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ABSTRACT
In this paper, we propose a novel automatic algorithm for detecting subtle changes
in the mean of piecewise stationary CHARN models. Additionally, we introduce
a new technique for selecting the appropriate CHARN model to best represent the
time series, taking into account the changes present in the data. Through simulation
experiments, we demonstrate the algorithm’s effectiveness in detecting weak changes
in the mean and accurately estimating their locations. Furthermore, we validate
the robustness of our algorithm by applying it to industrial data, such as welding
electrical signals (WES), and financial data, including the S&P 500 and FTSE 100
Index.
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1. Introduction

A change point in a time series is a moment in time where the statistical properties
of the data, such as the mean, variance, or correlation structure, undergo a significant
shift. This could indicate a structural break or transition in the underlying process
generating the data, such as changes in regime, seasonality, or trend. The analysis of
structural change-points, or breaks, began with the work of [27] in quality control, and
has since expanded into various fields, including economics [29], climatology [3, 30],
finance [1], and engineering [34]. One widely used statistic for segmenting time series
is the CUSUM test, introduced by [27]. [5] proposed a least-squares-based version,
denoted CUSUMols. Further work by [38, 39] applied the CUSUM test to p-value
estimation, addressing its low power for detecting early or late changes by updating
the bounds.

Over time, many versions of the CUSUM test have been developed (see [18]). For
example, [2] adapted the CUSUM approach for data with serial dependence, demon-
strating how parametric modeling can recover structural breaks in the mean, variance,
and second-order characteristics of time series. The literature on change points detec-
tion is extensive and covers various techniques, depending on whether data is analyzed
offline or sequentially. In the offline multiple-change-point context, common approaches
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involve optimizing criteria like the Bayes Information Criterion (BIC) or least squares
[17, 36]. However, due to the computational cost of optimization, efficient methods
such as the PELT algorithm [21] and genetic algorithms [9] have been developed. Bi-
nary segmentation methods, initially proposed by [35], offer a simpler alternative to
optimization-based methods.

Further advancements include the Bayesian approach by [14] for nonstationary os-
cillatory time series, and [8]’s binary segmentation method for detecting changes in
the covariance structure of piecewise stationary time series. An important update to
binary segmentation is Wild Binary Segmentation (WBS), introduced by [12] for de-
tecting mean changes, with extensions to covariance structure detection [22].

In addition, [37] proposed a likelihood ratio scan method for estimating change
points in piecewise stationary processes, utilizing local windows for computational
feasibility. [15] discussed methods for detecting change points in non-exchangeable
data, such as network events and financial time series, while [10] provided a Wald-
type statistic for detecting distributional shifts in multivariate time series.

However, the issue of testing for weak changes in time series, where the change is
of small magnitude, remains under-explored. [24] and [26] addressed this problem for
the mean of Conditional Heteroscedastic Autoregressive Nonlinear (CHARN) models,
with further generalization by [33]. In scenarios where changes are brief and anoma-
lous, distinguishing between false alarms and true structural breaks is challenging.
Developing techniques to address this problem is essential for accurate detection in
piecewise stationary data.”

The results presented in this paper are based on the theoretical results established
in [33], introducing the a novel algorithm for detecting weak changes in the mean and
distinguishing between false alarms and true change points by monitoring the local
power of the test around the point of interest. Here, we mean by change point the
change that make the data stationary by pieces. The algorithm specifically addresses
the issue of white noise, which may lead to erroneous changepoint detection in the
method of [33]. A portion of this work was previously published as a conference article
in [32]. Here, we extend the previous work by introducing a complementary technique
that identifies the optimal CHARN model to be used in conjunction with the primary
automatic algorithm. Additionally, we demonstrate the enhanced performance of the
method through diverse simulation experiments, which confirm the precision and effi-
ciency of the algorithm in detecting and characterizing changes. Finally, we apply our
approach to real-world industrial and financial data, with comparisons drawn against
results from other research studies.

In the sequel, this paper is categorized as follows. In Section 2, we recall the essential
theoretical results of [33]. These results are used in Section 3 for constructing the new
algorithm. In Section 4, a simulation experiment is conducted for the application of
our algorithm. In Section 5, an application to a real data set is performed. Section 6
concludes the paper.

2. Overview of the principal results from [33]

In this section, we provide a concise summary of the method developed in [33],
which is a generalization of the approaches presented in [24] and [26]. These methods
are designed to detect weak changes in the mean based on the theoretical power
of a likelihood ratio test. The statistical model used in [33] belongs to the class of
Conditional Heteroscedastic Autoregressive Nonlinear (CHARN) models (see, e.g.,
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[16]).

More specifically, let d, p, k, n ∈ N, with k ≪ n. Assume that the observations
X1, . . . , Xn are generated from a piecewise stationary CHARN model.

