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Two puzzles continue to plague our understanding of angular momentum balance in the context of
gravitational two-body scattering. First, because the standard definition of the Bondi angular momentum J
is subject to a supertranslation ambiguity, it has been shown that when the corresponding flux FJ is
expanded in powers of Newton’s constant G, it can start at eitherOðG2Þ orOðG3Þ depending on the choice
of frame. This naturally raises the question as to whether the OðG2Þ part of the flux is physically
meaningful. The second puzzle concerns a set of new methods for computing the flux that were recently
developed using quantum field theory. Somewhat surprisingly, it was found that they generally do not agree
with the standard formula for FJ, except in the binary’s center-of-mass frame. In this paper, we show that
the resolution to both of these puzzles lies in the careful interpretation of J: Generically, the Bondi angular
momentum J is not equal to the mechanical angular momentum J of the binary, which is the actual
quantity of interest. Rather, it is the sum of J and an extra piece involving the shear of the gravitational
field. By separating these contributions, we obtain a new balance law, accurate to all orders in G, that
equates the total loss in mechanical angular momentum ΔJ to the sum of a radiative term, which always
starts at OðG3Þ, and a static term, which always starts at OðG2Þ. We show that each of these terms is
invariant under supertranslations, and we find that ΔJ matches the result from quantum field theory at least
up to OðG2Þ in all Bondi frames. The connection between our results and other proposals for
supertranslation-invariant definitions of the angular momentum is also discussed.

DOI: 10.1103/PhysRevD.108.104052

I. INTRODUCTION

The study of gravitational two-body scattering has
attracted fervent interest in recent years. It is promising
both as a theoretical arena, in which new insights into
the mathematical structure of gravity may be gleaned, and
as a practical tool, with which increasingly precise models
of gravitational-wave signals may be developed (see, e.g.,
Refs. [1,2] for an overview).
When it comes to practical calculations, the problem

is generally rendered tractable by way of the post-
Minkowskian expansion, which—when used alongside a
number of powerful techniques adopted from high-energy
physics—allows us to solve for each quantity of interest
perturbatively in powers of Newton’s constant G [3–21].
One finds in doing so that gravity manifests as a purely
conservative force at first order in the approximation, and
that the emission of gravitational waves appears only once
we go to higher orders inG. This is easy to understand: Any
Feynman diagram that contributes to the amplitude for on-
shell graviton emission must contain at least one internal
graviton line, each of which confers a factor of G, and one
external graviton leg, which adds an additional factor of
G1=2 [22,23]. Since the total flux of four-momentum FP is

proportional to the square of this amplitude [24], FP must
start at OðG3Þ. This simple power-counting argument is
corroborated by explicit calculations of the four-momen-
tum flux, which were first carried out for the case of two
point masses in Refs. [4–8], before being generalized to
include tidal interactions [10–12] and spin effects [13,14].
Explicit calculations [5,6,11,14,15] also confirm that the

total flux of four-momentum radiated across future null
infinity is precisely equal to the total change in the four-
momenta of the two bodies. This kind of balance law, in
which changes in the mechanical properties of the binary
are linked to the flux of outgoing radiation, provides an
important consistency check and, in the case of bound
orbits, plays a key role in the construction of waveform
models [25–28].
One expects a similar balance law to hold for the angular

momentum, but it is here that we encounter two puzzles.
First, applying the same power-counting argument from
before naively predicts that the angular momentum flux
FJ should also start at OðG3Þ, but explicit calculations
[3,19–21,29,30] reveal that it actually begins one order
earlier, at OðG2Þ. It was understood in Ref. [3] that this
OðG2Þ part of the flux is linked to the gravitational-wave
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memory, and can be interpreted as saying that angular
momentum is also transferred, starting at OðG2Þ, into the
static components of the gravitational field. (In the lan-
guage of particle physics, one says that it is transferred into
zero-frequency gravitons [20,21].) Meanwhile, the transfer
of angular momentum into radiative modes remains an
OðG3Þ effect, as explained in Ref. [31]. This state of affairs
is not entirely intuitive, but it is also not necessarily a
problem. Indeed, something similar happens in electro-
magnetism [32,33], for which the relevant expansion
parameter is the fine-structure constant. The real puzzle
arises when we confront this result with the coordinate
freedom that general relativity affords.
Because the Bondi angular momentum J is subject to a

supertranslation ambiguity [34–38], it turns out that a
suitable change of coordinates (amounting to a pure
supertranslation) can be used to remove the OðG2Þ part
of the flux entirely [31].1 This then raises the question
as to whether the OðG2Þ part of the flux is physically
meaningful, or if it is merely a coordinate artifact. Two
findings support the notion that it is physical. The first is a
linear-response relation between the conservative and
radiation-reaction parts of the scattering angle [3,45] (see
also Refs. [14,46]), which produces the correct result at
OðG3Þ only if the angular momentum flux starts at OðG2Þ.
The second is a set of explicit solutions to the binary’s
equations of motion [29,30], which assert that the binary
always loses mechanical angular momentum starting at
OðG2Þ. Taken together, these various results present us with
a puzzle of why a seemingly physical part of the flux can be
set to zero by a change of coordinates, and why the loss of
mechanical angular momentum from the binary may or
may not be balanced by the angular momentum flux,
depending on the choice of coordinate frame. (See also
Ref. [31] for further discussion.)
The second puzzle concerns the explicit computation of

this angular momentum flux. Owing to a number of recent
advancements [19–21], there are now at least two different
approaches that one could take. The first is to use a classic
formula, given by DeWitt and Thorne [47,48], that yields

the space-space components of the flux Fij
J after an

integration over position space. This approach was adopted
in Refs. [3,22,23] to compute Fij

J up to OðG2Þ. The second
approach involves a set of new formulas [19–21], based on
quantum field theory, that yield both the space-space and
time-space components of the flux after an integration over
momentum space. Results obtained via this second approach
are available up to OðG3Þ [19–21]. Surprisingly, where a
comparison is possible, these two approaches generally do
not agree [19], except in the binary’s center-of-mass (c.m.)
frame. It has been suggested that a possible explanation for
this discrepancy is the inapplicability of the DeWitt-Thorne
formula outside the c.m. frame, but this contradicts the fact
that this formula can be obtained from the Bondi-Sachs
formalism [41–44] without imposing any restrictions on the
binary’s c.m. motion [49].
In this paper, we will instead argue that the resolution to

both puzzles lies in the careful interpretation of J. After
reviewing several key aspects of the Bondi-Sachs formal-
ism in Sec. II, we show in Sec. III that the Bondi angular
momentum J of a system is generically not equal to its
mechanical angular momentum J ; the latter turns out to be
the more relevant quantity in the case of gravitational two-
body scattering. To understand their distinction, consider a
single Schwarzschild black hole of massm whose center of
energy travels along the worldline xμðτÞ ¼ bμ þ pμτ=m.
The constant vector bμ is the displacement of this world-
line from the space-time origin, pμ is its four-momentum,
and τ is the proper time. It is then the mechanical angular
momentum J that is given by the familiar formula
J μν ¼ 2b½μpν�. The Bondi angular momentum J, on the
other hand, can be written as the sum of J and an extra
term that depends on the shear of the gravitational field.
For the two-body case, we use this general relation

between J and J to derive a new balance law, accurate to
all orders in G, that equates the total loss of mechanical
angular momentum from the binary to the sum of a
radiative term and a static term. If J μν

− and J μν
þ denote

the values of the mechanical angular momentum before and
after the scattering event, respectively, then

J μν
þ − J μν

− ¼ −Δμν
J ;

Δμν
J ≡ Δμν

J ðradÞ þ Δμν
J ðstatÞ: ð1:1Þ

The radiative term ΔðradÞ
J [Eq. (3.23)], which always starts

at OðG3Þ, accounts for the flux of angular momentum

that is carried away by gravitational waves, while ΔðstatÞ
J

[Eq. (3.25)], which always starts atOðG2Þ, accounts for the
additional transfer of angular momentum into the static
components of the gravitational field. The physical sig-
nificance of the former has previously been appreciated in
Refs. [31,50], but identifying how the latter arises from the
Bondi-Sachs formalism is a key contribution of this work.

1The use of the word “ambiguity” is somewhat of a historical
holdover. It is not really surprising that the Bondi angular
momentum transforms nontrivially under supertranslations; it
is expected to transform in the coadjoint representation of the
relevant symmetry group [39,40], and the relevant symmetry
group for asymptotically flat space-times is the Bondi-Metzner-
Sachs (BMS) group [41–44]. Thus, in general one just has to live
with the angular momentum depending on these additional
transformations. However, in certain cases like that of two-body
scattering, reasonable assumptions about the space-time structure
allow us to isolate preferred Poincaré subgroups (one for the
initial state and another for the final state) from the full set of
BMS symmetries—see Sec. III D for more details, and see also
Refs. [37,38]. In these cases, a distinction can be drawn between
the usual set of translations, whose physical meaning is clear, and
the remaining pure supertranslations.

RIVA, VERNIZZI, and WONG PHYS. REV. D 108, 104052 (2023)

104052-2



Both of these terms are inherently physical, as we show that

J �, ΔðradÞ
J , and ΔðstatÞ

J are all individually invariant under
pure supertranslations. On the whole, we consider these
results to be a satisfactory resolution to the first of our two
puzzles.
A resolution to the second puzzle is provided in Sec. IV.

