thus, we define our threshold in a generic form:

Dthreshold = C + kσ (5)
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Fig. 8. (a) Average V-measure performances with zero noise, while varying
the threshold distance parameter C.
(b) Average V-measure performances with noise σ = 0.2, while varying the
threshold distance parameter k, and with C = 0.1.
The vertical line represents the chosen parameter value for C and k, further
used.

Setting the Threshold Parameters: We perform simulations
to determine the appropriate values for parameters C and k.
Initially, to set C in Eq. (5)—the threshold for zero noise—we
conduct 1000 observation samplings under the condition of
zero noise σ = 0. We evaluate the clustering performance
for various C values, applying our clustering method with
the stopping criterion defined in Eq. (5), and assess each
simulation’s performance by examining the V-measure. The
results, showing the mean V-measures in Fig. 8(a), indicate
that performance is relatively stable for C values within
the range [0.05, 0.28], producing V-measure values between
[0.925, 0.932]. Based on these findings, we choose C = 0.1.

After setting C, we determine k using the same process,
this time with noise set at σ = 0.2 and C = 0.1, performing
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Fig. 9. Performance evaluation of our clustering solution (mean interpolation difference + weighted mean linkage method for AHC) under various levels of
measurement noise, with a stopping criterion based on maximum number of sensors (solid blue line) and one based on threshold inter-cluster distance (dashed
red line).
(a) Mean Homogeneity, (b) Mean Completeness, and (c) Mean V-measure of clustering results for the two compared solutions. (d) Average number of final
clusters when using the distance-based inter-cluster stopping criterion.

1000 observation samplings and evaluating the thresholding
method’s performance for different k values. The V-measure
results, presented in Fig. 8(b), suggest a performance plateau
for k within [0.5, 1], with scores between [0.694, 0.702]. We
select k = 0.8.

These observations confirm that a broad range of values for
C and k yield consistently effective clustering performance.

2) Evaluation of the Clustering Performance for Different
Noises: We evaluate the robustness of our clustering method
by analyzing its response to varying levels of measurement
noise. Our methodology integrates a similarity metric derived
from the average amplitude difference between kriging inter-
polations, along with hierarchical clustering that employs a
mean linkage method weighted by the duration of common
intervals. We assess the performance of this configuration
using two distinct stopping criteria for the clustering: limiting
the number of clusters to a maximum of three, and using a
maximum inter-cluster distance threshold set at Dthreshold =
0.1 + 0.8σ.

Considering that phenomena values range between −1 and
1, we conduct 1000 observation samplings for each noise
level σ = {0 + i ∗ 0.05, 0 ≤ i ≤ 10}. The evaluation
results are illustrated in Fig. 9, where we display metrics
such as Homogeneity (a), Completeness (b), and V-measure
(c). Additionally, for the method that employs the stopping
criterion based on the inter-cluster distance, we document
the average number of clusters formed at each noise level in
Fig. 9(d).

Overall, for both stopping criteria, noise significantly im-
pacts clustering performance, with an average V-measure
decrease of 34% from zero noise to σ = 0.25 when using
the distance-based stopping criterion, and a decrease of 32%
when fixing the final number of clusters. It’s worth noting
that, overall, the formed clusters are more homogeneous than
complete, given that there are only two classes to cluster.

Comparing the two stopping criteria, when noise is low

(σ ≤ 0.25), the distance-based stopping criterion outperforms,
both in terms of average Homogeneity and Completeness.
On average, the final number of clusters is below 3 (2.7
clusters for σ = 0.25), which is advantageous compared to
the maximum cluster number stopping criterion. Thus, for
σ < 0.25, there is a difference of at least 7.8% in terms
of mean V-measure in favor of the distance-based stopping
criterion.

However, as noise increases, the distance-based stopping
criterion becomes more sensitive. Indeed, with relatively high
noise levels (σ > 0.35), the average number of final clusters
increases significantly (6.6 for σ = 0.4, 17.9 for σ = 0.45, and
39.0 for σ = 0.5). This surge in cluster numbers might appear
misleading because it does not correspondingly impact com-
pleteness as expected. In the simulations, there is a fluctuation
between very low cluster counts (where a single cluster yields
perfect completeness) and very high cluster counts (resulting
in lower completeness), leading to poorer overall V-measure
performance for the distance-based threshold.

VII. CONCLUSION AND PERSPECTIVES

In this study, we introduced a novel similarity metric
designed to assess transmissions from sensors that are noisy
and irregular. Additionally, we developed a clustering method
capable of grouping sensors present in the environment for a
limited duration, often encountering situations where sensor
pairs do not overlap in their periods of operation. We high-
lighted the effectiveness of our similarity metric and clustering
approach in comparison to proposals from the literature, and
conducted a robustness study to evaluate the ability of our
method to accurately identify groups of sensors under varying
levels of measurement noise.

The assumptions made in this paper facilitate the imple-
mentation of more flexible IoT solutions, which is crucial
given the rapidly increasing number of connected devices.



12

This research lays the groundwork for future advancements
in real-time monitoring and analysis of observed phenomena,
potentially aiding in the development of a digital twin.

Future research could explore the next steps for using
and expanding these clustering methods. Integrating these
strategies into real-world applications or use cases for anomaly
detection or message reduction would further highlight the
value of this work.
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