Xt = T (ρ0 + γ ⊙ ω(t);Xt−1) + V (Xt−1)εt, t ∈ Z, (1)

with

Xt = Yt,j = T (ρ0 + γjωj(t);Xt−1,j) + V (Xt−1,j)εt, τj−1 ≤ t < τj , j = 1, . . . , k + 1,

(2)

where for j = 1, . . . , k, (Yt,j)t∈Z is a stationary and ergodic process; ρ0 ∈ Rp,
T (ρ0, .) and V (.) are real-valued functions with infx∈Rd V (x) > 0; the τj , j =
0, . . . , k + 1, are potential instants of changes with τ0 = 1 and τk+1 = n + 1; for
j = 1, . . . , k, Xt,j = (Yt,j , . . . , Yt−d+1,j)

⊤, Xτj−1+ℓ = Xτj−1+ℓ,j , ℓ = 0, . . . , d − 1

and for t ∈ [τj−1 + d − 1, τj), Xt = (Xt, . . . , Xt−d+1)
⊤; for j, ℓ = 1, . . . , k, j ̸= ℓ,

the process (Yt,j)t∈Z and (Yt,ℓ)t∈Z are mutually independent ([37] noted that this as-
sumption can be extended to some weak dependence assumption); (εt)t∈Z is a stan-

dard white noise with density f . γ =
(
γ⊤
1 , . . . ,γ

⊤
k+1

)⊤
, γj ∈ Rp, j = 1, . . . , k + 1;

ω(t) = (1[τ0,τ1)(t),1[τ1,τ2)(t), ...,1[τk−1,τk)(t),1[τk,τk+1)(t))
⊤ = (ω1(t), . . . , ωk+1(t)) ∈

{0, 1}k+1; for γ = (γ⊤
1 , . . . ,γ

⊤
k+1)

⊤ and ω(t) = (ω1(t), . . . , ωk+1(t))
⊤, γ ⊙ ω(t)

stands for γ ⊙ ω(t) = γ1ω1(t) + · · · + γk+1ωk+1(t) ∈ Rp, and γiωi = (γi,1ωi, . . . ,
γi,pωi) ∈ Rp.
This category of models is expansive, encompassing a variety of models including
AR(p), ARCH(p), EXPAR(p), GEXPAR(p). Statistical and probabilistic properties
have been extensively investigated in the existing literature (see, e.g. [6] for the study
of the ergodicity of GEXPAR models).
For γ0 ∈ Rp(k+1) and β ∈ Rp(k+1) depending on the τj ’s, [33] construct a likelihood
ratio test for testing

H0 : γ = γ0 against H
(n)
β : γ = γn = γ0 +

β√
n
. (3)

Note that the norm of β is small in front of n, and then the two hypotheses considered
are getting closer as the sample size n grows up.
First, the authors prove that the test constructed establish the locally asymptotically
normal property (LAN) and the hypotheses considered are contiguous in the sens of
Le Cam (see [23] and [11]). These properties allow the study of the theoretical power
of the test constructed and lead to obtain an explicit expression of it. Indeed, under
some technical hypotheses, they prove that the constructed likelihood ratio test is
asymptotically optimal and its asymptotic power has the following expression

Pk,τk = 1− Φ(zα − ϑ(ρ0,γ0,β)) (4)

where

• ρ0 represent the true nuisance parameter and α ∈ (0, 1) represent the level of
significance,
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• zα is the (1−α)-quantile of the standard Gaussian distribution with cumulative
distribution function ϕ,

• ϑ is a real function defined in Rp(k+1)×p(k+1), where its expression is given in
[33].

In practice, the model parameters are unknown and must be estimated. Many studies
focus on parameter estimation, such as [6], which discusses the estimation of both
linear and non-linear components in GExpAR models, a particular case of the CHARN
model studied in [33], and [4] for linear models like ARMA. In [33], a decision for the

testing problem is made by estimating the test’s power P̂k,τk , which is obtained by
substituting the true parameters with their estimators in Pk,τk .

To describe the estimation techniques used, for 1 ≤ j ≤ k + 1, 1 ≤ h ≤ p, let ρ̂j,h
be a consistent estimator (e.g., the maximum likelihood estimator) of ρ0,h + βj,h/

√
n

based on the observations in the interval [τj−1, τj). Then, the estimator of βj,h is given

by β̂j,h =
√
n(ρ̂j,h − ρ̂0,h), where ρ̂0,h is the estimator of the stationary parameter ρ0,h

based on the first segment of observations [1, τ1). By replacing the true parameters
with their estimates, it is shown that the constructed test remains asymptotically
optimal, with an explicit expression for its power denoted by P̂k,τk .

3. New algorithm for weak-changes detection and their locations
estimation

In this section, we present two algorithms. The first is used to detect change points in
time series data, and the second is for selecting the appropriate CHARN model to be
used in the first algorithm, taking into account the potential unknown changes present
in the data. Both approaches are explained in detail, highlighting their respective
methodologies and advantages.

The algorithm introduced in [33] may be sensitive to the presence of extreme values
in white noise. To illustrate this, consider two distinct time intervals, [1, t) and [t+1, n),
where t ∈ (1, n). Assume the parameters of the statistical model remain unchanged
across both intervals, but extreme white noise values occur in one of them. In such a
case, the algorithm may erroneously detect a change due to the lack of techniques to
differentiate between a genuine change-point and a false alarm. As a result, the data
may be incorrectly classified as piecewise stationary, with the falsely detected change
marking the beginning of the next segment.
To address this issue, in SubSubsection 3.1, we introduce a new algorithm designed to
reduce the impact of white noise and classify detected changes as either true change-
points or false alarms.
In our study, one of the main challenges occurs during the time series modeling stage.
Specifically, the challenge is determining the best approach to identify the most suit-
able time series model and its order, while properly addressing the potential non-
stationarity present in the data.