After computing the total loss ΔJ for a two-body scattering
event explicitly at OðG2Þ, we verify that it agrees with the
result from quantum field theory [19–21] at this order in all
Bondi frames. Additionally, we find that ΔðstatÞ

J matches the
corresponding static part of the result in Refs. [20,21] also at
OðG3Þ. These results establish that the reason for the general
discrepancy between Refs. [19–21] and Refs. [22,23] is that
they are, in fact, computing two different quantities: the
former references compute ΔJ , whereas the latter compute
the Bondi fluxFJ.We are also able to explainwhy the space-
space components of FJ and ΔJ just so happen to agree at
OðG2Þ in the binary’s c.m. frame. Avenues for future work
are discussed alongside our conclusions in Sec. V.
Complementing the main text are four appendices that

address some of the more technical aspects of this paper.
InAppendixA, we show how to translate between the scalar-
valued integrals fPðσÞ; JðσÞ;…g of the Bondi-Sachs for-
malism and the more familiar representation of the momenta
and their fluxes as Lorentz tensors, fPμ; Jμν;…g. Because
scalars are considerably easier toworkwith, our presentation
in the main text will mostly favor use of the former, although
several occasions will arise when switching to the latter
becomes beneficial. The more tedious steps involved in our
derivation ofJ andΔJ are collected inAppendices B andC,
and finally, in AppendixDwe compare our results with other
recent proposals for a supertranslation-invariant definition of
the angular momentum [49–54].
Our metric signature is ð−;þ;þ;þÞ, our antisymmet-

rization convention is such that T ½μν� ¼ ðTμν − TνμÞ=2, and
we adopt units in which c ¼ 1 throughout.

II. BONDI-SACHS FORMALISM

This section provides a brief introduction to the Bondi-
Sachs formalism [41–44], which is well suited to the study
of radiation in asymptotically flat space-times. We begin by
discussing the general form of the Bondi metric near future
null infinity in Sec. II A, before turning to an enumeration
of its asymptotic symmetries in Sec. II B. The link between
asymptotic symmetries and balance laws is then explored in
Sec. II C. Our exposition is mostly an abridged version of
Refs. [55–58], to which we refer the reader for more details.

A. Bondi metric

When seeking to describe the transport of radiation
towards future null infinity Iþ, it is convenient to choose
a coordinate chart that is adapted to outgoing null rays. The
retarded Bondi coordinates ðu; r; θAÞ, with A∈ f1; 2g, form

one such example. In these coordinates, the hypersurfaces
of constant retarded time u are taken to be null, while the
angular coordinates θA are defined such that every null ray
that is tangent to one of these hypersurfaces is a curve along
which u, θ1, and θ2 are constant. The remaining radial
coordinate r then parametrizes our position along a given
null ray.
On its own, this construction imposes only three con-

straints on the metric, namely guu ¼ guA ¼ 0 [56]. We
remove the last remaining gauge degree of freedom by also
requiring that ∂r detðgAB=r4Þ ¼ 0, which forces the coor-
dinate r to be the areal radius. The most general metric that
we can write down subject to these constraints is then

ds2 ¼ −μe2βdu2 − 2e2βdudr

þ γABðrdθA þWAduÞðrdθB þWBduÞ: ð2:1Þ

Asymptotic flatness is imposed by requiring that this
metric reduces to that of Minkowski in the limit r → ∞. The
appropriate boundary conditions on the metric components
are thus μ → 1, β → 0, WA → 0, and γAB → ΩAB, where
ΩAB is the round metric on the unit 2-sphere; i.e., ΩAB ¼
diagð1; sin2 θÞ in the usual ðθ;ϕÞ chart. For large but finite
values of the radius, we can expand thesemetric components
in powers of 1=r to obtain an accurate description of the
space-time in the vicinity of Iþ [42,43]. Assuming for
simplicity that the metric in Eq. (2.1) satisfies the vacuum
Einstein equations in this region (this does not preclude the
existence ofmatter butmerely requires that it be concentrated
away from Iþ), we find that the most relevant terms in the
expansion are [55,57]

μ ¼ 1 −
2GM
r

þOðr−2Þ; ð2:2aÞ

γAB ¼ ΩAB þ 1

r
CAB þOðr−2Þ; ð2:2bÞ

β ¼ −
1

32r2
CABCAB þOðr−3Þ; ð2:2cÞ

WA ¼ 1

2r
DBCAB þ 1

r2

�
2

3
GNA −

1

16
DAðCBCCBCÞ

−
1

2
CABDCCBC

�
þOðr−3Þ; ð2:2dÞ

where indices are always raised and lowered with ΩAB,
and DA is the covariant derivative compatible with ΩAB.
We see from Eq. (2.2) that the space-time is fully

characterized at this order in 1=r by just three objects:
the mass aspect M, which has dimensions of mass; the
angular momentum aspect NA,

2 which has dimensions of
angular momentum; and the shear tensor CAB, which has
dimensions of length. All three objects are functions only
of the three coordinates ðu; θAÞ, and we note that the shear
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tensor must be traceless (i.e., ΩABCAB ¼ 0) as a conse-
quence of the gauge constraint on r.
The vacuum Einstein equations also govern how two of

these quantities evolve with time. Writing Ẋ ≡ ∂uX for any
quantity X, the evolution equation for M reads

GṀ ¼ −
1

8
NABNAB þ 1

4
DADBNAB; ð2:3Þ

while the corresponding equation for NA is

GṄA ¼ GDAM þ 1

4
DBDADCCBC −

1

4
D2DBCAB

þ 1

4
DBðNBCCCAÞ þ

1

2
CABDCNBC: ð2:4Þ

Both equations depend on the news tensor,

NAB ≔ ĊAB; ð2:5Þ

but there is no third equation that independently con-
strains the evolution of CAB. This makes intuitive
sense, because the shear tensor is where the information
about gravitational waves is encoded, and we have yet to
specify any details about the gravitational-wave source. For
the case of two-body scattering, these details might come
from, say, calculating the amplitude for on-shell graviton
emission. In any case, once a solution for CAB ≡
CABðu; θAÞ is provided, Eqs. (2.3) and (2.4) automatically
dictate how M and NA evolve away from their initial
conditions.

B. Asymptotic symmetries

We call a coordinate chart ðu; r; θAÞ a “Bondi frame” if it
results in a metric of the general form in Eqs. (2.1) and
(2.2). The asymptotic symmetries of Iþ may then be
defined as those coordinate transformations ðu; r; θAÞ ↦
ðu0; r0; θ0AÞ that take us from one Bondi frame to another.
These transformations form the Bondi-Metzner-Sachs
(BMS) group [41–44], which is structurally similar to
the Poincaré group, except that the four-dimensional
subgroup of translations is replaced by an infinite-dimen-
sional subgroup of “supertranslations.”
This structure is readily seen by considering a general

element of the Lie algebra. For an infinitesimal transformation
with u0 ¼ uþ ξu, r0 ¼ rþ ξr, and θ0A ¼ θA þ ξA, one finds
that the asymptotic Killing vector [55,57]

ξ ¼ ξu∂u þ ξr∂r þ ξA∂A

¼
�
αþ 1

2
uDAYA

�
∂u −

�
1

2
rDAYA þOðr0Þ

�
∂r

þ ½YA þOðr−1Þ�∂A ð2:6Þ

is parametrizedbyone arbitrary scalar functionα≡ αðθAÞ and
one vector YA ≡ YAðθBÞ, which must satisfy the conformal
Killing equation3

2DðAYBÞ − ðDCYCÞΩAB ¼ 0: ð2:7Þ

The claim is thatYA parametrizes the Lorentz transformations,
while α parametrizes the supertranslations.
On flat space-times, we are typically accustomed to seeing

an infinitesimal Lorentz transformation x0μ ¼ xμ þ ωμ
νxν

being generated by the constant antisymmetric tensor
ωμν, and an infinitesimal translation x0μ ¼ xμ − aμ being
generated by the constant vector aμ. The physical sig-
nificance of YA and α can thus be made clearer if we are
able to express them in terms of these more familiar objects.
We do so by introducing the Lorentzian coordinates
xμ ≡ ðt; x; y; zÞ, whose time coordinate t ¼ uþ r andwhose
spatial coordinates ðx; y; zÞ are related to the spherical Bondi
coordinates ðr; θ;ϕÞ in the usual way. Then defining

nμ ≔ ð1; sin θ cosϕ; sin θ sinϕ; cos θÞ ð2:8Þ

as the outgoing radial null vector on Iþ and n̄μ as its image
under the antipodal map ðθ;ϕÞ ↦ ðπ − θ;ϕþ πÞ, it is
possible to write the general solution to Eq. (2.7) as [57]

YA ¼ ωμνnμ∂An̄ν; ð2:9Þ

where Greek indices are always raised and lowered with the
Minkowski metric ημν.
For the supertranslations, we use the fact that any

function on the 2-sphere is decomposable into spherical
harmonics to write α ¼ αl≤1 þ αl≥2, where αl≤1 is formed
by an appropriate linear combination of the l ¼ 0 and
l ¼ 1 harmonics, while αl≥2 is formed by the remaining
harmonics with l ≥ 2. That we can always write

αl≤1 ¼ aμnμ ð2:10Þ

for some aμ establishes this part of α as being responsible
for the standard translations; the remaining part αl≥2
generates the pure supertranslations.

