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Abstract We propose a new algorithm for detecting weak changes in the mean of a class piece-wise station-
ary CHARN models. Through a simulation experiment, we establish the efficacy and precision of the new
algorithm in detecting weak changes in the mean and accurately estimating their locations. Furthermore,
we illustrate the robust performance of our algorithm through its application to welding electrical signals
(WES).
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1 Introduction

The analysis of structural change-points, or breaks, has begun by Page (1954) in quality control, but over
time, it has expanded to include a strong statistical component in a various fields, such as economics (Perron
et al. (2006)), climatology (Reeves et al. (2007) and Beaulieu et al. (2012)), finance (Andreou and Ghysels
(2009)) and engineering (Stoumbos et al. (2000)).

The changes in time series may take different form depending on the magnitude of changes. From time
series vision, it can be visible (non small magnitude of change in the parameters of the considered model)
or approximately hidden (weak magnitude). Even if the magnitude is considerable, it may occurs just for
few number of observations, we call it in this paper as a false alarm (or an anomaly in the data). Otherwise,
when the changes occur and continue for a while, the data take the form of piece-wise stationary data which
is the case we consider it here.

In this paper, we use the theoretical results obtained in Salman (2022) and we introduce a new algorithm
for detecting weak changes in the mean. We examine the performance of the proposed algorithm using a
simulated data and we apply it to a real data set such as welding electrical signals. The new algorithm
is motivated by the reduction of the effect of the white noise from which sometimes it can be detected
as a change-point using the algorithm of Salman (2022). At the same time, the new one contains some
techniques for identifying the type of the changes detected and the distinction between an anomaly (false
alarm) and true change-point. This distinction we get by monitoring the power of the test calculated around
the observation under testing. The simulated data presented in this paper shows the efficiency and accuracy
of this new algorithm, and it validate the good performance for identifying the change faced.

This paper is categorized as follow. In Section 2, we go back to some works on change-points presented in
literature. In Section 3, we recall the essential theoretical results of Salman (2022). These results are used
in Section 4 for constructing the new algorithm. In section 5, a simulation experiment is conducted for the
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application of our algorithm. In Section 6, an application to a real data set is done. Section 7 concludes the
paper.

2 Bibliography

One of the statistics most often used for the segmentation of the time series is the CUSUM test, introduced
by Page (1954). Brown et al. (1975) introduce another version of CUSUM test based on the least-squares
residuals, denoted by CUSUMP®'. Zeileis (2001) and Zeileis (2004) use the CUSUM test in order to estimate
the p-value. They bounded the p-value with two approximate bounds for the standard CUSUM test and
CUSUM"* test. One of the major drawbacks is that they have low power, when the changes occur at the
beginning or when they occur at the end (late changes). For this reason, they update the bounds, see Zeileis
(2001) and Zeileis (2004). Later, many version of CUSUM test was introduced, see Horvdth et al. (2020).
Aue and Horvéath (2013) shows how procedures based on the popular cumulative sum, CUSUM, statistics
can be modified to work also for data exhibiting serial dependence. If the data allows for parametric
modeling, the authors demonstrate how likelihood approaches may be utilized to recover structural breaks.
The structural breaks in the conditional mean, variance, and second-order characteristics are studied.
The literature on change-points is large and various. Depending on whether the data are given in advance
or acquired sequentially, we can classify the change-point detection as off-line or on-line respectively. In the
off-line multiple-change-point estimation, a common approach involves searching for the set of breaks that
optimizes certain objective functions like Bayes information criterion BIC or least squares criterion see,e.g.
Yao (1987) and Horvéth (1993). Since the number of change-points combinations grows exponentially as
the sample size grows, the optimization can be extremely computationally expensive. For that, several
methods have been suggested, such as the purned exact linear time (PELT) of Killick et al. (2012) and
genetic algorithm of Davis et al. (2006), and the optimization remains difficult. To pass around the difficulty
in optimization, one can find the binary segmentation method, which started by Vostrikova (1981).

Cho and Fryzlewicz (2012) apply the binary segmentation method on wavelet periodograms and develop
a method to detect change-points in the covariance structure of a piece-wise stationary, linear time series
with an unknown number of breakpoints. An important updated version of binary segmentation method
called Wild binary segmentation (WBS), is introduced by Fryzlewicz (2014) for detecting changes in the
mean. Korkas and PryzlewiczV (2017) extend the idea for detecting change in covariance structure of time
series.