To address our specific requirements for the second algorithm, the algorithm of [31]
adjusts the CHARN model to the first m observations assumed to be stationary, then
selects a suitable model to apply to the entire dataset. However, this chosen model
may not remain optimal for subsequent stationary observations following any detected
changes. Therefore, it is crucial to develop an algorithm that addresses this issue.

In Subsection 3.2, we propose an algorithm to resolve this problem, serving as a
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preliminary step before applying the algorithm of [31]. Recall that, as stated in [31],
the author assumes the presence of at least m stationary observations following each
change.

3.1. Algorithm 1

Here, we retain the same notation used in [33], where Pk,τk represents the theoretical

power of the test at τk = (τ1, . . . , τk) for k ≥ 1. For a significance level α ∈ (0, 1), we
denote P0,τ0 = α as the nominal level of the test. Let ζ ∈ (0, 0.1) and X1, X2, . . . , Xm

(m ≪ n) be the first m stationary observations. It is important to note that, in
practice, the value of m will be smaller than that considered in [33].

Our procedure for detecting weak changes in the time series X1, X2, . . . , Xn and
estimating their locations is described in the following algorithm.

Location 1 :

Put t = 1
(S1) : Consider the two intervals I1 and I2 that contains respectively
the observations X1, . . . , Xm+t−1 and X1, . . . , Xm+t. So that the dif-
ference between the two intervals considered is the single observation
Xm+t which is under testing.
(S1)

′ : Adjust model (1) to I1 and I2. Then, apply the testing proce-
dure presented in [33].

If |P1,t − P0,τ0 | > ζ,
Replace Xm+t with Xm+ι in I2, with t + 1 ≤ ι ≤ j, j << m, and
Repeat (S1)

′ with the updated I2

If |P1,ι − P0,τ0 | > ζ,
The first change location is estimated on τ1 = m+ t.
Then, Go to Location 2.

Else
A False Alarm is detected.
Remove Xm+t from the sample, Do t = t+ 1 and Go to (S1).

Else
Do t = t+ 1 and Go to (S1).

Location 2 :

Consider the next m observations to Xτ1 : Xτ1+1, . . . , Xτ1+m

Put t = 1 and Do
(S2) : Consider the two intervals I1 and I2 that contains respectively
the observationsXτ1 , . . . , Xτ1+m+t−1 andXτ1 , . . . , Xτ1+m+t. So that the
difference between the two intervals considered is the single observation
Xτ1+m+t which is under testing.
(S2)

′ : Adjust model (1) to I1 and I2. Then, apply the testing proce-
dure presented in [33].

If |P1,t − P0,τ0 | > ζ,
Replace Xτ1+m+t with Xτ1+m+ι in I2, with t + 1 ≤ ι ≤ j, j << m,
and Repeat (S2)

′ with the updated I2

If |P1,ι − P0,τ0 | > ζ,
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The second change location is estimated on τ2 = τ1 +m+ t
Then, Go to Location 3.

Else
A False Alarm is detected.
Remove Xτ1+m+t from the sample, Do t = t + 1 and Go to

(S2).
Else

Do t = t+ 1 and Go to (S2).

Location i :

We already estimated the (i− 1)th change location τi−1 in step i− 1
Consider the next m observations to Xτi−1

: Xτi−1+1, . . . , Xτi−1+m

Put t = 1 and Do
(Si) : Consider the two intervals I1 and I2 that
contains respectively the observations Xτi−1

, . . . ,
Xτi−1+m+t−1 and Xτi−1

, . . . , Xτi−1+m+t. So that the difference be-
tween the two intervals considered is the single observation under
testing.
(Si)

′ : Adjust model (1) to I1 and I2. Then, apply the testing proce-
dure presented in [33].

If |P1,t − P0,τ0 | > ζ,
Replace Xτi−1+m+t with Xτi−1+m+ι in I2, with t+1 ≤ ι ≤ j, j << m,
and Repeat (Si)

′ with the updated I2

If |P1,ι − P0,τ0 | > ζ,
The ith change location is estimated on τi = τi−1 +m+ t.
Then, Go to Location i+ 1.

Else
A False Alarm is detected.
Remove Xτi−1+m+t from the sample, Do t = t + 1 and Go to

(Si).
Else

Do t = t+ 1 and Go to (Si).

3.2. Algorithm 2

Consider a set of n observations, denoted as X1, X2, . . . , Xn. We use m as the maxi-
mum number of observations assumed to be stationary. Our additional complementary
algorithm can be explained by the following steps:

(1) Consider h independent Uniform random variables u ∈ U [1, n − m], 1 ≤ h <
n − m, where m denotes the minimum number of observations assumed to be
stationary as per the algorithm mentioned above:
(a) Select a subset Su, which contains the observations Xu+1, Xu+2, . . . , Xu+m.
(b) Fit the CHARN model to the time series subset Su.
(c) Based on different selection criteria (such as AIC, BIC, etc.), extract the

best-fitting time series model that explains the behavior of the observations
in Su, denoted as Mu.