2Different papers use slightly different definitions for the
angular momentum aspect; for a summary, see Eqs. (2.8) and
(2.9) of Ref. [59]. Our definition coincides with that of Flanagan
and Nichols [57].

3Although we do not consider them here, it is worth mentioning
that there are several extensions of the BMS algebra [55,60,61],
which impose less stringent constraints on the vector YA.
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C. Charges and fluxes

Noether’s theorem tells us that the four-momentum Pμ

and angular momentum Jμν are the ten conserved charges
associated with the Poincaré symmetries of Minkowski
space. For asymptotically flat space-times, a general
prescription due to Wald and Zoupas [62] provides the
analog of this result by associating a charge to every BMS
generator ξ.4 The four-momentum and supermomentum
charges, which are conjugate to translations αl≤1 and pure
supertranslations αl≥2, respectively, are both encoded in the
surface integral [57]

PðσÞ ¼
Z
σ

d2Ω
4π

αM: ð2:11Þ

Meanwhile, the angular momentum charge, which is
conjugate to the Lorentz transformations YA, is given
by5 [57]

JðσÞ ¼
Z
σ

d2Ω
8πG

YA

�
GN̂A −

1

16
DAðCBCCBCÞ

−
1

4
CABDCCBC

�
; ð2:12Þ

where, for later convenience, we have introduced the
shifted angular momentum aspect

N̂A ≔ NA − uDAM: ð2:13Þ

Notice, crucially, that these charges are defined on a
given “cut” σ, which is a 2-sphere of constant u on Iþ,
because their values generally change with time as the
system emits gravitational radiation. The total change
between two cuts, say σ− and σþ, is determined by the
balance laws

PðσþÞ − Pðσ−Þ ¼ −FPðN Þ; ð2:14aÞ

JðσþÞ − Jðσ−Þ ¼ −FJðN Þ; ð2:14bÞ

where N is the region of Iþ bounded between σ− and σþ,
as illustrated in Fig. 1. The total flux of four-momentum
and supermomentum is given by [57]

FPðN Þ ¼
Z
N

dud2Ω
32πG

αðNABNAB − 2DADBNABÞ; ð2:15Þ

while the total flux of angular momentum is6 [57]

FJðN Þ ¼
Z
N

dud2Ω
32πG

YA

�
NBCDACBC − 2DBðNBCCACÞ

þ 1

2
DAðNBCCBCÞ −

1

2
uDAðNBCNBCÞ

�
: ð2:16Þ

It is not difficult to verify that the balance law for PðσÞ
is consistent with the Einstein equations; multiplying
Eq. (2.3) by α=ð4πGÞ and then integrating over the region
N easily reproduces Eq. (2.14). The balance law for JðσÞ

FIG. 1. Penrose diagram for the asymptotically flat space-time
around a binary undergoing scattering. The centers of energy of
the binary’s constituents trace out worldlines that travel from past
timelike infinity i− to future timelike infinity iþ, while the
gravitational waves that they emit travel towards future null
infinity Iþ. It is assumed that no incoming radiation travels from
past null infinity I−. Also drawn on this diagram are spatial
infinity i�, and two asymptotically null hypersurfaces that
intersect Iþ at the cuts σ− and σþ. We denote the region of
Iþ bounded between σ− and σþ by N .

4Alternative prescriptions for defining charges [63] and fluxes
[64] are known to yield the same result [62] (see also Ref. [65]).

5Different papers adopt slightly different conventions for the
numerical factors appearing in front of the two terms quadratic in
the shear tensor, leading to a two-parameter family of definitions;
see Refs. [49,65] for details. The definition in Eq. (2.12) is the
unique one that (i) vanishes on flat space [65] and (ii) is balanced
by a corresponding flux FJ whose expression matches the classic
DeWitt-Thorne formula [47,48]. It is nevertheless possible to
relax condition (ii) and still arrive at the same relation in Eq. (3.3)
between J and the mechanical angular momentum J . This is
because the terms quadratic in the shear tensor vanish whenever
CAB can be written in the form of Eq. (3.2) [65]. As per the
discussion around Eq. (3.8), the initial and final states of a binary
undergoing scattering are also assumed to exhibit this property.

6The formula for the angular momentum flux in Eqs. (C4) and
(C5) of Ref. [57] contains an extra term in the integrand of the
form uYADADBDCNBC. This term does not contribute to the flux
if YA is restricted to be part of the standard BMS algebra, as we do
here. To see this, note that three successive integrations by parts
can be used to rewrite this term as −uNBCDCDBDAYA, which
vanishes after use of the identity in Eq. (C6).
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can also be shown to be consistent with Eqs. (2.3) and (2.4),
although the steps are more involved [57].
To conclude this section, it is worth remarking that the

parametrizations for YA and α in Eqs. (2.9) and (2.10)
enable us to convert between the scalar-valued integrals
fPðσÞ; JðσÞ; FPðN Þ; FJðN Þg of the Bondi-Sachs formal-
ism and the more familiar representation of these charges
and their fluxes as Lorentz tensors. We define the four-
momentum Pμ and the angular momentum Jμν on a given
cut σ via

PμðσÞ ¼ ∂PðσÞ
∂aμ

; JμνðσÞ ¼ ∂JðσÞ
∂ωμν

; ð2:17Þ

and for the fluxes radiated across N , we define

Fμ
PðN Þ ¼ FPðN Þ

∂aμ
; Fμν

J ðN Þ ¼ ∂FJðN Þ
∂ωμν

: ð2:18Þ

[In the same way, the supermomentum charges and fluxes
can be extracted by differentiating PðσÞ and FPðN Þ with
respect to a suitable parametrization of αl≥2 [57], but for
our purposes these quantities do not play a role.]
In Appendix A, we show that it is also possible to map

the individual metric components fM;NA;CAB; NABg onto
a corresponding set of pseudotensors fM;Nμ; Cμν; Nμνg.
Explicit expressions for the fluxes in terms of these objects
are then given in Eqs. (A17) and (A18). Finally, we note
here that by writing Cμν ¼ limr→∞ rhTTμν , one can verify that
the integrands of Fμ

P and Fμν
J are in agreement with the

differential flux formulas for the energy, linear momentum,
and space-space components of the angular momentum as
given by DeWitt and Thorne [47,48].7

III. MECHANICAL ANGULAR MOMENTUM

This section introduces our definition for the mechanical
angular momentum J and establishes some of its key pro-
perties. To motivate this definition, we begin in Sec. III A
by considering the special case of a single Schwarzschild
black hole moving at constant velocity. This simple
example is instructive because we know a priori what
the value of J should be. Accordingly, we show that the
Bondi angular momentum J for this space-time is generi-
cally not equal to J , but contains an extra piece that
depends on the shear of the gravitational field.

We then generalize this result in Sec. III B to the problem
of two-body scattering by determining analogous relations
between J and J in the initial and final states. In Sec. III C,
these relations are combined with Eq. (2.14b) to obtain a
new balance law, accurate to all orders inG, that equates the
total loss of mechanical angular momentum from the binary
to the sum of two terms: one describing a flux of radiation,
and another describing a static effect associated with the
gravitational-wave memory [see Eq. (3.26)]. The behavior
of these two terms under finite BMS transformations is then
examined in Sec. III D, where we find, in particular, that
they are individually invariant under pure supertranslations.

A. Boosted black hole

Consider a Schwarzschild black hole of mass m moving
at a constant velocity with respect to a Lorentzian coor-
dinate chart x̃μ. For concreteness, we assume this chart to
be harmonic,8 i.e., to satisfy the conditions g̃ρσ∇̃ρ∇̃σ x̃μ ¼ 0,

where ∇̃μ is the covariant derivative compatible with the
metric g̃μν that describes the boosted black hole space-time
in these coordinates. This choice of coordinates is particu-
larly relevant for the two-body case, since practical post-
Minkowskian calculations are invariably done in harmonic
or de Donder coordinates. To obtain g̃μν, we boost and
translate the static Schwarzschild metric in harmonic
coordinates so that the worldline of the black hole’s center
of energy in the x̃μ chart is given by x̃μðτÞ ¼ bμ þ pμτ=m,
where τ is the black hole’s proper time, pμ its four-
momentum, and bμ the displacement of this worldline
from the space-time origin.9 Our goal in this subsection is
to motivate a general definition for the mechanical angular
momentum that correctly evaluates to the expected result
J μν ¼ 2b½μpν� in this special case.
To proceed, we need to know how the Lorentz vectors bμ

and pμ enter into the components fM;NA; CABg of the
Bondi metric. We accomplish this by transforming
the metric components in harmonic coordinates, which
explicitly depend on bμ and pμ, into the metric com-
ponents in Bondi coordinates. We then match the quan-
tities fM;NA; CABg after performing an expansion in
powers of 1=r. The full details of this calculation are
given in Appendix B. (See also Refs. [31,67] for related
derivations.)

