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Abstract—The rapid expansion of the Internet of Things (IoT),
in parallel with the substantial reduction in the cost of connected
devices, have enabled the deployment of sensors in large scale.
This massive deployment allows for more comprehensive cover-
age of the studied area when monitoring a physical quantity over
time. As sensors become more densely packed, they often provide
similar data due to their proximity.

In this paper, we look to identify such similarities among
sensors based on their returned data, in order to build groups
of similar sensors. Groups of similar sensors can have several
advantages, such as detecting sensor failures and performing
reduction of sensors transmissions. Our primary focus is on a
generic scenario that has received limited attention in the existing
literature: sensors are deployed at different moments and exist
in the environment for a limited duration, transmitting noisy and
irregular data over time, without synchronization among them.

To address this, we define a data-driven similarity metric,
which is then used for clustering similar sensors. According to
the set of messages sent by a sensor, we apply an interpolation
method that enable us to evaluate similarity between two sensors
as the mean magnitude difference between the interpolations
over their common definition interval. The duration of this
common definition interval characterizes the trustworthiness of
the distance. Hence, in the hierarchical clustering method we
propose, we introduce a linkage method that assigns higher
weights to distances calculated over longer comparison durations.

Through simulations, we demonstrate the superiority of our
method compared to the state-of-the-art Dynamic Time Warping
(DTW) distance and a hierarchical clustering with complete
linkage inspired by related works. Our results establish a mean
improvement of 23% of our approach in terms of V-Measure.
Moreover, we provide comprehensive experiments assessing the
robustness of our solution under various sensor measurement
noise levels and employing different stopping criterion strategies.

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized the land-
scape of large-scale monitoring solutions, offering a mul-
titude of methods for various contexts, including resource
and flow optimization, risk management, and tracking [1].
These solutions find applications in diverse domains such as
agriculture [2], industries [3], and smart cities [4]. Advance-
ments in electronics, coupled with the emergence of high-
constraint networks, have led to the development of embedded
sensors capable of performing simple specialized tasks, such
as routine temperature, humidity, or CO2 measurements [5].
Powered by batteries and available at low cost, these sensors
can be deployed on a large scale with ease. For instance,

one can envision temperature sensors integrated into everyday
objects [6].

Given the substantial number of deployed sensors, it is
common for some of them to be in close proximity to each
other, resulting in ’similar’ sensors that transmit closely related
data.

Exploiting this similarity serves at least two essential pur-
poses. First, if a sensor malfunctions and sends aberrant data,
we can promptly detect this failure by comparing its data
with those from similar sensors, as studied in [7]. Second, if
multiple sensors transmit similar data, there is an opportunity
to reduce the volume of messages sent, as studied for instance
in [8-10].

This paper aims to develop a method for identifying groups
of similar sensors based on their data. The environment is
considered to be composed of multiple phenomena, with
each phenomenon exhibiting distinct variations in the physical
quantity over time. Each sensor tracks one of these phenom-
ena. The objective is to group together sensors that observe
the same phenomenon.

In contrast to prior studies [8-10], we tackle a more gener-
alized scenario where the transmission period of sensors is
not constant. Furthermore, considering that synchronization
of transmissions among sensors can be costly, especially in
networks with a large number of nodes susceptible to clock
drifts, we opt not to incorporate any synchronization among
sensors.

Furthermore, since these sensors can be integrated into
everyday objects, they may enter and exit the environment
over time. Typically powered by batteries, these sensors are
operational for a limited duration within the environment. This
situation can give rise to scenarios where two sensors are
present in the environment at different times.

Finally, due to the miniaturization of sensors, measurement
errors are non-negligible.

The solution we propose can be divided into two main
components: a similarity metric that quantifies the closeness
between sensors and a hierarchical clustering method that aims
to group similar sensors.

Firstly, for a set of data from a sensor, we define its
interpolator using Kriging, a geostatistical technique. Subse-
quently, we establish the distance between two sensors on their



common definition interval, calculated as the difference in the
average magnitude between their respective interpolations.

Subsequently, we present an Agglomerative Hierarchical
Clustering (AHC) approach. The distance between two sensors
can only be measured over their common definition interval,
which may vary from being very short (providing limited
relevance to the measurement) to very long (instilling more
confidence in the measurement). Based on this observation,
we define the inter-cluster distance as the mean of distances
between sensors from different clusters, with distances being
weighted by the common definition duration.

We introduce Dynamic Time Warping (DTW) as a com-
parative similarity metric and employ a clustering method
based on the principles presented in [9,10]. We demonstrate
the superiority of both our proposed similarity metric and
clustering method compared to these alternatives.

Additionally, we assess the performance of our clustering
method across various noise levels, comparing two stopping
criteria for the AHC method.

The subsequent sections of the paper are outlined as follows:
firstly, we present related works in Section II. Next, we specify
the assumptions in Section III. Our similarity metric is intro-
duced in Section IV, and the clustering method is elaborated
in Section V. Simulations are then detailed in Section VI,
followed by our conclusions in Section VII

II. RELATED WORKS

Works such as [11] propose a method that evaluate similar-
ities between sensors based on geography and validates these
connections using similarity metrics derived from the data
returned by the sensors. They employ data-based measures
like the Jaccard coefficient, cosine similarity, and the Pearson
product correlation coefficient.

[7] propose to address the fault detection problem through
the identification of similarities between sensors. Correlation
analysis is performed, allowing creation of possibly overlap-
ping groups of correlated sensors. Thus, a fault is identified
when a sensor deviates from an assigned cluster. The authors
conduct experiments on an industrial process monitored by 17
sensors and achieve better fault detection rates compared to
some traditional fault detection methods.

Other approaches, like [8-10], focus on reducing the volume
of transmitted messages through scheduling strategies among
sensors, assessing similarity based on the returned observa-
tions.