(2) The optimal model to be use for applying the algorithm described in Subsection
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3.1 is:

M = Most frequent model Mu among h models

4. Simulation experiment

In this section, we apply the theoretical results obtained in [33] to specifically simulated
datasets using R and Python. Following the algorithms outlined in Section 3, we detect
weak changes and estimate their locations. By monitoring the power of the test around
each estimated change, we determine whether it represents a true change-point or a
false alarm.

Initially, we analyze the power of the test to assess the occurrence of false alarms.
The results demonstrate that the proposed algorithm effectively distinguishes between
change-points and false alarms by examining the behavior of the power in the vicinity
of detected changes. Furthermore, we evaluate the performance of our algorithm in
detecting multiple weak breaks where both the number and locations of change-points
are unknown. Additionally, we compare the accuracy of the estimated change locations
with those obtained in [33], using the same parameter values, and find that our method
provides improved precision.

For the simulation, we use the same particular CHARN model as in [33] having the
following expression

Xt = ρ0,1 +
βj,1√
n
+

(
ρ0,2 +

βj,2√
n

)
Xt−1 e

ρ0,3+
βj,3√
n

X2
t−1

+
√

θ1 + θ2X2
t−1 εt, j = 1, . . . , k,

t ∈ Z, (5)

where n denotes the number of observations, (εt)t is a standard white noise with
a differentiable density f . Here, on [τj−1, τj), ρ0 = (ρ0,1, ρ0,2, ρ0,3) ∈ R3, βj =

(βj,1, βj,2, βj,3) ∈ R3; ρ0 is the parameter to be specified in each particular model
considered.

4.1. Data presenting one single False Alarm

In this part, we consider the problem of detecting and identifying a change. Identi-
fying a change means that we distinguish between a false alarm and a change-point
that makes the data piece-wise stationary based on the power calculated around the
estimates change.
The data are generated without any changes, meaning that using the model (5) for
ρ0,1 = 0.2, ρ0,2 = 0.3 and ρ0,3 = βj,1 = βj,2 = βj,3 = 0, j = 1, . . . , k, . At an instant
between 1 and n, say τ1, we replace the corresponding observation, say Xτ1 , by another
observation, for example ϵ that follows certain distribution. . For ζ = 0.4%, α = 5%,
ϵ ∼ N (1, 3) and τ1 = 150, the local power results calculated using our algorithm
methodology, are depicted in Figure 1. From Figure 1, one can see that the power of
the test jumps above the threshold at t = 150 (the threshold here is α + ζ = 5.4%),
which is the true instant of change, and directly it fell under the threshold for the next
few observations.
For different τ1, we monitor the power of the test calculated at τ1+ i, i = −1, 0, . . . , 4.
The results are shown in Table 1 and they illustrate numerically what we said about
Figure 1.
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Figure 1. Estimation of the change location for τ1 = 150 in a class of AR(1) models.

One can observe that the power calculated at τ1 + i for i = 1, 2, 3, 4 is higher than
the values before τ1. This is expected because these calculations were performed by
removing the intermediate observation at the estimates τ1, which affects the estimation
of possible autocorrelation parameters between the last two observations in I2 (see
Subsection 3.1). Furthermore, by comparing these power values to that at τ̂1, it is
evident that they are significantly lower, leading us to classify this change as a false
alarm.

Power
τ1

90 110 150 195

τ̂1 90 110 150 195
P1,τ̂1−1 0.05099 0.05124 0.05091 0.05071
P1,τ̂1 0.05612 0.05721 0.05851 0.05762
P1,τ̂1+1 0.05218 0.05181 0.05213 0.05213
P1,τ̂1+2 0.05232 0.05194 0.05273 0.05224
P1,τ̂1+3 0.05212 0.05174 0.05283 0.05211
P1,τ̂1+4 0.05234 0.05179 0.05255 0.05215

Table 1. Power of the test around τ1 for ζ = 0.4%

and α = 5%.

In the same line, we consider the problem of detecting changes, estimating their
locations and identifying their type. For that, we generate a data that present one
single change-point and one single false alarm using the following particular case of
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model (5)
Xt = ρ0,1 + ρ0,2Xt−1 + εt, t = 1, . . . , τ1 − 1,

Xt = ρ0,1 +
β1,1√
n

+

(
ρ0,2 +

β1,2√
n

)
Xt−1 + εt, t = τ1, . . . , n

Xτ2 = ϵ, τ1 <<< τ2 < n,

where (εt)t≥1 is a standard Gaussian white noise and ϵ is a Gaussian random variable
with different parameters values.
For n = 300, ρ0,1 = 0.2, ρ0,2 = 0.3, β1,1 = 5, β1,2 = −3, ϵ ∼ N (−1, 2) and ζ =
0.25%. Figure 2 illustrates the behavior of the power when facing a change. Now, for
n = 300, ρ0,1 = 0.2, ρ0,2 = 0.3, Table 2 shows the estimation of the break locations
corresponding to different type and magnitudes of changes, and different values of ζ.