7The space-space components of the angular momentum flux
are given in the form ϵijkF

jk
J =2 in Eq. ð4.220Þ of Ref. [47], where

ϵijk is the Levi-Civita symbol; no formula is given for the
remaining time-space components F0i

J , which are associated with
changes in the position of the system’s center of mass. While a
multipole-expanded version of F0i

J can be found in, e.g.,
Refs. [27,66], the manifestly Lorentz-covariant formula for
Fμν
J presented in Eq. (A18) appears to be new.

8We note that the results of this subsection are not unique to
harmonic coordinates, however. We obtain the same end result
when repeating this exercise by starting with the Schwarzschild
metric in isotropic coordinates, for instance.

9Although the harmonic coordinates do not extend past the
event horizon, we can infer by extrapolation that the black hole’s
center of energy is located at the origin of the coordinate chart in
which the Schwarzschild metric is static and spherically sym-
metric. Boosting and translating to the x̃μ chart then implies that
the black hole’s worldline is given by x̃μðτÞ ¼ bμ þ pμτ=m.
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Crucially, because the partial differential equations that
determine the coordinate transformation from the harmonic
metric to the Bondi metric are all linear [see Eqs. (B8) and
(B9)], their general solution must therefore be the sum of a
particular integral and a complementary function. The
former is the part of the transformation that actually takes
us from harmonic to Bondi gauge, while the latter corre-
sponds to a residual gauge freedom that exists once we are
already in Bondi gauge: This is precisely the freedom to
perform a BMS transformation from one Bondi frame to
another [67]. Since we do not want to change the physical
state of the system by boosting ourselves into a new frame
in which the black hole travels at a different velocity, we
shall set the part of the complementary function associated
with Lorentz transformations to zero. It will be instructive,
however, to keep the part of the complementary function
associated with supertranslations arbitrary for the time
being; we parametrize this part by the scalar func-
tion β≡ βðθAÞ.
Having done so, we find that the resulting Bondi metric

for a boosted Schwarzschild space-time has

M ¼ m4=ð−n · pÞ3; ð3:1aÞ

N̂A ¼ 3MDAðBþ SÞ þ ðBþ SÞDAM; ð3:1bÞ

CAB ¼ −ð2DADB −ΩABD2ÞS; ð3:1cÞ

where the scalar functions

B ¼ ðn · bÞ; ð3:1dÞ

S ¼ 2Gðn · pÞ log
�
−n · p
m

�
þ β: ð3:1eÞ

The null vector nμ is as defined in Eq. (2.8), and inner
products like n · p≡ ημνnμpν are always taken with respect
to the Minkowski metric on Iþ. Different subsets of the
above result can be found across Refs. [31,42,49,58].
It will be helpful in what follows to decompose the

function S into spherical harmonics. We write S ¼ Z þ C,
where Z≡ Sl≤1 contains only the l ≤ 1 harmonics of S,
while C≡ Sl≥2 contains the remaining l ≥ 2 harmonics.
This decomposition is useful because Z lives in the kernel
of the differential operator ð2DADB −ΩABD2Þ, and so
Eq. (3.1c) may equivalently be written as

CAB ¼ −ð2DADB −ΩABD2ÞC: ð3:2Þ

We call C the “shear” of the gravitational field, since it
serves as a kind of potential for the shear tensor CAB.
The metric components in Eq. (3.1) determine the Bondi

charges P and J. For the former, we insert Eq. (3.1a) into
Eq. (2.11), differentiate with respect to aμ as per Eq. (2.17),
and then integrate over the angular coordinates (which is

easily done by, e.g., choosing the spatial part of pμ to point
along the z axis) to find that Pμ ¼ pμ, i.e., that the Bondi
four-momentum of this space-time is precisely equal to the
mechanical four-momentum of the black hole. This is not
surprising, but the point is worth laboring because the same
is not true of the angular momentum.
To obtain the Bondi angular momentum J, we first note

that the terms in Eq. (2.12) that are quadratic in CAB cancel
one another upon insertion of Eq. (3.2) [65], and thus the
integrand of J depends only on the shifted angular
momentum aspect N̂A. Substituting in Eq. (3.1b), we then
find it natural to split the result into three parts. We write

J ¼ jðM;BÞ þ jðM;ZÞ þ jðM;CÞ; ð3:3Þ

where, for any two scalar functions f1 and f2, we define

jðf1; f2Þ ¼
Z

d2Ω
8π

YAð3f1DAf2 þ f2DAf1Þ: ð3:4Þ

Switching to the Lorentz-tensor representation makes the
physical significance of the first term in Eq. (3.3) apparent;
we show in Appendix A that

∂jðM;BÞ
∂ωμν

¼ 2b½μpν�; ð3:5Þ

which is the desired result for what we want to call the
mechanical angular momentum J of this single black hole
space-time.
We now turn our attention to the second term in

Eq. (3.3). Because Z is composed of l ≤ 1 harmonics
only, there exists a constant vector zμ such that Z ¼ ðn · zÞ.
This means that jðM;Bþ ZÞ becomes 2ðb½μ þ z½μÞpν� in
the Lorentz-tensor representation, and thus the function Z
corresponds to an additional translation that is generated
when we transform from harmonic to Bondi coordinates.
From Eq. (3.1e), we see that Z would be a pμ-dependent
translation were we to set the complementary function β to
zero. To remove this spurious translation that is introduced
by the particular integral, we learn that the appropriate
boundary condition to impose is to choose βl≤1 such
that Z ¼ 0.
Setting Z ¼ 0 now leaves us with the relation

J ¼ J þ jðM;CÞ; ð3:6Þ

which says that the Bondi angular momentum J of this
space-time is given by the sum of its mechanical angular
momentum J and an extra term that depends on the shear
of the gravitational field. Written out explicitly, we have
that

C ¼ Pl≥2

�
2Gðn · pÞ log

�
−n · p
m

��
þ βl≥2; ð3:7Þ
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where Pl≥2 is a projection operator that keeps the spherical
harmonic modes with l ≥ 2 only, and recall that we have
yet to impose any restrictions on the complementary
function βl≥2. Indeed, any choice of βl≥2 corresponds to
a valid Bondi frame, as the dependence of jðM;CÞ on βl≥2
is precisely the well-known ambiguity of J under (pure)
supertranslations.

B. Two-body scattering

The full space-time for the scattering encounter between
two massive bodies is undoubtedly more complicated than
the single black hole space-time considered in the previous
subsection, but reasonable assumptions about its limiting
form in the asymptotic past and future will still allow us to
make quantitative statements about the binary in its initial
and final state. An analogous discussion for the case of
inspiraling binaries can be found in Refs. [28,37,49].
On the two cuts σ� → Iþ

�, whereI
þ
− andIþ

þ denote the
past and future endpoints of future null infinity, respec-
tively, we make the following three assumptions:
(1) We assume the news tensor decays as NAB ∼

Oðjuj−1−ϵÞ in the limit juj → ∞ for some ϵ > 0.
This assumption is necessary to ensure that the four-
momentum and angular momentum fluxes remain
finite.

(2) We assume the shear tensor is “purely electric” at
Iþ

�, meaning that there exist scalar functionsC� that
specify C�

AB uniquely via the relation [cf. Eq. (3.2)]

C�
AB ¼ −ð2DADB −ΩABD2ÞC�; ð3:8Þ

where we write X� ≡ XðIþ
�Þ for any quantity X.

This assumption is known to be true at low orders
in the post-Minkowskian expansion [3,19–21,68],
although it has not yet been proven to all orders
in G. [The more general expression for CAB that
includes an additional “magnetic” piece is discussed
around Eq. (D2).]

(3) Since the binary’s initial and final states consist
of two widely separated bodies traveling along
asymptotically straight trajectories, we assume that
the leading behavior of the space-time at Iþ

� is
well described by a superposition of two boos-
ted Schwarzschild metrics. Relevant subleading
corrections are discussed below Eq. (3.17) and
in Sec. IVA.