Yau and Zhao (2016) propose a likelihood ratio scan method for estimating change points in piece-

wise stationary processes. The authors use scan statistics to reduce the computationally infeasible global
multiple-change-point estimation problem to a number of single-change-point detection problems in vari-
ous local windows. The authors establish the consistency for the estimated numbers and locations of the
change-points.
In the context of time series, very few is done about testing no change against local alternatives of weak
changes. We mean by weak changes those of small magnitudes. Ltaifa (2021) and Ngatchou-Wandji and
Ltaifa (2021) study this problem for the case of testing the mean of Conditional Heteroscedastic Autore-
gressive Nonlinear ”CHARN” model . Salman (2022) extends the work of Ltaifa (2021) to more general
models. In this paper, we use the theoretical results obtained in Salman (2022), and we introduce a new
algorithm for detecting weak changes in the mean and identifying their types.

3 Model, problematic, and main results of Salman (2022)

In this section, we recall, in a briefly way, the method developed in Salman (2022) from which it is a
generalization of that presented in Ltaifa (2021) and Ngatchou-Wandji and Ltaifa (2021). These methods
are constructed for detecting weak changes in the mean based on the theoretical power of a likelihood
ratio test. The class of the statistical model presented in Salman (2022) is the Conditional Heteroscedastic
Autoregressive Nonlinear model ?CHARN?” (see, e.g., Hardle et al. (1998)).

More precisely, let d,p, k,n € N and k << n. Assume the observations X, ..., X, issued from the following
piece-wise stationary CHARN model

Xe =T(po +vOw(t); Xe—1) + V(Xi-1)er,t € Z, (31)
with
Xt =Y =T(po +'ijjﬂ(t);Xt,1’j)+V(Xt,1’j)st, Tic1<t<T7, j=1,...k+1, (32)

where for j = 1,...,k, (Y;,;)tez is a stationary and ergodic process; po € R?, T(po,.) and V(.) are real-
valued functions with inf cpa V(z) > 0; the 75, j = 0,...,k + 1, are potential instants of changes with
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ro=1land rpy =n+1iforj=1,...k Xyj =Yg Yicar1j) Xy 100 =Xp,_ 10, £=0,...,d—1
and for t € [rj_1 +d—1,75), Xy = (Xt,..., X¢—qs1)"; for j,0 = 1,...,k, j # £, the process (Yi,j)tez
and (Y;¢)tez are mutually independent (Yau and Zhao (2016) noted that this assumption can be ex-
tended to some weak dependence assumption); (Et)tez is a standard white noise with density f. v =

T
(’Yra--wﬂ)’];:-l) » Vi € RP G =1,....k+ 1 w(t) = (]1[7'0,7'1)("’)7]l[Tl,Tg)(t)»"*,]I[Tk,l,Tk)(t)aH[Tk,7k+1)(t))T =

(@10, w1 (1)) € 0,114 for = (90 ooyl ) and w(t) = @i (), oy 1 (8) T, ¥ © () stands
for y O w(t) = viwi(t) + -+ + Vpp1wr+1(t) € RP, and viw; = (y5,1wi, - - -, Vi pwi) € RP.

This category of models is expansive, encompassing a variety of models including AR(p), ARCH(p),
EXPAR(p), GEXPAR(p). Statistical and probabilistic properties have been extensively investigated in
the existing literature (see, e.g. Chen et al. (2018) for the study of the ergodicity of GEXPAR models).
For ~vo € RPF+1) and 8 € RPF+1D) depending on the 7;’s, Salman (2022) construct a likelihood ratio test
for testing

Hy:~v=~p against Hén) Y ="n =70+ % (33)
Note that the norm of 3 is small in front of n, and then the two hypotheses considered are getting closer
as the sample size n grows up.
First, the authors prove that the test constructed establish the locally asymptotically normal property
(LAN) and the hypotheses considered are contiguous in the sens of Le Cam (see Le Cam (1986) and
Droesbeke and Fine (1996)). These properties allow the study of the theoretical power of the test constructed
and lead to obtain an explicit expression of it. Indeed, under some technical hypotheses, they prove that
the constructed likelihood ratio test is asymptotically optimal and its asymptotic power has the following
expression

Pirk =1 = P(za — 9(po, 70, B)) (34)
where

— po represent the true nuisance parameter and « € (0,1) represent the level of significance,
— zq is the (1 — a)-quantile of the standard Gaussian distribution with cumulative distribution function

b,

— 19 is a real function defined in Rp(k+1)Xp(k+1), where its expression is given in Salman (2022).