τ̂ and power

((β11, β1,2), (τ1, τ2), ϵ ∼, ζ))⊤

(1, 1)
(101, 200)
N (1, 1)
0.15%

(3,−2)
(101, 250)
N (1, 2)
0.25%

(5,−3)
(111, 280)
N (−1, 2)
0.25%

(10,−6)
(91, 295)
N (2, 2)
0.35%

τ̂1 102 101 111 91

P̂1,τ1−1 0.050541 0.050713 0.050811 0.050972

P̂1,τ1 0.052418 0.053712 0.054612 0.057321

P̂1,τ1+1 0.052503 0.053515 0.054874 0.057819

P̂1,τ1+2 0.052315 0.053821 0.054731 0.057643

P̂1,τ1+3 0.052517 0.053644 0.054912 0.057967

P̂1,τ1+4 0.052421 0.053553 0.054826 0.058042
τ̂2 200 250 280 295

P̂2,τ2−1 0.050912 0.050626 0.050963 0.050121

P̂2,τ2 0.052915 0.054261 0.053987 0.061092

P̂2,τ2+1 0.051981 0.051725 0.516471 0.051681

P̂2,τ2+2 0.051734 0.051628 0.051811 0.051874

P̂2,τ2+3 0.051413 0.051632 0.051736 0.051642

P̂2,τ2+4 0.051386 0.051589 0.051481 0.051328
Table 2. Power around changes detected in a class of AR(1) model.

One can see that the behavior of the calculated local power is different between
the estimates changes and it is easy to distinguish between a false alarm and a true
change-point using

4.2. Multiple change-points detection (k=3)

In this part, we consider the problem of detecting multiple change-points in class
of non-linear models, such as AR(1)-ARCH(1) model which is a particular class of
CHARN(1,1) models. We use the same values of the parameters used in [33] in order
to compare the results, efficiency and accuracy between the results obtained by that
algorithm and those obtained by the new one introduced in this paper. In addition,
for each detecting change, we monitor the power calculated at some instants around
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Figure 2. Behavior of the power when facing a change.

estimates instant of change in order to identify the type of the change detected.
We consider the data generated by model (5), for τ = (τ1, τ2, τ3) represents the true
instant of changes, n = 350, ρ0,1 = 0.2, ρ0,2 = 0.3, ρ0,3 = βj,3 = 0, j = 1, 2, 3, θ1 =
1, θ2 = 0.02. For 5000 replications, different magnitudes of change βj = (βj,1, βj,2), j =
1, 2, 3 and same ζ = 0.1%, the results are shown on Table 3.

τ = (τ1, τ2, τ3) = (90, 190, 275)β1,1 β1,2
β2,1 β2,2
β3,1 β3,2


 3 2

1 3
−1 1

  1 −0.5
2 1
−1 −1

  −2 1.5
1 3

−0.5 −1


i i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3
τ̂i 90 191 276 91 191 276 91 190 275

Pi,τi−1 0.050342 0.050314 0.050142 0.050214 0.050352 0.050324 0.050312 0.050963 0.050561
Pi,τi 0.052117 0.052203 0.052722 0.051917 0.052134 0.053341 0.052162 0.053102 0.053978
Pi,τi+1 0.052313 0.052491 0.052524 0.052023 0.052232 0.053242 0.052213 0.528902 0.538511
Pi,τi+2 0.052325 0.051908 0.052498 0.051976 0.052109 0.053234 0.051909 0.052932 0.053915
Pi,τi+3 0.052318 0.052424 0.052713 0.052014 0.052421 0.053517 0.052132 0.053011 0.053776
Pi,τi+4 0.052521 0.052510 0.052613 0.052134 0.051996 0.053127 0.052193 0.053106 0.053817

Table 3. Power around changes detected in a class of AR(1)-ARCH(1) model.

One can see from Table 3 that the results is more accurate than those obtained in
[33], for example, for β = ((3, 1,−1), (2, 3, 1))⊤, the estimated change points in [33]
are (93, 193, 277). The results we obtain here are more accurate.. In addition, for a
suitable threshold corresponding to a suitable ζ, it is rarely that we find a detection
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change in advance of the real instant of break from which it was removed during the
replications. This feature is a result of the newly introduced algorithm here, which
reduces the impact of white noise.

5. Real dataset

In this section, we apply our approach to real-world datasets from two different fields.
First, we examine the industrial sector by analyzing welding electrical signals recorded
during arc welding. Then, we turn to the financial sector, applying our method to
two major market indices: the S&P 500 and FTSE 100. We also demonstrate the
effectiveness of our approach in detecting changes that have not been identified in
previous studies, highlighting its robustness and sensitivity in diverse applications.

5.1. Welding electrical signals

5.1.1. Introduction

Welding is a critical process for many industries, particularly those involved in the
construction of hot water tanks. Detecting and locating faults in welds is essential for
quality control. Welding electrical signals (WES) are widely used as a data source
for fault detection, with numerous studies addressing this issue. For instance, [19]
detected three types of welding defects using a Support Vector Machine (SVM)
model based on the multi-scale entropy of current and voltage signals. Similarly,
[28] classified sound signals to detect shielding gas absence with an Artificial Neural
Network. From a time series perspective, [25] proposed a method for defect detection
and localization based on causality analysis, following the foundational work of [20]
on time series causality.

In arc welding, changes in the mean of WES are often caused by variations in the
distance between the electrode and the surface being welded, which may indicate
irregularities in the metal surface. These variations can result from faults during
metal plate transformation or the presence of holes in the material.