Now, motivated by our results from the one-body case,
we shall define the mechanical angular momentum of the
binary at Iþ

� implicitly via the relation

J� ¼ J � þ jðM�; Z�Þ þ jðM�; C�Þ: ð3:9Þ

We stress that this is an implicit definition that merely
establishes a relation between J � and J�; it essentially
states that J� is the image of J � under a supertranslation

by S� ≡ Z� þ C�. The form of Eq. (3.9) follows simply
from the transformation properties of angular momentum
under the BMS group; hence, we are assured that such a
relation can always be written down and be valid to all
orders in G, even if we do not know J � explicitly. Indeed,
we make zero assumptions about the exact forms of the
(shifted) angular momentum aspects N̂�

A in the two-body
case, and so cannot provide explicit expressions for J þ and
J − individually (we cannot provide expressions for J�
either). Fortunately, however, we can still obtain a precise
formula for the difference between these quantities. Simply
by substituting Eq. (3.9) into Eq. (2.14b) and then
rearranging terms, we have that

J þ − J − ¼ −ΔJ ; ð3:10Þ

where we define the total mechanical angular momentum
loss

ΔJ ≔ FJ þ jðMþ; ZþÞ − jðM−; Z−Þ
þ jðMþ; CþÞ − jðM−; C−Þ: ð3:11Þ

It is readily apparent from Eq. (2.14b) and the above that
ΔJ can be computed explicitly once we have expressions
for the scalar functions M�, Z�, and C� on Iþ

�, and for
the shear tensor CAB along the entirety of Iþ. It is
important to note, however, that the functions Z− and
C− are pure gauge (because of the usual supertranslation
ambiguity of the angular momentum) and so can be gauge-
fixed without loss of generality. The choice of Z− simply
amounts to a choice of reference point, and as we saw in
Sec. III A, setting Z− ¼ 0 means that J− is defined with
respect to the origin of our harmonic coordinate chart
(where we expect to perform practical post-Minkowskian
calculations). Common gauge choices for C− are discussed
below Eq. (3.16b), although we shall see in later parts
of this section that the total mechanical angular momen-
tum loss ΔJ is actually independent of this choice.
Consequently, of the four functions fZ�; C�g, it is only
ΔC ¼ Cþ − C− and ΔZ ¼ Zþ − Z− that are physical. The
former is well known to be responsible for the gravita-
tional-wave memory effect [68–77], which we discuss in
more detail below Eq. (3.18b) and in Sec. IVA. On the
other hand, the significance of ΔZ is a result that is novel to
this work. We interpret it as a shift in the reference point
about which the angular momentum is defined, caused by
the gravitational interaction of the two bodies, that must be
corrected for; the discussion below Eq. (3.18a) shows how
this arises concretely.
To write down explicit expressions for fM�; Z�; C�g,

we now use the assumptions enumerated at the beginning
of this subsection. We should emphasize that while
Eq. (3.11) is an exact statement, valid to all orders in G,
some of the explicit expressions we provide below are
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marked as accurate only up to subleading “OðGΔEÞ”
corrections. The physical origin of these correction terms
are understood, but we leave a determination of their
explicit forms to the future.
Consider first the mass aspects M�. Using Eq. (3.1a)

and our assumption of the principle of superposition, we
posit that

M� ¼
X2
a¼1

m4
a

ð−n · p�
a Þ3

; ð3:12Þ

where ma, p
μ
a−, and pμ

aþ denote the rest mass, ingoing
four-momentum, and outgoing four-momentum of the ath
body, respectively. The above is certainly true at leading
order in G, since we must be able to recover the results of
Newtonian gravity, but we also expect it to be true at all
orders in G, since any extra contribution to the mass aspect
from the gravitational binding energy between the two
bodies must become negligible as their spacelike separation
goes to infinity [49].
In Sec. III A, we showed that the Bondi four-momentum

Pμ for a single black hole is precisely its mechanical four-
momentum pμ. It now follows from the form of Eqs. (2.11)
and (3.12) that

Pμ
� ¼

X2
a¼1

pμ
a� ð3:13Þ

in the case of two-body scattering. The balance law

Pμ
þ − Pμ

− ¼ −Fμ
P ð3:14Þ

thus implies that the sum of the individual losses of
mechanical four-momentum from each body is exactly
equal to the total flux of four-momentum radiated across
future null infinity; explicit post-Minkowskian calculations
have verified that this is the case [5,6,11,14,15]. [Note that
we have suppressed the argument on Fμ

P ≡ Fμ
PðIþÞ in

Eq. (3.14); in the rest of this paper, it is to be understood
that fluxes are always being evaluated along the entirety
of Iþ.]
Similar steps are used to determine S� ¼ Z� þ C�.

Again assuming the principle of superposition, we can
write

S− ¼
X2
a¼1

2Gðn · p−
a Þ log

�
−n · p−

a

ma

�
þ β: ð3:15Þ

This agrees with the result first obtained in Ref. [31] for the
generic N-body case. The first term in Eq. (3.15) is just the
particular integral that we would obtain by starting with a
superposition of two boosted black holes in harmonic
coordinates and then transforming to Bondi coordinates,
while the second is the arbitrary complementary function β

associated with supertranslations. As in Sec. III A, we shall
eliminate the spurious pμ

a-dependent translation generated
by the particular integral by imposing appropriate boundary
conditions on βl≤1 such that

Z− ≡ S−l≤1 ¼ 0: ð3:16aÞ

For the initial shear of the gravitational field, we have
that

C− ¼
X2
a¼1

Pl≥2

�
2Gðn · p−

a Þ log
�
−n · p−

a

ma

��
þ βl≥2;

ð3:16bÞ

with βl≥2 still arbitrary. As we have pointed out, the total
loss of mechanical angular momentum ΔJ is independent
of the value of βl≥2 (i.e., it is invariant under pure
supertranslations), but it will nevertheless be useful to
introduce two common gauge-fixing choices. Following
the language of Ref. [31], we define the “intrinsic gauge”
as the family of Bondi frames in which βl≥2 ¼ 0,10 and we
define the “canonical gauge” as the family of Bondi frames
in which βl≥2 is chosen such that C− ¼ 0.11 As can be seen
from Eq. (3.6), the latter is particularly useful because the
Bondi angular momentum J− is equal to the mechanical
angular momentum J − when evaluated in a canonical
frame [31]. However, for the sake of generality, we shall
leave βl≥2 unspecified to show how it drops out of the
final result.
The result for Sþ is more subtle. At low orders in the

post-Minkowskian expansion, Sþ must be identical to S−,
except with p−

a replaced by pþ
a , because scattering proc-

esses are symmetric under time reversal in the absence of
radiation. When radiation is included, this must mean that

Sþ ¼
X2
a¼1

2Gðn · pþ
a Þ log

�
−n · pþ

a

ma

�
þ β þOðGΔEÞ;

ð3:17Þ

where we write OðGΔEÞ to signify the presence of addi-
tional terms associated with the emission of gravitational
waves (see also Ref. [3]); the quantity ΔE, which is defined

10In Ref. [31], the “intrinsic gauge” is used to refer to a Bondi
frame with β ¼ 0, including βl≤1 ¼ 0. We refer the reader to this
reference for a more detailed and physical explanation of this
gauge. In this work, we set Z− ¼ 0, which is just a different
choice of origin for the mechanical angular momentum J −, and
this means that βl≤1 ≠ 0. Despite this difference, we adopt the
same terminology as in Ref. [31] and call this the intrinsic gauge
because the pure supertranslation ambiguity is fixed in the same
way, i.e., by setting βl≥2 ¼ 0.

11Note that reference [57] uses the term “canonical” in a
stronger sense to mean a frame in which Ṁ, DAM, ṄA, and CAB
are all zero.
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below Eq. (3.21), is the total energy radiated per unit solid
angle across Iþ. These extra, subleading terms are linked
to the nonlinear part of the gravitational-wave memory, and
are discussed in further detail in Sec. IVA.
For now, we turn our attention back to the first two terms

in Eq. (3.17). Observe that the function β in this equation is
the same function that appears in Eq. (3.15). This is no
accident, because we cannot perform different supertrans-
lations at different times—the total loss ΔJ ≡ J − − J þ is
a meaningful quantity only when J − and J þ are both
evaluated in the same Bondi frame. Two key implications
follow from this restriction. The first is that Zþ ≠ 0 because
we have already fixed the value of βl≤1 to set Z− ¼ 0.
Instead, we are left with

Zþ ¼
X2
a¼1

Pl≤1

�
2Gðn ·paÞ log

�
−n ·pa

ma

��þ∞

−∞
þOðGΔEÞ;

ð3:18aÞ
where we write ½X�þ∞

−∞ ≡ Xþ − X− for brevity. As we
described earlier, this result suggests that the reference
point about which the Bondi angular momentum J is
defined shifts as the two bodies interact gravitationally. The
term jðMþ; ZþÞ in Eq. (3.9) corrects for this shift, such that
the mechanical angular momenta J þ and J − are defined
with respect to the same origin.
The second implication is that Cþ ≠ 0 even if we choose

to work in the canonical gauge wherein C− ¼ 0. More
generally, since the final value of the shear

Cþ ¼
X2
a¼1

Pl≥2

�
2Gðn · pþ

a Þ log
�
−n · pþ

a

ma

��

þ βl≥2 þOðGΔEÞ; ð3:18bÞ

we see by subtracting Eq. (3.16b) from the above that the
differenceΔC ¼ Cþ − C− is independent of βl≥2, and so is
invariant under supertranslations. The fact that this quantity
cannot be set to zero by a coordinate transformation is a
hint that it is physical, and indeed it is well known that the
tensor ΔCAB ≡ −ð2DADB −ΩABD2ÞΔC is responsible for
the gravitational-wave memory effect [68–77], whereby a
permanent change to the relative displacement between two
freely falling observers is induced by the passage of a
gravitational wave. Accordingly, in what follows we shall
refer to ΔC as the “gravitational memory.”
A final remark, which pertains to the universality of

Eqs. (3.12), (3.16), and (3.18), is worth making at this
stage. While our construction of these asymptotic data
made specific use of the Bondi metric for a boosted
Schwarzschild black hole, these results are nevertheless
valid for binary systems composed of any type of body—
black holes, neutron stars, white dwarfs, etc.—spinning or
otherwise. The reason is that the functionsM, Z, and C are
part of the leading-order terms in the 1=r expansion of the

Bondi metric, and so are sensitive only to the mass
monopoles of the two bodies. Consequently, we emphasize
that Eq. (3.26) makes no assumptions about the nature of
the two bodies, nor do the usual balance laws in Eq. (2.14).