In the approach presented by [8], a transfer function is
created to estimate one sensor’s observation based on another
sensor’s measurement. A directed similarity link is established
when the transfer function can accurately estimate a sensor’s
measurement from its own reading. In their experiment, 54
temperature and humidity sensors were deployed at distances
ranging from 6 to 15 feet. They constructed up to 12 dis-
joint subsets of sensors, transmitting in round-robin fashion,
each able to evaluate the data of all sensors. This approach
achieved precision levels close to scenarios where all sensors
transmitted at each round.

Other proposals focus on grouping sensors that return highly
similar observations in order to reduce transmissions. Instead
of activating all sensors in each round, sensors from the same
cluster are activated in a round-robin fashion. These papers
are most closely related to the problem studied in this paper.

In [9], observations are made simultaneously, and a link
between two sensors is established if their observations do
not exceed a certain difference threshold, and their trends
(increase or decrease in the physical quantity) match for 95%
of the time. Clusters are subsequently formed based on the
graph representation of sensors, transforming the problem into
one of clique partitioning. A greedy method is then employed
to generate the clusters. An experiment was conducted with
light sensors placed under desk lamps and barriers positioned
in certain areas. This method successfully grouped sensors
surrounded by barriers, resulting in an average reduction in
sensor consumption by a factor of 3 with low precision loss.
The authors also present an extended simulation on a larger
scale with similarly promising results.

In [10], similar principles are applied, considering infor-
mation transmission in a mesh network. A similarity link is
established between two sensors if their Pearson correlation
coefficient surpasses a threshold and the difference in averages
exceeds another threshold. The clustering problem, in the form
of cliques, resembles that in [9], with then the adoption of a
greedy method for the selection of head clusters at the core
of the clusters.

However, the novel assumptions introduced by the emer-
gence of the Massive IoT paradigm [6] constrain the applica-
bility of these methods in this new dynamic context.

In this paper, our goal is to evaluate similarity based on
sensor observations. The proposed approaches assume a strict
assumption that sensors synchronize their transmissions at
regular intervals. We propose to investigate a more generic
scenario, not relying on these assumptions of periodic and
synchronized transmissions.

Furthermore, the existing clustering solutions presented
assume that all sensors are initially present and are grouped
based on observations sent during an initialization period. In
the context of Massive IoT, characterized by a vast number
of sensors, it is more realistic to acknowledge that sensors
may participate in the monitoring process for only a limited
duration, with new sensors joining over time. In this paper,
we attempt to consider this new hypothesis.

III. HYPOTHESES AND OBJECTIVES

In this section, we outline the objective and the hypotheses
concerning the deployment of sensors and their observations.

A. Identifying Sensors Belonging to the Same Phenomenon

We consider an environment that exhibits multiple distinct
phenomena, each demonstrating proper variations in the stud-
ied physical quantity over time. For instance, in a building,
temperature variations may differ from one room to another.
Sensors are deployed in this environment, each tracking one
phenomenon.



Our goal is to cluster sensors that observe the same phe-
nomenon, creating disjoint clusters where each sensor belongs
to one and only one cluster.

This grouping of similar sensors addresses two well-known
challenges in IoT networks. Firstly, with such a cluster struc-
ture, we can implement energy-saving mechanisms among
sensors. Sensors belonging to the same similar cluster send
redundant messages, so it is not essential for all sensors to
consume their energy for message transmission. In previous
studies [12,13], we presented methods tailored to highly
constrained networks that distribute the transmission workload
among a cluster of similar sensors. Secondly, it is crucial to
assess the failure of an object, especially considering miniature
embedded objects. Having groups of similar sensors provides a
reliable reference for measurements, enabling the use of robust
anomaly detection techniques.

B. Incoming and Outgoing Sensors

In the context of a large-scale IoT deployment involving
these resource-constrained devices, it is conceivable that sen-
sors could be integrated into everyday objects. This integration
allows them to move in and out of the environment over time.
Furthermore, due to the limitations imposed by their batteries,
some sensors may become inactive either due to hardware
problems or exhausted battery power.

Thus, sensors are defined only for a limited duration. As
a result, the similarity between two sensors can only be
evaluated when they are coexisting within the environment.
Notably, this shared time interval of operation is variable or
even non-existent.

C. Observations Sent by a Sensor

Sensors transmit observations over time to the terminal. An
observation is defined by a time and a value. The observation
value represents the value of the phenomenon that the sensor
is following, with added noise due to imprecise measuring
devices.

As indicated in [14], scheduling sensors to transmit at the
same instants is challenging. Sensors are sensitive to clock
drift, necessitating regular synchronization. Given the poten-
tial vastness of sensor fleets and the limited communication
capacity with these constrained devices, achieving regular
synchronization is expensive in terms of sensor consumption.
Therefore, we operate under the assumption that sensors are
not synchronized.

Furthermore, we assume that sensors send observations
irregularly. The specific data collection method employed by
a sensor (e.g., trigger-based, model-based [15]) influences the
observation period, which tends to vary over time.

IV. SIMILARITY METRIC: MEAN DIFFERENCE BETWEEN
INTERPOLATIONS OF SENSORS OBSERVATIONS

As part of our assumptions, we consider that a sensor sends
unsynchronized observations to other sensors with a variable
transmission period. Furthermore, this sensor remains within
the environment for a limited duration. An example of the

observations sent by two sensors, which we aim to compare,
is illustrated in Fig. 1.

In this section, we introduce a distance metric that relies
on two key components. Firstly, we utilize an interpolation
method named Kriging to convert irregular observations into
a continuous representation. Subsequently, we define the dis-
tance between two sensors over their common time interval as
the mean magnitude difference between their interpolations.

Fig. 1. Representation of two sets of observations. Orange diamonds and
dashed green squares represent observations from two sensors, with time on
the x-axis and observation values on the y-axis.

A. Kriging-Based Interpolation of an Observation Set

The observations are sent irregularly spaced and noisy,
making direct comparisons challenging. Therefore, as an ini-
tial step, we propose to employ an interpolation method to
transforms a set of observations into a continuous function,
facilitating comparisons.