Our primary goal is to test for weak changes in the mean of arc welding series,
which are considered ”normal welding series,” to monitor the stability of the electrical
signals. The data used in this study were provided by the Leblanc company, consisting
of 10 normal weld experiments conducted under identical conditions. We analyze all
of these datasets, presenting results from four of them.

5.1.2. Modeling and results

First, we start our study by looking for a common suitable time series model for all of
these data. The chronogram of the WES series (Wt) seems to present a trend and does
not present a seasonality. The Augmented Dicky-Fuller test (see [7]) approve the non-
stationarity of all these data. The results obtained in [33] cannot be used directly, since
the Moving-Average part doesn’t belongs to the class of CHARN models used there.
For that, we decompose these series in a summation of two components as follow:

Wt = Yt +Xt,
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where (Yt) represents the unknown trend assumed to be continuous and (Xt) is a piece-
wise stationary series with mean (µt) and variance (σt). The time interval between
capturing each signal in the time series is 0.1 seconds. To consider the whole (the
smallest thing we want to detect its impact) in the surface significant, at least 5
signals must be recorded. So, we estimate the trend by the following moving-average
with order 5

Ŷt =
1

5

2∑
j=−2

Wt+j .

Now, we apply the algorithm presented in Section 3.2 to the series Xt of the first data
that we have, where we consider m = 25, and ι = 300. Table 4 shows the most frequent
models obtained.

Model Frequency
ARIMA(0,0,0) 281
ARIMA(1,0,0) 3
ARIMA(1,0,1) 2

Table 4. The most frequently selected CHARN models for the welding electrical signals.

We apply this technique on the other data, and approximately, same results have
been obtained. Then, we propose the following model

Xt = ρ0,1 +
βj,1√
n
+ σjεt, t ∈ [τj−1, τj), j = 1, . . . , k + 1,

where k is the number of change-points that assumed to be unknown and must be
estimated, τ1, . . . , τk designate the breaks locations, (εt) is a standard Gaussian white
noise, V (x) = σj represents the variance of Xt in each interval [τj−1, τj).
Here, for the test problem, γ0 = 0, γn =
(0, β2/

√
n, . . . , βk+1/

√
n) ∈ Rk+1 with β = (0, β2, . . . ,

βk+1).
Using the theoretical results of [33] recalled in Section 2, and by applying our
algorithm presented in Subsection 3.1, for different thresholds corresponding to the
choice of ζ, we detect multiple breaks in the data and we show the results of 4 of
them for ζ = 0.15%, 0.25%, and 0.3% on Figures 3 to 14.

Now, since all of these data are considered as a normal welding, it is interesting
to take a look to the variation of the number of changes detected with respect to the
threshold. For that, we consider a sequence of ζ varying between 0.15% and 1%, we ap-
plied our algorithm on each data for each value of ζ and we calculate the corresponding
number of changes detected. The results are shown on Figure 15.
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Figure 15. Number of breaks with respect to ζ.

5.1.3. Analyses

For these 10 data, we applied our algorithm for ζ varying between 0.1% and 1%. For
0.1% ≤ ζ ≤ 0.13%, a high number of weak breaks has been detected which is not
an informative phenomenon in this domain. Figure 3 to 14 shows the corresponding
breaks detected of four of these data for ζ = 0.15%, 0.25% and 0.3%. It is easy to
see that the number of changes detected decrease when the threshold increase which
is logic, and also, some estimated breaks locations remains close to each other even
when varying the threshold. For example, in Data 2, the instant t = 589 remains the
same instant detected when ζ = 0.15% or 0.3%. This is caused by the magnitude of
the power from which it remains high then these threshold. For that, we can consider
it as a true change.
Also, for all of these data, when a change is detected, the power remains above the
threshold except the case of that corresponding to Data 2 where, for ζ = 0.25%, 0.3%,
the instant t = 2245 is considered as a false alarm and it can be explained here by a
hole in the surface plate under welds.
These results allows us to assume the segmentation of the data into piece-wise sta-
tionary data from which the distance between the observations that belong to every
single piece and the electrode is significantly constant. One can see that, by fixing a
threshold, we can find the reason that make the distance between the electrode and
the surface metal plat under welds change. By monitoring the values of the power of
the test, we can classify the changes detected into a deformation of the circular form
of the hot water tank or a hole. In other word, the false alarm definition introduced
in Subsection 3.1 can be explained here as a hole from which the power cross the
threshold for a few number of observations, and the true change as the point where
the deformation of the circular form started.
From Figure 15, we can see that the number of breaks detected decrease exponentially
when ζ varying between 0.15% and 0.35% and then, it remains constant for a while
before converging to zero. We can explain this fall of the number of changes detected
through the small magnitude of changes and the weak variation of the values of the
welding signals from which the power of the test cross the threshold for a small ζ and
it remains under the threshold for a higher ζ. In addition, by taking ζ = 9%, no change
has been detected in all of these data.
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5.2. Financial data

5.2.1. Standard & Poor’s 500 Index (S&P 500)

Here, we apply our newly our approach to financial data, specifically the S&P 500
index’s daily stock prices. We utilize daily data from January 1992 to December 2000,
the same dataset used in [33], to determine whether the new algorithm detects subtle
changes that may have gone undetected by the previously proposed algorithm.