C. Balance law

In this subsection, we aim to develop a deeper physical
understanding of Eq. (3.11). First, notice that because the
function jð·; ·Þ is bilinear in its two arguments, we may
equivalently write

jðMþ; CþÞ − jðM−; C−Þ ¼ jðΔM;C−Þ þ jðMþ;ΔCÞ;
ð3:19Þ

where ΔM ¼ Mþ −M− and recall that ΔC ¼ Cþ − C−.
Proceeding with the term jðΔM;C−Þ, we integrate by parts
to move the derivative off ΔM. Total divergences vanish
since a 2-sphere has no boundary; hence,

jðΔM;C−Þ ¼
Z

d2Ω
8π

ð2YADAC− −C−DAYAÞΔM: ð3:20Þ

We now use the Einstein equations to express ΔM as a
function of the shear. Integrating Eq. (2.3) with respect to u
yields

ΔM ¼ 1

4G
DADBΔCAB − ΔE; ð3:21Þ

where ΔE ≔ ð1=8GÞ Rþ∞
−∞ NABNABdu is the total energy

radiated per unit solid angle across Iþ, while ΔCAB ≡Rþ∞
−∞ NABdu. By inserting this into Eq. (3.20), integrating
by parts, and then using a number of identities as outlined
in Appendix C, we eventually find that

jðΔM;C−Þ ¼ −
Z

dud2Ω
32πG

�
NBCDAC−

BC − 2DBðNBCC−
ACÞ

þ 1

2
DAðNBCC−

BCÞ þ
1

2
DAðNBCNBCC−Þ

þ NBCNBCDAC−
�
YA: ð3:22Þ

Observe that the first three terms in the integrand are
almost identical to the first three terms inFJ [see Eq. (2.16)],
except that CAB is here replaced by −C−

AB. By adding these
two equations together, we are naturally led to define

ΔðradÞ
J ≔ FJ þ jðΔM;C−Þ

¼
Z

dud2Ω
32πG

YA

�
NBCDAĈBC − 2DBðNBCĈACÞ

þ 1

2
DAðNBCĈBCÞ −

1

2
uDAðNBCNBCÞ

−
1

2
DAðNBCNBCC−Þ − NBCNBCDAC−

�
ð3:23Þ
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as the radiated flux ofmechanical angularmomentum,where

ĈABðu; θCÞ ≔ CABðu; θCÞ − C−
ABðθCÞ

¼
Z

u

−∞
du0NABðu0; θCÞ ð3:24Þ

denotes the dynamical part of the shear tensor [54].
Two considerations justify our interpretation of ΔðradÞ

J
as the radiated flux. The first is that Eq. (3.23) depends
explicitly on the radiative modes of the gravitational
field, via NAB and ĈAB, at all intermediate times
u∈ ð−∞;þ∞Þ. The second reason is that Eq. (3.23)
starts at OðG3Þ when expanded perturbatively in powers
of G. To see this, we use Eq. (A17) and the fact that the
four-momentum flux Fμ

P is known to start at OðG3Þ to
deduce that NAB must start at OðG2Þ. It then follows
from the second line of Eq. (3.24) that ĈAB also starts at
OðG2Þ. The value of the initial shear C− is arbitrary,
however, because it depends on the arbitrary function
βl≥2 [see Eq. (3.16b)], and so the last two terms in
Eq. (3.23) stand to ruin our power counting scheme.
Fortunately, it turns out that these two terms are exactly

what is needed to render ΔðradÞ
J invariant under super-

translations. We show this explicitly in Sec. III D, but for

now, the implication is that ΔðradÞ
J does not actually

depend on C−; hence, we can set C− ¼ 0 without loss

of generality to conclude that ΔðradÞ
J always starts

at OðG3Þ.
Returning to Eqs. (3.11) and (3.19), we recall that ΔðradÞ

J
is not the only contribution to the mechanical angular
momentum loss. We group the remaining terms into what
we call the static contribution,

ΔðstatÞ
J ≔ jðMþ;ΔCÞ þ jðMþ; ZþÞ

¼
Z

d2Ω
8π

Mþð2YADAΔS − ΔSDAYAÞ; ð3:25Þ

where ΔS≡ ΔCþ ΔZ and ΔZ≡ Zþ, since Z− ¼ 0. This
object depends only on quantities defined on Iþ

�, namely,
the final value of the mass aspect Mþ, the gravitational
memory ΔC, and the translation ΔZ that corrects for
the shift in reference point about which the Bondi
angular momentum J is defined. To count the powers
of G that appear in this expression, we first write
Mþ ¼ M− þ ΔM. The initial mass aspect M− is inde-
pendent of G as it depends only on the ingoing four-
momenta of the two bodies, while ΔM starts later at
OðGÞ, since the mechanical impulse pμ

aþ − pμ
a− ¼ OðGÞ

[see Eq. (4.5)]. As for ΔS, we see from Eqs. (3.16) and
(3.18) that it starts at OðG2Þ; hence, this static term

ΔðstatÞ
J , which like ΔðradÞ

J is also invariant under super-
translations, always starts at OðG2Þ.

To reiterate, we have obtained a new balance law,

J þ − J − ¼ −ΔJ ;

ΔJ ≡ ΔðradÞ
J þ ΔðstatÞ

J ; ð3:26Þ
which equates the total loss of mechanical angular momen-

tum to the sum of a radiative term ΔðradÞ
J and a static term

ΔðstatÞ
J [see Eqs. (A19) and (A21) for the Lorentz-tensor

versions of these quantities].12 The former admits the
interpretation of being the total amount of angular momen-
tum carried away from the binary by radiation, whereas the
latter accounts for the fact that angular momentum can also
be deposited into the static components of the gravitational
field. The results in Eqs. (3.23), (3.25), and (3.26) are
accurate to all orders inG, provided we knowCAB,M�, and
ΔS exactly; in practice, we are only able to evaluate these
equations perturbatively. When such a post-Minkowskian
expansion is performed, one finds that the radiative term
always starts at OðG3Þ, while the static term always starts
at OðG2Þ.

D. Supertranslation invariance

The first of two puzzles discussed in the Introduction
raised the question as to whether the OðG2Þ part of the
Bondi flux FJ is physical, given that it can be removed
by a supertranslation. As we have just shown, FJ does
not balance the loss of mechanical angular momentum
from the binary. Instead, the relevant quantity is ΔJ ≡
ΔðradÞ

J þ ΔðstatÞ
J . Here we establish that both ΔðradÞ

J and ΔðstatÞ
J

are inherently physical by showing that they are individu-
ally invariant under pure supertranslations.
Consider two Bondi frames ðu; θAÞ and ðu0; θAÞ that are

related by the pure supertranslation u0 ¼ u − αl≥2. Under
this transformation, the initial and final values of the shear
transform as

C0�ðθAÞ ¼ C�ðθAÞ þ αl≥2ðθAÞ: ð3:27Þ
Because Ṁ ¼ 0 on Iþ

�, we know thatM− andMþ are both
invariant under this transformation, as is ΔC. The shift ΔZ,
and consequently the quantity ΔS ¼ ΔCþ ΔZ, are also
unaffected. Meanwhile, the dynamical part of the shear
tensor and the news tensor transform as [81]

Ĉ0
ABðu0; θCÞ ¼ ĈABðu0 þ αl≥2ðθCÞ; θCÞ; ð3:28aÞ

N0
ABðu0; θCÞ ¼ NABðu0 þ αl≥2ðθCÞ; θCÞ: ð3:28bÞ

It now follows from these transformation rules that ΔðstatÞ
J is

manifestly invariant under pure supertranslations, and since

12A similar, but not directly related, split into hard and soft
parts is made for the supermomentum and super-angular-
momentum fluxes studied in Refs. [78–80].
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the Bondi angular momenta J� are known to transform as
J�0 ¼ J� þ jðM�; αl≥2Þ [57], it follows from Eq. (3.9) and
the above that the mechanical angular momenta J � are
also invariant under pure supertranslations. This immedi-

ately implies thatΔðradÞ
J is also invariant as a consequence of

Eq. (3.26), but it is nevertheless instructive to verify this
explicitly.
Our approach is to recognize that this radiated flux can

be rewritten in terms of the two functions

CABðu; θCÞ ≔ ĈABðu − C−ðθCÞ; θCÞ; ð3:29aÞ

NABðu; θCÞ ≔ NABðu − C−ðθCÞ; θCÞ; ð3:29bÞ

which we shall call the “invariant shear tensor” and
“invariant news tensor,” respectively, on account of the
fact that they are invariant under pure supertranslations, i.e.,

C0
ABðu; θCÞ ¼ CABðu; θCÞ; ð3:30aÞ

N0
ABðu; θCÞ ¼ NABðu; θCÞ: ð3:30bÞ

To rewrite Eq. (3.23) in terms of these objects, we perform a
change of integration variable by replacing u ↦ u − C−,
under which