1) Justification of the Kriging Choice: An interpolation
function is a mathematical function defined over all time
points based on a set of noisy observations. Its objective is
to minimize the average discrepancy between the interpolated
function and the measured phenomenon. Numerous interpola-
tion methods exist, as documented in [16]. Since the observed
data is subject to noise, we aim to relax the constraint of
passing through all data points. Consequently, certain methods
like Spline are not applicable.

Kriging is an interpolation method based on Gaussian
processes governed by prior covariances [17]. This approach
is particularly well-suited for various noise reduction appli-
cations, as summarized in [18], as it allows the estimation
and incorporation of measurement errors into the modeling.
For instance, in [19], an experimental study demonstrated the
superiority of Kriging over the inverse distance weighting
method. Kriging has been applied in the domain of the IoT as
well, such as in [20], where it was used to propose a sensor
positioning solution based on the data they provide.

2) Principle of the Kriging and the Variogram: Kriging is
an interpolation method based on Gaussian processes, where
each observation is treated as a random variable. Thus, the
variogram is a function that measures the variance between
two observation values based on their temporal separation. It
is employed in the Kriging model to estimate an interpolated
value at a target time from known observations that are
correlated (temporally close).

Since the true variogram is typically unknown, it is esti-
mated using known observations. This estimation is obtained
by initially calculating the experimental variogram. We denote
by θ = {θt, t ∈ T} the set of known observations, where



T represents the set of measurement time instants and θt is
an observation value made at time t. Then, the experimental
variogram γθ is computed for each pair of points, so that:

∀(t1, t2) ∈ T 2, γθ(|t1 − t2|) = 0.5(θt1 − θt2)
2

Fig. 2. Illustration of the variogram model based on experimental variogram
points. The variogram consists of three parameters: nugget, sill, and range.
The closer (temporally) the distance between two observations, the more
correlated the values. Beyond a certain threshold, defined by the range,
observations that are too distant are no longer correlated.

The data points of the experimental variogram are shown
in Fig. 2 as red squares. Here, the horizontal axis represents the
temporal distance between two observations, while the vertical
axis displays the measurement of the experimental variogram
between these two observations.

To create a continuous representation from this discrete
experimental variogram, we fit these data points to a math-
ematical function known as the variogram model, denoted as
γ̂θ, and visualized in Fig. 2 by the black curve. This model
serves to evaluate the correlation between two observations
based on their temporal separation.

For example, spherical, exponential, and Gaussian models
are characterized by three parameters and illustrated in Fig. 2:

• The nugget n: Signifies the variogram value when there
is zero temporal distance between observations. It quan-
tifies the amount of short-range variability in the data,
essentially capturing measurement noise.

• The sill s: Represents the variogram value when the tem-
poral distance becomes extensive enough that observation
values are no longer correlated.

• The range r: Denotes the temporal distance at which the
variogram reaches the sill value.

The generic version of the Gaussian variogram is for exam-
ple given by:

γ̂(t1, t2) = n+ s

(
1− e−

(t1−t2)2

r2

)
(1)

3) Calculations for the Simple Kriging: Kriging is an
interpolation method rooted in statistical modeling. It assumes
that each observation is a random variable with a finite mean
and variance.

We present the result for the simple Kriging. The strong
assumption here is that the mean expectation of values at all
time instances is the same and known, assumed to be zero.
In the case of ordinary Kriging (another Kriging modeling),
the expectation is similar across all points and unknown; for
universal Kriging, a polynomial trend model is incorporated.

Here, θ = (θt)t∈T constitutes the vector representing the
set of known observations. Under the given assumptions, we
assume E[θt] = 0. The covariance matrix of the observation
history vector is defined using the variogram model γ̂θ as
follows: K = E[θθ⊤] = (γ̂θ(t1, t2))t1,t2∈T .

Our objective is to evaluate the value at the point t̂. Let Θt̂
denote the random variable representing the value at t̂ (with
E[Θt̂] = 0). The covariance vector between the observation
value to evaluate at t̂ and the set of known observations
is defined based on the variogram model: kt̂ = E[θΘt̂] =
(γ̂θ(t̂, t))t∈T .

The core principle of Kriging is that interpolation at a point
is defined as a linear combination of the observation values.
Hence, the estimator at the point t̂, denoted by θ̂t̂, is the sum
of observation values weighted by the coefficient vector ψt̂ =
(ψt,t̂)t∈T :

θ̂t̂ =
∑
t∈T

ψt,t̂θt = ψ⊤
t̂
θ

From the definition of θ̂t̂, we can already establish through
its expectation calculation that it is unbiased: E[θ̂t̂] =∑
t∈T ψt,t̂E[Θt] = 0.
The weights are defined to minimize the expectation of the

squared difference between the estimator and the quantity to
predict at this new point t̂: ∆(t̂) = E[(θ̂t̂ −Θt̂)

2]
By expanding this squared difference, we have:

∆(t̂)=E[(ψ⊤
t̂
θ −Θt̂)

2]

=E[ψ⊤
t̂
θθ⊤ψt̂ −Θt̂θ

⊤ψt̂ − ψ⊤
t̂
θΘt̂ +Θ2

t̂
]

=ψ⊤
t̂
E[θθ⊤]ψt̂ − 2E[Θt̂θ

⊤]ψt̂ + E[Θ2
t̂
]

=ψ⊤
t̂
Kψt̂ − 2k⊤

t̂
ψt̂ + σ2

t̂

Where σt̂ =
√
E[Θ2

t̂
], independent of ψt̂.