Since the data exhibits a trend indicating that the S&P 500 index is non-stationary,
we work with the transformed series Xt, defined as:

Xt = log

(
Pt

Pt−1

)
,

where Pt represents the S&P 500 price index at time t. This transformation ensures
that any potential breaks in the series Pt are preserved in Xt, due to the continuity
property of the logarithmic function.

As described in Subsection 3.1, we begin by assuming stationarity over m obser-
vations, where we set m = 25 based on the approximate number of trading days
in a month. Additionally, we consider a vector of 200 different random variables u
(h = 200), u ∈ U [1, n −m = 2020 − 25], representing randomly selected sub-samples
from the dataset.

Next, to identify the most suitable CHARN model, we implement our algorithm
presented in Section 3.2. The dominant repetitive model is summarized in Table 5.

Model Frequency
ARIMA(0,0,0) 166
ARIMA(1,0,0) 5
ARIMA(2,0,0) 2

Table 5. The most frequently selected particular CHARN models for S&P 500 Index.

Finally, using our methodology, we adopt the same model proposed in [33], which
is defined as follows:

Xt =
βj√
n
+ θjεt, t ∈ [τj , τj+1[, εt ∼ N(0, 1),

where βj and θj represent the model parameters, and εt is a standard normally
distributed error term. Then, applying our algorithm for changes detection using this
model, we detects the changes presented in this series and explained with Figure 16.
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Figure 16. Estimated breaks detected in S&P 500 indices.

While the old algorithm successfully identified several significant changes in the S&P
500 index, the new algorithm detects additional important breaks that correspond to
events not captured by the previous technique.

For instance, the new algorithm identified 1993-02-12, a change point which could
be linked to the inauguration of President Bill Clinton and the anticipation surround-
ing his economic policies aimed at reducing the federal deficit. This period marked the
beginning of shifts in fiscal policy, which could explain the market’s response. However,
this subtle change was not captured by the old algorithm.

Similarly, the date 1994-09-19, identified by the new algorithm, corresponds to
the bond market crisis, also known as the ”Bond Market Massacre” of 1994. The
old algorithm identified a related point in 1994-03-03, which we linked to the U.S.
lifting of the trade embargo on Vietnam, but failed to capture the subsequent market
turbulence later in the year.

Moreover, the new algorithm detects 1997-04-10, which likely reflects the market’s
reaction to early concerns about inflation and potential interest rate hikes. This date
is not detected by the previous algorithm, which only identified 1997-07-14, likely
driven by the deepening Asian financial crisis.

Another example is the detection of 1996-03-07, a subtle change linked to the
Federal Reserve’s decision to hold interest rates steady after prior hikes. This change
was missed by the old algorithm, which only captured a later date in July 1996 (1996-
07-11), possibly linked to strong corporate earnings at the time.

Additionally, the new algorithm identifies 1998-08-03, coinciding with the start
of the Russian financial crisis, whereas the old algorithm only captured 1998-06-22
and 1998-11-02, which were connected to market reactions to the Long-Term Capital
Management (LTCM) crisis and the Federal Reserve’s rescue operation.

An important remark must be made regarding the dates 1997-04-10 and 1997-07-
19, when the estimated local power crossed the threshold, signaling the presence of
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a critical point. It subsequently fell below the threshold after 4 and 5 observations,
respectively. The technique we use to achieve this is detailed in the algorithm described
in Subsection 3.1.Additionally, we can conclude that, in real-world data, the events
occurring at these times had a distinct, short-term impact, unlike those that caused
more persistent changes at other dates.

In conclusion, the new algorithm not only confirms several change points identified
by the old method but also detects additional, earlier, or subtler changes linked to
significant market events. This enhancement demonstrates the improved sensitivity of
the new algorithm in capturing weak changes in financial markets that the previous
algorithm overlooked.

5.2.2. Financial Times Stock Exchange 100 Index (FTSE 100)

In this part, we apply our approach to detects the change in the FTSE 100 index.
We use daily data from July 27th, 2005, to July 13th, 2009. Instead of using the
original data where the trend appears clearly, we use the logarithm return as defined
in the previous section. As we explain in the previous section, we begin by assuming
the stationarity of the first m observations, where we set again m = 25 based on
approximate number of trading days in a month. Using the same values and following
the same procedure as in the previous section, the dominant repetitive model among
300 subset considered is summarized in the Table 6.

Model Frequency
ARIMA(0,0,0) 226
ARIMA(0,1,0) 11
ARIMA(1,0,0) 16
ARIMA(3,0,0) 13

Table 6. The most frequently selected particular CHARN models for a subset of FTSE 100 Index.

Out of 300 subsets derived from the original dataset of 1004 observations, 16 subsets
suggest an Autoregressive AR(1) model, indicating that the daily price depends on
the previous day’s price value. Additionally, 13 subsets suggest that the price depends
on the price values from the past three days. However, the dominant model identified
is the shifted model, which consists of a mean plus an error term. This shifted model
will be the one utilized for further analysis. Using these results, we adjust the following
particular CHARN model

Xt =
βj√
n
+ θjεt, t ∈ [τj , τj+1[, εt ∼ N(0, 1),

where βj and θj represent the model parameters, and εt is a standard normally
distributed error term. By applying our change detection algorithm using this model,
we successfully identified the structural changes present in the series, as illustrated in
Figure 17.
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Figure 17. Estimated breaks detected in FTSE 100 Index.