In practice, the parameters are unknown and have to be estimated. Many works focus on the estimation of
the parameters, for example, Chen et al. (2018) discuss the estimation of the parameters of the linear and
non-linear part in GExpAR models which they are particular cases of CHARN model studied in Salman
(2022), Brockwell et al. (1990) for linear models as ARMA and many others. A decision for the testing
problem considered in Salman (2022) can be taken to be the estimation of the test’s power ﬁk,Tk which is
the one obtained by replacing the true parameters with their estimators in P, .. To explain the techniques
used here for parameters estimation, for 1 < j < k+1, 1 < h < p, let pj j, a consistent estimator (for example,
the maximum likelihood estimator ) of pg j, + B;,,/+/n on the basis of observations within [r;_1,7;). Then

one can consider Bjﬁh = /n(pj,n — Po,n) as an estimator of §; 5, where pg 5, is the estimator of the stationary
parameter pg p, on the basis of the first piece of observation [1,71). By replacing the parameters with their
estimators, the authors prove that the test constructed remains asymptotically optimal and they derived
an explicit expression of its power, noted by ﬁkﬂc.

4 New algorithm for weak-changes detection and their locations estimation

The time series at hand may has an invisible weak jumps when the parameters of its distribution weakly
change at sometime. This type of jumps may cause a visible results in the future. For example, a seismic
wave may be the results of a small movement of a small earth plate situated in a sensitive earth location.
As elucidated in Salman (2022), the constructed test possesses the capability to extend beyond its role
of testing no change against at least one change. It can be effectively employed to identify concealed
changes amidst two or more already detected changes, as determined by certain methodologies. To illustrate,
consider a scenario where changes have been pinpointed within the data using a specific approach, and
their respective positions have been estimated. This test functions as a screening tool to uncover potential
unnoticed changes as suggested by these methodologies. In such a context, the identified changes as well as
their locations are assumed to be established. Consequently, the components of v cease to remain uniform,
and specific 7; values in the model are deemed as known. Therefore, the test can be leveraged to evaluate
the null hypothesis of « changes against at least ¢ + 1 changes, where ¢ is a predetermined natural number.
The algorithm introduced in Salman (2022) may be susceptible to the influence of white noise. To elaborate
on this, consider two distinct time intervals, denoted as [1,t) and [t+1,n), where ¢ € (1,n). Assume that the
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parameters of the statistical model remain consistent across both intervals, while the white noise assumes
extreme values within one of them. In such a scenario, this algorithm might encounter this situation, leading
to the identification of a change. However, due to the absence of techniques capable of discriminating
between a genuine change-point and a false alarm, this detected change might be erroneously classified as
a change-point.
Here, we introduce a new algorithm motivated by both the reduction of the impact of white noise and
the classification of the detected changes into change-points and false alarms. In the sequel, we denote by
Py -+, k > 1 the theoretical power of the test considered at 7% = (1,...,7). For a € (0,1) representing the
level of significance, we denote by Py ;o = o the nominal level of the test.
Let ¢ € (0,.1) and X1, X2,..., Xm, (m << n), the m first stationary observations. A crucial point to mention
is that, in practice, m will be small than that considered in Salman (2022).

Our procedure for detecting weak changes in the time series X1, Xo,..., X, and estimating their loca-
tions is described in the following algorithm.

Location 1 :

Putt=1
(81) : Consider the two intervals Z; and Z, that contains respectively the observations X1, ..., Xm4tt—1
and Xi,..., Xyt So that the difference between the two intervals considered is the single ob-

servation X,,++ which is under testing.
(51)" : Adjust model (31) to Z; and Z. Then, apply the testing procedure presented in Salman
(2022).

If [P1,t = Po,ro0| > ¢,
Replace X, 1+ with X, 4¢ in Zo, with t+1 < ¢ < j, j << m, and Repeat (S1)" with the updated
1>

If [P1,¢ = Po,r0l > ¢,
The first change location is estimated on 7 = m + ¢.
Then, Go to Location 2.

Else
A False Alarm is detected.
Remove X+ from the sample, Do t =t + 1 and Go to (S1).

Else
Do t=t+1 and Go to (S1).