We aim to find the vector ψt̂ that minimizes ∆(t̂). The
derivative with respect to each ψt,t̂ is zero, resulting in:

∂∆(t̂)
∂ψt̂

=2Kψt̂ − 2kt̂ = 0

⇔ ψt̂=K
−1kt̂

K is a symmetric matrix, so K−1 is a symmetric matrix,
leading us to the expression of the estimation θ̂t̂:

θ̂t̂ = k⊤
t̂
K−1θ

Therefore, for the computation of t̂, it is necessary to define
K and kt̂ based on the variogram model γθ and invert the
matrix K. For any new estimate of observation, it is only
necessary to redefine k.



B. Distance Based on Mean Magnitude Difference

Let the sets of observations from sensors i and j defined
by i : {θi,t, t ∈ Ti} and j : {θj,t, t ∈ Tj}, so that θ̂i(t) and
θ̂j(t) be the interpolations obtained using the Kriging-based
interpolation. We use the mean magnitude difference to evalu-
ate the distance between two interpolations over their common
definition interval, as schematically represented in Fig. 3.

Fig. 3. Interpolations of the sets of observations illustrated in Fig. 1, depicted
as solid orange and dashed green lines. The vertical dashed lines indicate
the common temporal domain of the two interpolations [a(., .), b(., .)]. The
area between the two interpolations over the common definition interval is
represented by the red filling.

Firstly, the interpolations can only be compared over their
common definition interval. If there exists a common definition
interval between i and j, we denote it by [a(i, j), b(i, j)]. This
interval begins at the time of the sensor that arrived the latest
and ends at the time of the sensor that leaves the earliest:

a(i, j) = max{min{t ∈ Ti},min{t ∈ Tj}}
b(i, j) = min{max{t ∈ Ti},max{t ∈ Tj}}

Hence, the duration of the common definition interval, denoted
by δ(i, j), is defined by:

δ(i, j) = max{0, (b(i, j)− a(i, j))} (2)

Furthermore, since the interpolation method aims to min-
imize the average difference between the ground truth and
the estimation, we define the distance d(i, j) as the mean
magnitude difference between the interpolations. If the du-
ration of the common definition interval is not zero, it can be
mathematically expressed as:

dinterp-mean(i, j) =
1

δ(i, j)

∫ b(i,j)

a(i,j)

|θ̂i(t)− θ̂j(t)|dt (3)

V. WEIGHED MEAN LINKAGE HIERARCHICAL
CLUSTERING

In this section, we propose a method that relies on the pre-
sented similarity measure to cluster together sensors that are
considered similar, using a hierarchical clustering approach.

A. Specification of the Clustering Problem

In a typical clustering problem, objects are considered with
n variables, and the goal is to group together objects that are
close when represented in a space where each variable con-
stitutes a dimension. Commonly, standard similarity metrics
based on vectors are employed for such clustering tasks [21-
23].

In our specific context, an object represents a sensor, its set
of observations, and its interpolation based on Kriging defined
over a specific time interval. Here, the calculation of distance
is not as straightforward, which is why we have dedicated a
specific section to it. Thus, we were able to define a distance
(which can be None) d(., .) and a common definition interval
duration δ(., .) between two sensors.

This change implies specific considerations in devising a
clustering solution:

• Some pairs of sensors may have an unknown distance:
they are defined over disjoint intervals, making it impos-
sible to determine their proximity,

• The duration of the common definition interval is an
essential indicator for defining the quality of the distance
measure: a distance calculated over a longer period car-
ries more significance than one computed over a very
short duration.

B. Agglomerative Hierarchical Clustering Basics

Algorithm Principles: For this problem, we choose to focus
on solutions based on AHC. This clustering method involves
iteratively merging clusters together [24].

Initially, each object (sensor) is considered as its own
cluster. At each iteration, the two closest clusters are merged to
form a new cluster. Consequently, in each iteration, we obtain
one less cluster than in the previous iteration. The merging
process terminates when the stopping criterion is met; this
stopping criterion can be the final number of clusters or based
on intra-cluster and inter-cluster distances.

Linkage Method: An essential aspect here is the definition
of the distance between clusters. The method that relies on
inter-object distances to determine the inter-cluster distance
is referred to as the linkage method. In Fig. 4, we illustrate
several linkage methods: Simple-link defines the distance
between clusters as the smallest distance between any pair of
objects from a different cluster; complete-link uses the largest
distance between any pair of objects from a different cluster;
average-link calculates the average of all pairwise distances
between objects from a different cluster.

Fig. 4. Examples of linkage methods, from [25].

C. Weighted Mean Linkage Method

In the literature, various common linkage methods exist, all
of which involve linear combinations of distances between the
elements of the clusters being compared. Here, we choose to
adapt the average-link to better suit our problem. We weigh
the distances by the duration of the common definition interval



to give more importance to distances calculated over longer
periods.

Let d(i, j) be the distance between sensors i and j calcu-
lated using the method described in Eq. (3), and δ(i, j) be
the duration of their common definition interval, as defined
in Eq. (2). When two sensors are not directly comparable,
δ(i, j) = 0, and d(i, j) = None, and our convention dictates
δ(i, j)d(i, j) = 0.

We define the distance between two clusters as the mean
of distances between pairs of objects from different clusters,
weighted by their common definition interval duration. Con-
sidering i ∈ I as the set of sensors included in cluster I , and
j ∈ J for J , the distance between clusters I and J is given
by:

D(I, J) =

∑
i∈I

∑
j∈J δ(i, j)d(i, j)∑

i∈I
∑
j∈J δ(i, j)

(4)

(If all distances between i and j are unknown, then by
convention, we will have D(I, J) = None, and we will not
merge I and J .)

For this linkage method, we employed the Lance-Williams
algorithm as a reference for hierarchical clustering imple-
mentation [26]. This algorithm updates the distance between
clusters at each merging step. First, we extend the notation
δ(.), with δ(I, J) being the sum of the duration of the common
definition interval between each sensor from I and from J .
Mathematicaly, this means: δ(I, J) =

∑
i∈I

∑
j∈J δ(i, j).