ĈABðu; θCÞ ↦ ĈABðu − C−; θCÞ ¼ CABðu; θCÞ; ð3:31Þ

and likewise forNAB; the equality follows from the definition
in Eq. (3.29). Caution must be exercised when a covariant
derivative acts on one of these tensors, however. For a term
like DAĈBCðu; θDÞ, the derivative acts only on the angular
arguments of ĈBC prior to the change of variable. This
behavior must be preserved after the fact; hence,

DAĈBCðuÞ ↦ DAĈBCðu − C−Þ þ NBCðu − C−ÞDAC−

¼ DACBCðuÞ þ NBCðuÞDAC−; ð3:32Þ

where we have suppressed the dependence on θA for read-
ability. In the first line, the first term on the rhs hasDA acting
on all three arguments of ĈBC; the effect ofDA acting on the
first argument u − C− is canceled by the second term. The
second line then follows from Eq. (3.29).
After making this change of variables, we find that the

explicit dependence on C− drops out, and we are left with

ΔðradÞ
J ¼

Z
dud2Ω
32πG

YA

�
NBCDACBC − 2DBðNBCCACÞ

þ 1

2
DAðNBCCBCÞ −

1

2
uDAðNBCNBCÞ

�
: ð3:33Þ

It is interesting to see that this expression is structurally
identical to the Bondi flux FJ in Eq. (2.16), except that the

invariant tensors fCAB;NABg have assumed the role of
fCAB; NABg. Indeed, specializing to the canonical frame
wherein C− ¼ 0 would make them equivalent to one
another. This is as it should be, since it was already
understood in Ref. [31] (see also Ref. [50]) that the
Bondi flux FJ gives precisely the radiated flux when
computed in a canonical frame. Our Eq. (3.33) [or
equivalently, Eq. (3.23)] generalizes the result of
Ref. [31] by providing an expression for the radiated flux
that holds in any Bondi frame. With that said, we reiterate

that neither FJ nor ΔðradÞ
J give the total loss of mechanical

angular momentum from the binary, as one must still

account for the additional contribution from ΔðstatÞ
J .

Returning to the issue of supertranslation invariance, we
have thus far shown that Eq. (3.33) is an alternative but
equivalent way of writing Eq. (3.23). To complete the
proof, let ΔðradÞ

J and ΔðradÞ0
J be the total fluxes across Iþ as

measured in the two frames ðu; θAÞ and ðu0; θAÞ. The flux

ΔðradÞ
J in the unprimed frame is given by Eq. (3.33), but we

can replaceCAB ↦ C0
AB and NAB ↦ N0

AB without issue as a
consequence of Eq. (3.30). Then renaming the integration

variable u to u0 shows that ΔðradÞ
J ¼ ΔðradÞ0

J .
Two remarks are in order. First, it must be emphasized

that this invariance property ofΔJ is guaranteed because of
our assumption in Eq. (3.8) that C�

AB be purely electric.
When this is true, can we always identify a family of “good
cuts” atIþ

�, along which the shear tensor vanishes, that can
be used to isolate preferred Poincaré subgroups (one at Iþ

þ
and another at Iþ

− ) from the full set of BMS symmetries.
Notions of angular momenta defined with respect to these
Poincaré subgroups are naturally invariant under pure
supertranslations. This line of reasoning is described in
further detail for the case of binary systems in bound orbits
in Ref. [37]; our work herein applies similar logic to the
unbound case, although the way we have arrived at and
presented the final result is somewhat different.
Second, we wish to highlight that other studies have also

recently sought to propose definitions of the angular
momentum that are invariant under (pure) supertranslations
[49–54]. In fact, what we call the mechanical angular
momentum J is closely related to the definition proposed
in Refs. [49,51–53], except that the latter does not include
the translation Zþ that corrects for the shift in reference
point. The consequence of this, and a separate proposal
from Ref. [50], are discussed in more detail in Appendix D.
To close this section, we briefly consider how ΔJ trans-

forms under the remainder of the BMS group. Under a
translation u0 ¼ u − αl≤1, for instance, we have thatC0 ¼ C,
and thusDAC0

BCðu0Þ ¼ DACBCðuÞ þ NBCðuÞDAαl≤1. This
can be used to show that

ΔðradÞ0
J ¼ ΔðradÞ

J þ
Z

du
8G

jðNABNAB; αl≤1Þ: ð3:34Þ
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It then follows from Eq. (3.29) and the freedom to change
integration variables that we can substitute NABNAB for
NABNAB in the above without issue. Now parametrizing
αl≤1 ¼ ðn · aÞ by the constant vector aμ and then switching
to the Lorentz-tensor representation (the steps are almost
identical to those in Appendix A 2), we get

Δ0μν
J ðradÞ ¼ Δμν

J ðradÞ þ 2a½μFν�
P: ð3:35Þ

The static term ΔðstatÞ
J is also invariant under translations

because the shift ΔZ is unchanged when J þ and J − are
transformed by the same amount aμ; hence,

Δ0μν
J ¼ Δμν

J þ 2a½μFν�
P; ð3:36Þ

J 0μν
� ¼ J μν

� þ 2a½μPν�
�; ð3:37Þ

as one should expect from the balance laws inEqs. (3.14) and
(3.26); note that the four-momentaPμ

� and the corresponding
flux Fμ

P are invariant under both translations and pure
supertranslations [57]. Deriving the remaining transforma-
tion rules under the Lorentz group is considerably more
involved, but the results in, e.g., Refs. [54,57] can be used to
show that these objects are all indeed covariant under Lorentz
transformations.

IV. POST-MINKOWSKIAN RESULTS

This section computes the total loss of mechanical
angular momentum during a two-body scattering encounter
at leading order in the post-Minkowskian expansion, i.e., at

OðG2Þ. Because the radiated flux ΔðradÞ
J begins only at

OðG3Þ, the total loss ΔJ is determined solely by the static

term ΔðstatÞ
J at leading order. We compute ΔðstatÞ

J explicitly at
OðG2Þ in Sec. IVA and find that it agrees with the result
obtained from quantum field theory [19–21] in all Bondi

frames. In fact, we find that our expression for ΔðstatÞ
J agrees

with the static part of the result in Refs. [20,21] also at
OðG3Þ, although we omit the lengthy details in this case. In

Sec. IV B, we explain the connection between ΔðstatÞ
J and

the Bondi flux FJ, and thus why their space-space
components just so happen to agree at OðG2Þ in the
binary’s c.m. frame.

A. Static contribution

Three quantities are needed to determine ΔðstatÞ
J in

Eq. (3.25): the final value of the mass aspect Mþ, the
gravitational memory ΔC, and the shift ΔZ. In principle,
Mþ can be obtained purely from the information on Iþ by
solving the Einstein equation in Eq. (2.3) once we are given
the initial condition M− and the news tensor NAB; in
practice, however, it is easier to solve the equations of

motion for the trajectories of the two bodies directly [82–85].
Their final four-momenta pþ

a can then be plugged into
Eq. (3.12) to give Mþ. For ΔS≡ ΔCþ ΔZ, we combine
Eqs. (3.16) and (3.18) to obtain

ΔS ¼
X2
a¼1

�
2Gðn · paÞ log

�
−n · pa

ma

��þ∞

−∞
þOðGΔEÞ:

ð4:1Þ

It is possible to check that our result forΔC≡ Pl≥2ΔS is
consistent with the Einstein equations. First differentiate
Eq. (3.8) twice and then use the identity in Eq. (C1) to show
that

−D2ðD2þ 2ÞΔC¼DADBΔCAB ¼ 4GðΔMþΔEÞ; ð4:2Þ

where the second equality follows from using Eq. (3.21),
and recall that ΔE is the total energy radiated per unit solid
angle across Iþ. The differential operator D2ðD2 þ 2Þ is
invertible via the method of Green functions [68,86], and so
formally the solution is

ΔC ¼ −4G½D2ðD2 þ 2Þ�−1ðΔM þ ΔEÞ: ð4:3Þ

The first term involving ΔM is known as the “linear
memory” and depends only on the initial and final
momenta of the two bodies [69,70]; the second term,
which is known as the “nonlinear memory,” accounts for
the additional contribution from gravitational radiation
[71–74].13
The power counting arguments we made in the previous

section tell us that ΔM starts at OðGÞ while ΔE starts at
OðG3Þ, and so from Eq. (4.3) we see that the linear and
nonlinear parts of the memory start at OðG2Þ and OðG4Þ,
respectively. Only the former is needed at the order to
which we are working, and one can verify by direct
substitution that the l ≥ 2 harmonics of Eq. (4.1) are
indeed a valid solution to Eq. (4.2), up to terms associated
with the nonlinear memory.
Equation (4.2) does not fix the remaining l ≤ 1 har-

monics of ΔS, however, because these modes live in the
kernel of the differential operator D2ðD2 þ 2Þ. Instead, we
determined ΔZ≡ Pl≤1ΔS in Sec. III B by assuming that
the leading behavior of the binary space-time at Iþ

� is well
approximated by the superposition of two boosted
Schwarzschild metrics. Tracking how the transformation
from harmonic to Bondi coordinates shifts the reference
point with respect to which the angular momentum is
defined then allows us to fix ΔZ uniquely. A post hoc
justification for this approach is that it leads to a result for