Location 2 :

Consider the next h observations to Xr: X7 y1,..., X, 1p

Put t =1 and Do
(S2) : Consider the two intervals Z; and 7 that contains respectively the observations Xr,,..., X ypyt—1
and X ,..., X, 4p4¢. So that the difference between the two intervals considered is the single

observation X yp4: which is under testing.
(S2)" : Adjust model (31) to Z; and Zo. Then, apply the testing procedure presented in Salman
(2022).

If |P1: — PO’To| > (,
Replace X, ¢ With X, (p.c in T, with t + 1 < ¢ < j, j << h, and Repeat (S2)" with the
updated Z»

If [P1,c = Po,ro| > ¢,
The second change location is estimated on 7o =71 + h + ¢
Then, Go to Location 3.

Else
A False Alarm is detected.
Remove X, ;. from the sample, Do ¢t =t + 1 and Go to (S2).
Else
Do ¢t =t+ 1 and Go to (Sz2).
Location i :
We already estimated the (i — 1) change location 7;_; in step i — 1

Consider the next h observations to Xr,_,: Xr,_41,..., Xr,_,4h
Put t =1 and Do
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(S;) : Consider the two intervals Z; and Z» that contains respectively the observations X, ,,...,
X i4h+t—1 and Xr_ ..., X, +pye So that the difference between the two intervals consid-
ered is the single observation under testing.
(S;)" : Adjust model (31) to Z; and Zo. Then, apply the testing procedure presented in Salman
(2022).

If [Pyt = Po,rol > ¢,
Replace X,, | ypi¢ with X, | 1pic in Zo, with t +1 < ¢ < j, j << h, and Repeat (S;) with
the updated Z»

If [P1c = Po,rol > ¢,
The " change location is estimated on 7; = 7,1 + h + t.
Then, Go to Location ¢ + 1.

Else
A False Alarm is detected.
Remove X, 4t from the sample, Do t =t + 1 and Go to (&;).

Else
Dot =¢+ 1 and Go to (&;).

5 Simulation experiment

In this section, the theoretical results obtained in Salman (2022) are applied to some special simulated
data, using softwares R and Python. Following the algorithm in Section 4, we detect weak changes and
estimate their locations. By monitoring the values of the power of the test obtained around the estimated
change, we distinguish if it is about a change-point or a false alarm.

Initially, we observe the power of the test computed through our algorithm to assess the occurrence of false
alarms. Subsequently, we establish that the novel algorithm possesses the capability to differentiate between
a change-point and a false alarm, relying on the power’s behavior calculated in the vicinity of the detected
change. Furthermore, we evaluate the efficiency of our algorithm for detecting multiple weak breaks where
the number of change-point and their locations are assumed to be unknown. At the same time, we evaluate
if the changes locations estimation are more accurate than the others obtained in Salman (2022) by taking
the same parameters values as in Salman (2022).

For the simulation, we use the same particular CHARN model as in Salman (2022) having the following
expression

Bj,3

. . po,3+ )Xf,l
Xt=p0,1+5]’1 +(po,2+ﬂj’2)Xt1e< Vn +4/01+02X2 1er, j=1,....k, t€Z, (55)

vn vn

where n denotes the number of observations, (g¢): is a standard white noise with a differentiable density f.
Here, on [7j_1,7;), po = (po,1,po,2, po,3) € R®, B; = (Bj.1, 8.2, B;,3) € R?; po is the parameter to be specified
in each particular model considered.

5.1 Data presenting one single False Alarm

In this part, we consider the problem of detecting and identifying a change. Identifying a change means
that we distinguish between a false alarm and a change-point basing on the power calculated around the
estimate change. The data are generated by model (55) for pg,1 = 0.2, po,2 = 0.3 and po3 = 81,1 = B1,2 =
B1,3 = 0 (same parameter values token in those papers). At an instant between 1 and n, say 71, we replace
the corresponding observation, say X, by another observation, for example ¢ that follows N(1,3). For
¢ =0.4%, a = 5% and 71 = 150, the results corresponding are shown on Figure 1. From Figure 1, one can
see that the power of the test jumps above the threshold at ¢ = 150 (the threshold here is a + ¢ = 5.4%),
which is the true instant of change, and directly it fell under the threshold for the next few observations.
For different 71, we monitor the power of the test calculated at 7 +1i, ¢ = —1,0,...,4. The results are shown
on Table 1 and they illustrate numerically what we said about Figure 1.