Denoting the cluster composed of elements from clusters I
and J by I+J , after this merging, we update its distance with
another cluster K. The update formulas are as follows:

D(I + J,K)= δ(I,K)
δ(I,K)+δ(J,K)D(I,K)

+ δ(J,K)
δ(I,K)+δ(J,K)D(J,K)

δ(I + J,K) = δ(I,K) + δ(J,K)

As a reminder of the hierarchical algorithm, in each round,
we choose to merge clusters with the smallest distance D
based on this distance definition.

D. Stopping Criterion

We will delve into the stopping criterion for this AHC
method in the simulation section, as this criterion plays a
crucial role in the performance of such methods. We will
consider two types of stopping criteria.

Firstly, since we will introduce in the simulation part a
comparative clustering method to evaluate the performance of
the proposed approach in this paper, we aim to compare these
methods fairly. Therefore, the first stopping criterion will be
the maximum number of clusters.

On the other hand, arbitrarily defining the final number of
clusters is not always the best option for achieving optimal
performance [26]. Therefore, we also propose a stopping
criterion that fix a threshold to the maximum distance between
clusters. This threshold is specific to our distance definition
and is therefore not relevant for the comparative clustering
method.

symbol Meaning Value(s)
Phenomena Parameters Section VI-A1

ωi, ϕi Frequencies of signal i U(0, 2π
30

)
αi, βi Amplitudes of signal i U(−100, 100)

Rescaling of the phenomena values [−1, 1]
Sensors Observations Section VI-A2

λ Sensor arrival rate 0.1
1/γ Average number of sent observations 1
µ Sensor existing time rate 0.01

End of Simulation t = 1000
Sensors Considered in simulation Alive at t = 200

V-measure Parameter Section VI-C
a Weight given for Homogeneity 1

Evaluation Using a Comparative Method Section VI-D
Max nb of clusters 3

σ Std of Gaussian noise 0.2
Robustness to Noise Variations Section VI-E

C Zero noise threshold 0.1
k Noise dependent threshold 0.8

σ Std of Gaussian noise {0 + 0.05i,
0 ≤ i ≤ 10}

TABLE I
PARAMETERS OF THE SIMULATION

VI. SIMULATIONS

In this section, we perform simulations by generating two
distinct continuous phenomena, each sensor consistently fol-
lowing one of the two phenomena. Specifically, an observation
is the value of the corresponding phenomenon at the time of
measurement, with added noise. We model the characteristics
of sensors observations using exponential laws, such as en-
trance of new sensors and their duration, and the observations
made over time. We vary the measurement noise to study the
extent to which our solution can identify similarities and group
sensors following the same phenomenon.

To assess the performance of our solution, we construct
alternative propositions. We leverage DTW as an algorithm
that computes distance, taking into account the peculiarities
of the considered time series. Additionally, we implement
a hierarchical clustering algorithm based on the principle
of clique partitioning. We demonstrate the superiority of
our approach over this competing solution. Additionally, we
explore the performance of our solution across a range of
measurement noises, examining its robustness using various
stopping criterion strategies.

The parameters of all the simulation part are sum-up in Ta-
ble I.

A. Generation of Phenomena and Sensor Observations

The assumptions regarding the phenomena, sensor inputs
and outputs, as well as the transmitted observations, are
presented here in detail, and visible in Fig. 5.

1) Generation of Phenomena:
We define a phenomenon using a continuous function over

time. In this study, we consider two phenomena, each gen-
erated in the same way. Specifically, the generic function is
given by:

f(t) =

30∑
i=1

(αi cosωit+ βi sinϕit)



Fig. 5. Representation of the phenomena, sensor inputs and outputs, and the
transmitted noisy observations.

For each i ∈ {1, 30} and for each of the two phenomena,
the constants αi and βi are chosen from a uniform distribution
U(−100, 100), and the frequencies ωi and ϕi are chosen
from a uniform distribution U(0, 2π30 ) (ensuring a minimum
oscillation period of 30, limiting the variability). Then, we
rescale the function to the range [−1, 1], compressing the
phenomena values into a small value segment. We keep the
same phenomena for all the simulation parts, and they are
depicted in Fig. 6.
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Fig. 6. Phenomena: (a) in their entirety, (b) zoomed between t = 200 and
400.

2) Generation of Sensors Observations:
Each sensor follows one of the two phenomena, always

the same one, and sends a noisy observation of the phe-
nomenon, with Gaussian noise of standard deviation σ. The
arrivals, departures, and observation times of the sensors are
generated according to statistical laws. New sensors enter the
environment over time, following a Poisson distribution with a

parameter of λ = 0.1, and each of them follows one of the two
phenomena with equal probability. The duration of a sensor’s
stay in the environment follows an exponential distribution
with a parameter of µ = 0.01. While in the environment, a
sensor transmits observations following a Poisson distribution
with a parameter of γ = 1.

We terminate the simulation at t = 1000. To mitigate too
much with cases where a phenomenon ceases to be tracked by
a sensor, we initiate the evaluation when a sufficient number
of sensors have entered the environment. Specifically, we
consider only those sensors that remain active after t = 200.

Given that the average duration of a sensor in the environ-
ment is 1

µ = 100, it is noteworthy that there are a considerable
number of pairs of sensors with zero overlapping definition
intervals.

We define a run as the generation of a new set of sensors’
observations, which is then used for all the compared methods.

B. Kriging Parameter Settings

The Kriging requires fitting the experimental variogram to
the variogram model. We have chosen the Gaussian model
defined in Eq. (1). In the survey [18], it was established that the
choice of variogram model is relatively unimportant compared
to the parameters associated with this model. Hence, we
propose a robust method for fixing the variogram parameters.

In our simulations, we used the Pykrige package in Python,
which we utilized to create Kriging interpolations. This mod-
ule can estimate the parameters of nugget n, sill s, and
range r based on a given variogram model. However, since
the sensor observations are randomly generated with random
measurement noise, the parameter estimation was not always
accurate. In some cases, the parameter estimation led to very
strong variations in the interpolation (e.g., small range r),
while in other cases, it resulted in a nearly linear interpolation
(e.g., very large range r).