[13] proposed a technique for detecting changes, referred to as the BASTA-res tech-
nique, which the authors applied to the FTSE 100 index over the same period analyzed
here. The corresponding dates detected by their method are notably June 5, 2007,
August 18, 2008, and December 4, 2008. These dates align with significant financial
events, such as the onset of the subprime mortgage crisis and the collapse of Lehman
Brothers. While their method successfully identifies these key turning points, our ap-
proach provides additional insights by detecting earlier and intermediate structural
changes, such as on February 26, 2007, and July 25, 2007, indicating shifts in market
dynamics preceding the financial crisis.

For instance, the change point on May 11, 2006, detected by our algorithm, likely
reflects global market concerns about inflation and interest rates, which triggered a
broader sell-off. Similarly, the change point on July 25, 2007, reflects early signs of mar-
ket volatility linked to the subprime crisis, a significant moment that went undetected
by [13]. Furthermore, our algorithm detected important changes on January 18, 2008,
March 20, 2008, and September 18, 2008, providing a more detailed representation of
market turbulence during the 2008 financial crisis.

These additional change points underscore the increased sensitivity and granularity
of our approach. By identifying earlier and more frequent structural changes, it offers
a deeper understanding of the market’s evolving behavior, which could be crucial for
more proactive risk management. The results demonstrate that our approach not only
captures major financial disruptions, as found by [13], but also identifies critical early
warning signals and minor shifts, providing a more comprehensive view of the market’s
volatility.”
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6. Conclusion

We have introduced a new automatic algorithm for detecting subtle changes in the
mean, building on the method proposed by [33]. Additionally, we have presented a
complementary technique to help select the appropriate model for change detection.
The simulation experiments demonstrate that our algorithm is effective in detect-
ing multiple breaks and distinguishing between true change points and false alarms.
Compared to the results obtained in [33], our algorithm appears to be more efficient
and accurate, offering an additional technique of significant value when applied to
real-world data. This was evident in how it captured the impact of specific events on
financial data.
By applying the theoretical results of [33] with the algorithm proposed here, we detect
multiple weak changes in the welding electrical signals in order to study the stability
of the electrical tension during the construction of hot water tank and identifying the
reason about these changes.
Furthermore, the application of our approach to financial datasets demonstrates its
effectiveness in detecting changes driven by significant events impacting these indices.
Compared to results from other studies, our approach not only accurately identifies
the same points of change but also uncovers additional changes that were missed by
other methods. These newly detected changes can be linked to specific events, further
validating the robustness and precision of our algorithm in capturing subtle shifts in
the data.
A key perspective of our approach in this study involves developing an automated
method to determine the optimal threshold for the specific domain under investiga-
tion. Addressing this global challenge is a paramount concern for numerous researchers
in this field, and it stands as a significant focus for our forthcoming endeavors.
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model search for nonstationary periodic time series. Journal of the American Statistical
Association, 115(531):1320–1335.

[15] Hallgren, K. L., Heard, N. A., and Adams, N. M. (2022). Changepoint detection in
non-exchangeable data. Statistics and Computing, 32(6):110.
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[20] Kamiński, M., Ding, M., Truccolo, W. A., and Bressler, S. L. (2001). Evaluating causal
relations in neural systems: Granger causality, directed transfer function and statistical
assessment of significance. Biological cybernetics, 85:145–157.

19



[21] Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints with
a linear computational cost. Journal of the American Statistical Association, 107(500):1590–
1598.

[22] Korkas, K. K. and PryzlewiczV, P. (2017). Multiple change-point detection for non-
stationary time series using wild binary segmentation. Statistica Sinica, pages 287–311.

[23] Le Cam, L. (1986). The central limit theorem around 1935. Statistical science, pages
78–91.

[24] Ltaifa, M. (2021). Tests optimaux pour détecter les signaux faibles dans les séries
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Figure 3. Data 1 and ζ = 0.15%. Figure 4. Data 1 and ζ = 0.25%.

Figure 5. Data 2 and ζ = 0.15%. Figure 6. Data 2 and ζ = 0.25%.

Figure 7. Data 3 and ζ = 0.15%. Figure 8. Data 3 and ζ = 0.25%.

Figure 9. Data 4 and ζ = 0.15%. Figure 10. Data 4 and ζ = 0.25%.
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Figure 11. Data 1 and ζ = 0.3%. Figure 12. Data 2 and ζ = 0.3%.

Figure 13. Data 3 and ζ = 0.3%. Figure 14. Data 4 and ζ = 0.3%.

22


	Introduction
	Overview of the principal results from salman2024
	New algorithm for weak-changes detection and their locations estimation
	Algorithm 1
	Algorithm 2

	Simulation experiment
	Data presenting one single False Alarm
	Multiple change-points detection (k=3)

	Real dataset
	Welding electrical signals 
	Introduction
	Modeling and results
	Analyses

	Financial data
	Standard & Poor's 500 Index (S&P 500)
	Financial Times Stock Exchange 100 Index (FTSE 100)


	Conclusion