One can see that the power calculated at 71 + 14, ¢ = 1,2,3,4 are higher than the others before 71 which is
normal, because we calculated them by removing the intermediate observation at the estimates 71, and this
thing affect the estimation of the possible autocorrelation parameters between the last two observations
in Ty (see Section 4). Also, by comparing these powers to that at 71, we can see that they are much less,
which lead us to classifying this change as a false alarm.
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T1

Power 90 110 150 195

7 90 110 150 195
Pr_1 || 0.05099 0.05124 0.05091  0.05071
L 0.05612  0.05721  0.05851  0.05762
Pir 41 || 005218  0.05181 0.05213  0.05213
Pis 42 || 005232 0.05194 0.05273  0.05224
Pir s || 005212 0.05174 0.05283  0.05211
Pis4a || 005234  0.05179 0.05255 0.05215

Table 1: Power of the test around 71 for ¢ = 0.4% and

a=5%.

power

0.054 0.056 0.058

0.052

Data contains one single 'False alarm’

50 100 150 200

Time

Fig. 1: Estimation of the change location
for 71 = 150 in a class of AR(1) models.

In the same line, we consider the problem of detecting changes, estimating their locations and identifying
their type. For that, we generate a data that present one single change-point and one single false alarm
using the following particular case of model (55)

Xt = 00,1 + po,2Xt—1 + &, t=1,...,71 -1,
Xt:p0,1+61\/5+(p0,2+61\/§)X1§71+5t, t=71,...,n
X‘f‘2: 67

where (e¢);>1 is a standard Gaussian white noise and e is a Gaussian random variable with different
parameters values.

For n = 300, po,1 = 0.2, po,2 = 0.3, B1,1 =5, B1,2 = =3, e ~ N(—1,2) and ¢ = 0.25%, Figure 2 illustrates
the behavior of the power when facing a change. Now, for n = 300, po,1 = 0.2, pg,2 = 0.3, Table 2 shows the
estimation of the break locations corresponding to different type and magnitudes of changes, and different

values of (.

Table 2: Power around changes detected in a class of AR(1)

model.

7 and power ((B11,B1,2), (11, 72),e ~, ) T
(17 1) (37 72) (5» 73) (107 76)
(101, 200) (101, 250) (111, 280) (91,295) Change-point and false alarm
N(1,1) N(1,2) N(-1,2) N(2,2) i
0.15% 0.25% 0.25% 0.35% 2 7 Change-point
71 102 101 111 91 -
Pl,r—1 0.050541 0.050713 0.050811  0.050972 E False alarm
Pim 0.052418 0.053712 0.054612  0.057321
Pl,r+1 0.052503 0.053515 0.054874  0.057819 2 | \
Py 42 0.052315 0.053821 0.054731  0.057643 5 ©
Pl,ri+3 0.052517 0.053644 0.054912  0.057967 g
Pl,ry+4 0.052421 0.053553 0.054826  0.058042 S 1
T 200 250 280 295 z |
P2 ry—1 0.050912 0.050626 0.050963  0.050121 s
P2,y 0.052915 0.054261 0.053987  0.061092 -
Pa,ryt1 0.051981 0.051725 0.516471  0.051681 g1 ‘ ‘ ‘ ‘ ‘ ‘
Pa,ryt2 0.051734 0.051628 0.051811  0.051874 0 s 1001 180 200 250 280300
Po,ry+3 0.051413 0.051632 0.051736  0.051642
Po,rot4 0.051386 0.051589 0.051481  0.051328 Time

Fig. 2: Behavior of the power when facing
a change.

5.2 Multiple change-points detection (k=3)

In this part, we consider the problem of detecting multiple change-points in class of non-linear models,
such as AR(1)-ARCH(1) model which is a particular class of CHARN(1,1) models. We use the same values
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of the parameters used in Salman (2022) in order to compare the results, efficiency and accuracy between
the results obtained by that algorithm and those obtained by the new version introduced in this paper. In
addition, for each detecting change, we monitor the power calculated at some instants around estimates
instant of change in order to identify the type of the change detected.

We consider the data generated by model (55), for 7 = (71,72, 73) represents the true instant of changes,
n = 350,p0,1 = 0.2, po.2 = 0.3, po3 = B3 =0,5=1,2,3, 01 =1, 2 = 0.02. For 5000 replications, different
magnitudes of change 8; = (8;,1,5;,2), j = 1,2,3 and same ¢ = 0.1%, the results are shown on Table 3.