To address this issue, for a given run, we assume that sets
of observations from each sensor have the same underlying
form since they are generated using the same random laws;
therefore, they should be interpolated with the same variogram
model. To achieve this, for a given run, we fix the parameters
n, s, and r that will be the same for all interpolations to make.

For one run, for each sensor i, we estimate the triplet of
parameters ni, si, and ri using the fitting function provided
by the PyKrige package. Consequently, for each parameter, we
define the value for the variogram model across all sensors in
the run as the median value.

C. Using V-measure to Evaluate Clustering Performance

To evaluate the performance of a clustering solution,
we assess the clustering results in comparison to the true
membership of sensors to their corresponding phenomenon. A
so-called class is defined by one phenomenon and its related
sensors, and we compare this set of classes with the set of
clusters formed by the evaluated clustering method.

A method to evaluate the performance of a clustering
algorithm when true labels are known relies on two measures:



Completeness and Homogeneity, forming the V-measure.
These measures are based on conditional entropy and provide
a score ranging from 0 to 1; the mathematical expressions are
developed in [27].

On the one hand, Homogeneity evaluates the proportion of a
cluster containing elements from the same class. In the extreme
case, a clustering with perfect Homogeneity would involve
constructing a cluster for each object.

On the other hand, Completeness evaluates the proportion
of a class being grouped into the same cluster. In the extreme
case, a clustering with perfect Completeness would involve
constructing a single cluster containing all objects.

A score of 1 corresponds to perfect Completeness (re-
spectively Homogeneity), while 0 indicates null Completeness
(Homogeneity).

These two metrics characterize two main aspects of a
clustering performance. The weighted harmonic mean by a
(that we choose a = 1), known as V-measure, is defined as:

V-measure =
(1 + a)Homogeneity × Completeness
a ∗ Homogeneity + Completeness

D. Evaluation Using a Comparative Method

We begin by assessing our proposal in comparison to
alternatives found in the literature, introducing a comparative
similarity metric and clustering algorithm.

Subsequently, we evaluate the various possible combina-
tions, opting for either our proposed method or the compar-
ative one, for each of the two components of the clustering
methodology. We demonstrate the effectiveness of each pro-
posal compared to the alternative ones.

1) Comparison Similarity - Dynamic Time Warping: Due
to the non-synchronicity of observations, conventional distance
metrics for time series, which rely on observations at identical
instances, are not directly applicable. In [9,10], which also
aims to create groups of similar sensors, their similarity
metric between two sets of observations is based on the
maximum difference between pairs of observations made at
the same instants and on similar trends (rise or fall). However,
observations between sensors are not synchronized, and with
measurement noise, neither of these metrics seems to be
suitable.

Still, algorithms based on time series that could address
such variability exist, with DTW being a notable example.
DTW aims to measure the similarity between two time series,
accommodating temporal shifts or differences in sampling
between the compared time series [28].

Considering sets of observations from sensors i and j
as θi and θj , assumed without loss of generality to be
defined over the same interval (otherwise, we constrain
Ti, Tj to their common definition set), DTW relies on
the distance matrix between all pairs of observation values
(d(θi,ti , θj,tj ))ti∈Ti,tj∈Tj . In this simulation, we choose the
distance function as the absolute difference between the two
compared values d(θi,ti , θj,tj ) = |θi,ti − θj,tj |.

A path is defined in that matrix, starting from the earliest
instants of both historical observations (top left corner of

the matrix) and progressing in proximity (vertical, horizontal,
diagonal, always forward) until reaching the opposite end of
the matrix (bottom right corner). The value associated with
this path is the sum of the matrix values it traverses. In this
matrix representation, for example, the Manhattan distance is
defined thanks to the path along the diagonal of the matrix
when the matrix is square. The DTW chooses the path with
the smallest value - and in its normalized form, divided by
the sum of the matrix sides ni + nj . The pseudocode of this
algorithm is presented in Algorithm 1.

Algorithm 1 Normalized DTW algorithm. Abuse have been
made, representing observation times with indexes respectively
[1..ni] and [1..nj ] in order to facilitate the understanding.
Require: θi = (θi,k)k∈1..ni , θj = (θj,l)l∈1..nj

1: DTW := array k ∈ 1..ni, l ∈ 1..nj , DTW [k, l] = |θi,k −
θj,l|

2: for k ∈ [2..ni] do
3: DTW [k, 1] = DTW [k, 1] +DTW [k − 1, 1]
4: end for
5: for l ∈ [2..nj ] do
6: DTW [1, l] = DTW [1, l] +DTW [1, l − 1]
7: end for
8: for k ∈ [2..ni] do
9: for l ∈ [2..nj ] do

10: DTW [k, l] = DTW [k, l] + min{DTW [k −
1, l], DTW [k, l − 1], DTW [k − 1, l − 1]}

11: end for
12: end for
13: return DTW [ni,nj ]

ni+nj

2) Comparison Clustering - AHC with Complete Linkage:
Talking about the clustering method, we propose to compare
our solution to an approach extracted from the literature,
specifically the solution proposed in [9,10]. In these references,
the sensors transmit observations at exactly the same time
points. Two sensors are defined as similar if the maximum
amplitude difference between their observations does not
exceed a threshold. The problem is thus formulated as a
sensor graph where the edges represent similarity links. They
have developed an algorithm that performs clique partitioning,
meaning a partition of the sensor set such that each group
contains sensors that are all mutually similar.