7= (11, 72,73) = (90,190, 275)
B1,1 B1,2
B2,1 B2,2
Power B3,1 B3,2
3 2 1 —-0.5 -2 1.5
1 3 2 1 1 3
—-11 -1 -1 —0.5 —1
Eel 90 91 91
P1,r1—1 0.050342 0.050214 0.050312
P1,mq 0.052117 0.051917 0.052162
P1,r+1 0.052313 0.052023 0.052213
P17 42 0.052325 0.051976 0.051909
P1,7+3 0.052318 0.052014 0.052132
P17 +4 0.052510 0.052134 0.052193
7 191 191 190
P2,ro—1 0.050314 0.050352 0.050963
P2,y 0.052203 0.052134 0.053102
P2 ry+1 0.052491 0.052232 0.528902
P2 rot2 0.051908 0.052109 0.052932
P2 543 0.052424 0.052421 0.053011
P2 1044 0.052521 0.051996 0.053106
T3 276 276 275
P3,75—1 0.050142 0.050324 0.050561
P3,75 0.052722 0.053341 0.053978
P3,73+1 0.052524 0.053242 0.538511
P3, 7342 0.052498 0.053234 0.053915
P3,75+3 0.052713 0.053517 0.053776
P3,75+4 0.052613 0.053127 0.053817

Table 3: Power around changes detected in a class of AR(1)-ARCH(1) model.

One can see from Table 3 that the results is more accurate than those obtained in Salman (2022). In
addition, for a suitable threshold corresponding to a suitable ¢, it is rarely that we find a detection change
in advance of the real instant of break from which it was removed during the replications. This feature is
a result of the newly introduced algorithm version here, which reduces the impact of white noise.

6 Welding electrical signals

Welding is considered the main task for many industries, especially for those that construct hot water tanks.
The problem of detecting and locating a fault welding is considered as one of the most important problems
for quality evaluation. Using welding electrical signals as data source, many research have been done for
welding fault detection. Huang et al. (2020) detects three types of defects by proposing a Support Vector
Machine (SVM) model based on the multi-scale entropy of the current and voltage signals. Pernambuco
et al. (2019) classify the sound signals to detect the absence of shielding gas using Artificial Neural Network.
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From time series of view, Melakhsou and Batton-Hubert (2021) propose a method that detects and localize
welding defect based on the findings from causality study knowing that the causality between time series
has begun with Kaminski et al. (2001).

The change in the mean WES is mainly caused by the change in the distance between the electrode and
the surface under welds. That means, since the electrode is fixed, it is an indicator of the variation of the
circular surface form of the metal under welds. This variation may be due to a fault during the transfor-
mation of the metal plate to a cylinder, or the existence of a hole.

Here, our global purpose is to test for weak changes in the mean of some arc-welding series that considered
as a "normal welding series” in order to monitor the stability of the electrical signals. The data that we
have are for 10 normal welds experiments under the same conditions. We study all of these data and we
present the results of four of them.

6.1 Modeling

First, we start our study by looking for a common suitable time series model for all of these data. The
chronogram of the EWS series (W) (Figure 3) seems to present a trend and does not present a seasonality.
The Augmented Dicky-Fuller test (see Cheung and Lai (1995)) approve the non-stationarity of all these
data. The results obtained in Salman (2022) cannot be used directly, since the Moving-Average part doesn’t
belongs to the class of CHARN models used there. For that, we decompose these series in a summation of
two components as follow:

Wi =Y + Xy,

where (Y;) represents the unknown trend assumed to be continuous and (X¢) is a piece-wise stationary series
with mean (p;) and variance (o¢). Based on the lowest Akaike Information criterion AIC (see Sakamoto
et al. (1986)), we estimate the trend by the following moving-average with order 5

2

s 1

Yt:gé Wit j.
J=—

The Box-Ljung and Box-Pierce tests (see Brockwell and Davis (2002)) applied to these residuals series reject
the null hypotheses, and then they are not iid. Also, the QQ-plot and the histogram of the residuals seems
to explain that the residuals is normally distributed in addition to Shapiro-wilk test. Basing on all of these
investigations, we assume the heteroscedasticity of these residual series and by taking into consideration
the AIC, we propose a shifted model defined as follow

Bj1 .
Xt =po1+ \/ﬁ+0'j€t, tE[ijl,Tj), j=1...,k+1,

where k is the number of change-points that assumed to be unknown and must be estimated, 71,..., 7%
designate the breaks locations, (e¢) is a standard Gaussian white noise, V(z) = o; represents the variance
of X3 in each interval [r;_1, 75).