To enable a meaningful comparison between our approach
and the one proposed in the literature, we retain certain aspects
of our methodology. Specifically, we aim to evaluate this
solution on a common ground, which is why we decide to
adapt this principle to the hierarchical clustering algorithm.
Drawing an analogy with the clique partitioning method, we
choose a complete linkage method [29]. This linkage method
defines the distance between two clusters as the maximum
existing distance between each pair of objects from different
clusters:

D(I, J) = max{d(i, j), d(i, j) ̸= None, i ∈ I, j ∈ J}



Similarity metric Linkage method Homogeneity Completness V-measure
Mean Std Mean Std Mean Std

Mean interpolation difference Weighed mean 0.72 0.23 0.60 0.20 0.65 0.22
Mean interpolation difference Complete 0.70 0.21 0.52 0.16 0.59 0.18

Dynamic Time Warping Weighed mean 0.53 0.34 0.50 0.27 0.50 0.31
Dynamic Time Warping Complete 0.60 0.22 0.43 0.17 0.50 0.19

TABLE II
CLUSTERING PERFORMANCE COMPARISON USING A SIMILARITY METRIC AND A LINKAGE METHOD FOR AHC FROM BOTH OUR PROPOSED SOLUTION

AND THE COMPARATIVE APPROACH, WITH A PREDEFINED NUMBER OF FINAL CLUSTERS SET TO 3 AND SENSOR MEASUREMENT NOISE σ = 0.2.
PRESENTATION OF AVERAGE VALUES AND STANDARD DEVIATIONS OF HOMOGENEITY, COMPLETENESS, AND V-MEASURE. HIGHLIGHTING OUR

CONTRIBUTIONS IN BOLD.

Thus, at each stage, we merge the two clusters that have
the lowest distance, hence restricting the maximum distance
between two sensors that belong to the same cluster.

3) Setting the Maximum Number of Clusters: As mentioned
in Section V-D, to ensure a fair comparison between the two
comparison methods, we need to choose a stopping criterion
that is not dependent on the distance, hence the choice of the
maximum number of clusters.

The ideal number of clusters is 2, in the best case, one
cluster containing the sensors following the first phenomenon,
and the second containing those following the second phe-
nomenon. However, due to simulations driven by random
variables, the created objects exhibit significant variability.
We conduct a substantial number of simulations, consistently
regenerating sets of sensor observations, revealing instances
where the decision to have two clusters proved suboptimal.
We identified cases where choosing two clusters yields poor
clustering results.
• A phenomenon may, at a time in simulation, be followed
by no sensors, leading to the grouping of sensors before and
after this cut without being able to group them due to a
null common definition interval. Thus, two clusters should
represent the two disjoint part of the same phenomenon.
• When the common interval duration is short and when
the phenomena overlap, a pair of sensors following different
phenomena may have a very low distance. In such cases, these
sensors might be grouped together, even though they follow
different phenomena. Isolating this pair as much as possible
is thus essential, leading to an additional cluster.
• If the noise is substantial, and a sensor transmits very
few observations over a short time interval, it can provide
observations significantly different from other sensors. We
observed that our clustering method might prioritize grouping
sensors following different phenomena and leave such a sensor
alone in its cluster.

For these reasons, we opt to set 3 clusters. In this case, this
choice is not always optimal, but it is a compromise to obtain
sufficiently consistent groups and comparable results.

4) Simulation Settings: We aim to assess the relevance
of our choices for the similarity metric and linkage method.
With the comparative method we have just presented, we have
the option to choose between two similarity metrics and two
clustering methods. Firstly, for the similarity metric, we can
opt for our proposal – which calculates the average difference
between interpolations – or the DTW method. Secondly, for

the clustering method, the two proposed approaches involve
AHC, either using our weighted mean linkage or the complete
linkage method.

By selecting a similarity metric and a clustering method,
we obtain four different methods, allowing us to investigate
the performance impact of altering one component of the
methodology.

We set the measurement noise to σ = 0.2 and conduct
1000 runs. The average performance along with the standard
deviation of Homogeneity, Completeness, and V-measure can
be observed in Table II.

5) Discussion of the Results: Globally, we achieve a 23%
improvement in terms of V-measure performance compared
to the method we have chosen for comparison, demonstrating
its superiority, which is evident in both Homogeneity (+28%)
and Completeness (+16%).

It can be observed that the use of our similarity method
has the most positive impact on performance. Employing
this metric with the complete linkage method constitutes the
second-best solution, whether in terms of Homogeneity or
Completeness. Therefore, it seems preferable to use interpo-
lation methods followed by traditional time series distance
measures. This approach demonstrates greater effectiveness
compared to time series-based algorithms, such as DTW,
which solely consider the order of arrivals rather than the
observation times. It is crucial to note, however, that although
the interpolation method is robust to disturbances in sensors
observations (irregular and noisy), it remains a parametric
method that requires the phenomena being tracked not to have
too abrupt changes.

Regarding different linkage methods, our linkage method
enhances performance by 9% when combined with the mean
interpolation difference similarity metric, although, interest-
ingly, when using the DTW metric, applying either the com-
plete linkage or the weighted mean linkage results in similar
overall V-measure performance. Our objective was to consider
the duration of the common comparison between compared
sensors, giving more weight to pairs of sensors defined over
a longer common definition interval. In contrast, complete
linkage only retains the most significant distance and does
not incorporate the duration of the common definition interval
into its distance calculation.

E. Robustness of the Solution to Noise Variations
In this section, we assess the robustness of our solution to

variations in measurement noise.



The stopping criterion can significantly impact measurement
performance. Therefore, we introduce another thresholding
method based on the distance between clusters.

1) Setting of the Threshold Based on Inter-cluster Distance:
As explained in Section VI-D3, the number of ”optimal”
clusters can vary, ranging from a minimum of 2 clusters to a
potentially higher number due to the strong variability inherent
in the considered simulation.

Hence, we propose a stopping criterion that is a threshold
for the maximum distance between clusters.

Firstly, with zero noise, since the distance is based on
interpolations over sets of irregular observations, when sensors
belong to the same phenomenon, the distance is non-zero. The
threshold for zero noise distance must, therefore, have a non-
zero value.