Here, for the test problem, v = 0, vn» = (0,82/Vn,...,Bk+1/V/n) € RFY with B = (0,B2,...,
Br+1)-

Using the theoretical results of Salman (2022) recalled in Section 3, and by applying our new version algo-
rithm presented in Section 4, for different thresholds corresponding to the choice of ¢, we detect multiple
breaks in the data and we show the results of 4 of them for ¢ = 0.15%, 0.25%, and 0.3% on Figure 3.
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(g) Data 4 and ¢ = 0.15%. (h) Data 4 and ¢ = 0.25%.

Fig. 3: Breaks locations estimation in case of ¢ = 0.15% and 0.25%.
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(c) Data 3 and ¢ = 0.3%. (d) Data 4 and ¢ = 0.3%.

Fig. 4: Breaks locations estimation in case of ¢ = 0.15% and 0.25%

Now, since all of these data are considered as a normal welding, it is interesting to take a look to the
variation of the number of changes detected with respect to the threshold. For that, we consider a sequence
of ¢ varying between 0.15% and 1%, we applied our algorithm on each data for each value of ¢ and we
calculate the corresponding number of changes detected. The results are shown on Figure 5.

Number of breaks with respect toZ,

Data 1

Data 2

{4 Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data9

Data 10

Number of breaks

Fig. 5: Number of breaks with respect to (.

6.2 Analyses

For these 10 data, we applied our algorithm for ¢ varying between 0.1% and 1%. For 0.1% < ¢ < 0.13%,
a high number of weak breaks has been detected which is not an informative phenomenon in this domain.
Figure 3 and 4 shows the corresponding breaks detected of four of these data for ¢ = 0.15%, 0.25% and
0.3%. It is easy to see that the number of changes detected decrease when the threshold increase which
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is logic, and also, some estimated breaks locations remains close to each other even when we change the
threshold. For example, in Data 2, the instant ¢ = 589 remains the same instant detected when ¢ = 0.15%
or 0.3% from which we can consider it as a true change.

Also, for all of these data, when a change is detected, the power remains above the threshold except the
case of that corresponding to Data 2 where, for ¢ = 0.25%, 0.3%, the instant ¢t = 2245 is considered as a
false alarm and it can be explained here by a hole.

These results allows us to assume the segmentation of the data into piece-wise stationary data from which
the distance between the observations that belong to every single piece and the electrode is significantly
constant. One can see that, by fixing a threshold, we can find the reason that make the distance between
the electrode and the surface metal plat under welds change. By monitoring the values of the power of the
test, we can classify the changes detected into a deformation of the circular form of the hot water tank or a
hole. In other word, the false alarm definition introduced in Section 4 can be explained here as a hole from
which the power cross the threshold for a few number of observations, and the true change as the point
where the deformation of the circular form started.

From Figure 5, we can see that the number of breaks detected decrease exponentially when ¢ is varying
between 0.15% and 0.35% and then, it remains constant for a while before converging to zero. We can
explain this fall of the number of changes detected through the weak variation of the values of the welding
signals from which the power of the test cross the threshold for a small ¢ and it remains under the threshold
for a higher ¢. In addition, by taking ¢ = 9%, no change has been detected in all of these data.

7 Conclusion

We have introduced a new automatic algorithm for detecting weak changes in the mean using the method
proposed by Salman (2022). The simulation experiment conducted shows that our algorithm is efficient to
detect multiple breaks, and also, to distinguish between a change-point and false alarm. Comparing to the
results obtained in Salman (2022), our algorithm seems to be more efficient and accurate.

By applying the theoretical results of Salman (2022) with the algorithm proposed here, we detect multiple
weak changes in the welding electrical signals in order to study the stability of the electrical tension during
the construction of hot water tank.

An aspect of our outlook, pertaining to this study, involves devising an automated approach to determine
the optimal threshold suitable for the specific domain of investigation. Addressing this global challenge is
a paramount concern for numerous researchers in this field, and it stands as a significant focus for our
forthcoming endeavors.
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