Furthermore, as the noise increases, the distance between
two sensors following the same phenomenon becomes larger.
Analogous to confidence interval definitions, we set the thresh-
old distance proportionally to the intensity of the measurement
noise σ.

Thus, we define our threshold in a generic form:

Dthreshold = C + kσ (5)

0 0.2 0.4 0.6
0

0.5

1

value of C

M
ea

n
V

-m
ea

su
re

(a)

0 0.5 1 1.5 2
0

0.5

1

Value of k
(b)

Fig. 7. (a) Average V-measure performances with zero noise, while varying
the threshold distance parameter C.
(b) Average V-measure performances with noise σ = 0.2, while varying the
threshold distance parameter k, and with C = 0.1.
The vertical line represents the chosen parameter value for C and k, further
used.

Setting the Threshold Parameters: To define the parameters
C and k, we analyze the impact of each parameter on
clustering performance by measuring the V-measure.

First, we set the value of C in Eq. (5), corresponding to the
threshold chosen for zero noise. Thus, we conduct 1000 runs
considering sensors with zero noise σ = 0 and, for each run,
apply the clustering method for various values of C ∈ [0, 1].
We then measure the V-measure for each clustering result, with
the mean results shown in Fig. 7(a). It is observed that the
performance remains relatively stable when C ∈ [0.05, 0.28],
with values ranging between [0.925, 0.932]. Based on this
result, we choose C = 0.1.

After fixing this parameter, we set k in Eq. (5). Here, we
set the noise to σ = 0.2, and with C = 0.1, perform 1000
runs, with the average V-measure results presented in Fig. 7(b).
Similarly, we observe a plateau where the performance varies

minimally with the choice of k, for k ∈ [0.5, 1] (with values
within [0.694, 0.702]). Consequently, we choose k = 0.8.

These stable phases indicate that a wide range of values for
C and k contribute to close clustering performance.

2) Evaluation of the Clustering Performance for Different
Noises: We assess the robustness of our clustering method by
evaluating its sensitivity to measurement noise. Our approach
combines a similarity metric based on the average ampli-
tude difference between kriging interpolations and hierarchical
clustering with a mean linkage method weighted by the
duration of common intervals. We evaluate the performance
of this solution using two stopping criteria: a maximum of
3 clusters and a maximum inter-cluster distance threshold
exceeding Dthreshold = 0.1 + 0.8σ.

Considering that phenomena values range between −1
and 1, we conduct 1000 runs for each noise level σ =
{0 + i ∗ 0.05, 0 ≤ i ≤ 10}. The results are displayed
in Fig. 8, showcasing Homogeneity (a), Completeness (b),
and V-measure (c). For the method with the stopping criterion
defined by the inter-cluster distance, we present the average
number of final clusters according to the measurement noise
in Fig. 8 (d).

Overall, for both stopping criteria, noise significantly im-
pacts clustering performance, with an average V-measure
decrease of 34% from zero noise to σ = 0.25 when using
the distance-based stopping criterion, and a decrease of 32%
when fixing the final number of clusters. It’s worth noting
that, overall, the formed clusters are more homogeneous than
complete, given that there are only two classes to cluster.

Comparing the two stopping criteria, when noise is low
(σ ≤ 0.25), the distance-based stopping criterion outperforms,
both in terms of average Homogeneity and Completeness.
On average, the final number of clusters is below 3 (2.7
clusters for σ = 0.25), which is advantageous compared to
the maximum cluster number stopping criterion. Thus, for
σ < 0.25, there is a difference of at least 7.8% in terms
of mean V-measure in favor of the distance-based stopping
criterion.

However, as noise increases, the distance-based stopping
criterion becomes more sensitive. Indeed, with relatively high
noise levels (σ > 0.35), the average number of final clusters
increases significantly (6.6 for σ = 0.4, 17.9 for σ = 0.45,
and 39.0 for σ = 0.5). The figure may seem confusing because
the average number of clusters increases significantly without
influencing completeness as it should. In reality, although not
visible in these figures, in the simulation results, there is
an alternation between very low cluster numbers (when one
cluster is formed, completeness is 1) and very high cluster
numbers (lower completeness).

VII. CONCLUSION AND PERSPECTIVES

In this study, we proposed a method for grouping similar
sensors based on their observations, addressing the challenges
of a scenario where sensors exhibit irregular and noisy behav-
ior over time.
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Fig. 8. Performance evaluation of our clustering solution (mean interpolation difference + weighted mean linkage method for AHC) under various levels of
measurement noise, with a stopping criterion based on maximum number of sensors (solid blue line) and one based on threshold inter-cluster distance (dashed
red line).
(a) Mean Homogeneity, (b) Mean Completeness, and (c) Mean V-measure of clustering results for the two compared solutions. (d) Average number of final
clusters when using the distance-based inter-cluster stopping criterion.

We developed a similarity metric based on Kriging interpo-
lation and utilized a hierarchical clustering method, introduc-
ing a novel linkage approach tailored to the problem. Through
simulations, we compared our approach with existing methods
from the literature, showcasing its superiority in the considered
scenario with a 23% increase in V-measure. Furthermore,
we explored the robustness of our solution under different
measurement noise levels, employing two strategies for the
stopping criterion for our AHC.

This work paves the way for further analyses, delving
deeper into potential challenges within the Massive IoT con-
text. Specifically, it is relevant to consider scenarios where
sensors remain in the environment but no longer track the
intended phenomenon, either due to physical sensor movement
or sending of aberrant data if the sensor get corrupted.

Viewed as a stepping stone within a broader vision, the
ultimate goal of such deployments is real-time assessment of
observed phenomena, supporting a digital twin for instance.
Subsequent steps could involve evaluating the precision of re-
constructing tracked phenomena using this clustering method,
while varying the number of messages sent to the digital twin.
In our prior work, as an example, we developed methods
to distribute the load among similar sensor groups, ensuring
a fixed quantity of messages for each cluster, regardless of
cluster size [12,13].
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