ΔðstatÞ
J that is rightly Lorentz covariant. To elaborate, we

13These two terms are also often called the “ordinary memory”
and “null memory,” respectively [68,75].
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note that because the projection operators Pl≤1 and Pl≥2
do not commute with Lorentz boosts, jðMþ;ΔCÞ and
jðMþ;ΔZÞ are not individually Lorentz covariant.
However, as the quantity ΔS ¼ ΔCþ ΔZ in Eq. (4.1) can
be written down without the need for these projectors, the

sum ΔðstatÞ
J ¼ jðMþ;ΔCÞ þ jðMþ;ΔZÞ is well behaved

under all Lorentz transformations. An important open ques-
tion is whether a more systematic procedure exists for
determining ΔZ to all orders in G for generic space-times,
but this is a problem that we shall leave to the future.
For now, Eq. (4.1) will suffice to determine ΔðstatÞ

J up to
OðGΔEÞ corrections. To make contact with the results in the
post-Minkowskian literature, it is useful here to switch to
the Lorentz-tensor representation, and so we shall substitute
our expressions forMþ and ΔS into the formula for Δμν

J ðstatÞ
as given in Eq. (A21). After also using Eq. (A9) to evaluate
the derivative that acts on ΔS, we find that

Δμν
J ðstatÞ ¼

Z
d2Ω
2π

X2
a¼1

GMþ
�
2p½μ

a nν�
�
1þ log

�
−n · pa

ma

��

þ ð−n · paÞn½μn̄ν�
�þ∞

−∞
þOðGΔEÞ: ð4:4Þ

To complete this calculation, we use the known result for the
final four-momenta of the two bodies [82–85],

pμ
aþ ¼ pμ

a−þð−1Þa 2Gm1m2

jbj2
2γ2− 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2− 1

p bμþOðG2Þ; ð4:5Þ

where γ ≡ ð−p−
1 · p−

2 Þ=m1m2 is the Lorentz factor for their
initial relative velocity v, the constant vector bμ here denotes
their impact parameter, and jbj≡ ffiffiffiffiffiffiffiffiffi

b · b
p

.
The integral in Eq. (4.4) is challenging to evaluate as is

due to its tensor-valued nature, but we can proceed by
projecting it along the six independent basis tensors formed
by the antisymmetrized outer products of the four basis
vectors fpμ

1−; p
μ
2−; b

μ; l̂μg, where l̂μ is the unit spacelike
vector orthogonal to all of the other basis vectors. To give
an example, the component of Δμν

J ðstatÞ along the direction

2b½μ l̂ν� is given by ðΔμν
J ðstatÞbμl̂νÞ=jbj2, which is a Lorentz

scalar that we can evaluate in any frame. For convenience,
we have chosen the frame in which the second body is
initially at rest, i.e., pμ

2− ¼ ðm2; 0Þ, and we have further
oriented our spatial axes such that pμ

1− ¼ γm1ð1; 0; 0; vÞ,
while l̂μ and bμ are aligned along the positive x and y
directions, respectively.
The end result of this calculation is

Δμν
J ðstatÞ ¼

2G2m1m2

jbj2
2γ2− 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2− 1

p IðγÞb½μðpν�
1− −pν�

2−ÞþOðG3Þ;

IðγÞ ¼ 2ð8− 5γ2Þ
3ðγ2− 1Þ þ 2γð2γ2− 3Þ

ðγ2 − 1Þ3=2 arccoshðγÞ; ð4:6Þ

which agrees with the result obtained from quantum field
theory [19–21] in all Bondi frames. In fact, we have used

the same steps to evaluate ΔðstatÞ
J up toOðG3Þ, and we again

find agreement with the existing literature. This comparison
is possible because Refs. [20,21] similarly decompose their
formula for the total angular momentum loss into a
radiative part and a static part; the latter is what agrees

with ourΔðstatÞ
J . It will be interesting in the future to verify if

our ΔðradÞ
J matches their radiative part.

B. Center-of-mass frame

The second of the two puzzles discussed in the
Introduction raised the question as to why there is generally
a discrepancy between Refs. [19–21] (see also Ref. [30])
and Refs. [22,23] on the space-space components of the
angularmomentum loss atOðG2Þ, except in the binary’s c.m.
frame. The previous subsection establishes, at least up to
OðG2Þ, that the quantity being computed in Refs. [19–21] is
indeed the total loss of mechanical angular momentum ΔJ .
This suffices to explain why there is usually a discrepancy,
sincewhat is computed in Refs. [22,23] is the Bondi fluxFJ,
which—as we now know—is not the same as ΔJ . It still
remains to explain why the space-space components of FJ

and ΔJ just so happen to agree at OðG2Þ in the c.m. frame.
Our approach will be to rewrite the static term ΔðstatÞ

J ,
which recall is the only contribution to ΔJ at this order, as
the sum of a part that strongly resembles FJ and another
part whose space-space components can be seen to vanish
in the c.m. frame. To start with, we introduce t̂μ ¼ ð1; 0Þ
and r̂μ ¼ nμ − t̂μ as the unit vectors in the future-pointing
timelike direction and outward-pointing radial direction,
respectively. It is then possible to rewrite Eq. (3.12) as

M� ¼ ð3r̂ − t̂Þ · P� þ 1

4G
DADBf�AB: ð4:7Þ

The first term, which depends on the four-momentum of the
binary P�, makes up the l ¼ 0 and l ¼ 1 harmonics of
M�, while the remaining harmonics with l ≥ 2 are
encoded in the symmetric and traceless tensor

f�AB ¼ 4G

�
ΩACΩBD −

1

2
ΩABΩCD

�X2
a¼1

pC
a�p

D
a�

ð−n · p�
a Þ

: ð4:8Þ

We define pA
a� ≡ eAμp

μ
a� as the projection of pμ

a� along the
direction of increasing θA; the properties of the projector eAμ
are described in more detail in Appendix A. For later
comparison, we note that an equivalent way of writing
Eq. (4.8) is

f�AB ¼ −ð2DADB −ΩABD2Þf�;

f� ¼
X2
a¼1

Pl≥2

�
2Gðn · p�

a Þ log
�
−n · p�

a

ma

��
: ð4:9Þ
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Now substituting the expression for Mþ in Eq. (4.7)
into Eq. (3.25), using ΔCAB ≡ Rþ∞

−∞ NABdu, and then
performing several integrations by parts as described in
Appendix C, we find that

ΔðstatÞ
J ¼

Z
dud2Ω
32πG

YA

�
NBCDAf

þ
BC − 2DBðNBCfþACÞ

þ 1

2
DAðNBCfþBCÞ

�

þ
Z

d2Ω
8π

�
3ðr̂ · PþÞð2YCDCΔS − ΔSDCYCÞ

þ 3ðt̂ · PþÞðDAYAÞΔS
�
: ð4:10Þ

This result is an exact rewriting of Eq. (3.25),14 but
for our purposes at present, it is safe to neglect terms of
order G3 and higher. We can then replace Pþ ↦ P− and
fþAB ↦ f−AB in Eq. (4.10). Having done so, we see that the
terms involving f−AB are exactly what one would get from
computing the Bondi flux FJ at OðG2Þ [cf. Eq. (2.16)]
in the class of intrinsic frames wherein the initial value
of the shear tensor C−

AB ¼ f−AB [compare Eq. (4.9) with
Eqs. (3.16b) and (3.8) when the intrinsic gauge βl≥2 ¼ 0 is
imposed]; this is exactly what is computed in Refs. [22,23],
and also Ref. [3].
We select a particular member from this class of intrinsic

frames by specifying the ingoing four-momenta pμ
a− of the

two bodies. Choosing these momenta such that the binary’s
center ofmass is initially at rest sets r̂ · P− ¼ 0 by definition;
hence, in the (intrinsic) c.m. frame, the only difference

between FJ and ΔðstatÞ
J at OðG2Þ is the term involving the

initial energy of the binary ðt̂ · P−Þ. This term does not

contribute to the space-space components ofΔðstatÞ
J , however.

To see this, first note from the last line of Eq. (4.10) that
this term is proportional to the quantity DAYA, which—as
we show below Eq. (A13)—is equal to −ωμνnμn̄ν when
using the parametrization in Eq. (2.9). Since nμn̄ν ≡ 2r̂½μt̂ν�,
it follows after differentiating ΔðstatÞ

J with respect to ωμν that
the ðt̂ · P−Þ term contributes only to the time-space com-
ponents Δ0i

J ðstatÞ. This explains why the space-space com-

ponents of FJ and Δ
ðstatÞ
J fortuitously agree in the (intrinsic)

c.m. frame at OðG2Þ.

V. CONCLUSION

We have introduced a new notion of angular momentum
for asymptotically flat space-times that we call the

mechanical angular momentum J . This quantity satisfies
two key properties. First, we showed by considering the
example of a boosted Schwarzschild space-time that it is
the mechanical angular momentum J that depends only
on the trajectory and four-momentum of the black hole.
This is in contrast to the standard Bondi angular momentum
J, which is equal to the sum of J and an extra piece
involving the shear of the gravitational field C. Second, we
showed that—also unlike J—J is invariant under pure
supertranslations.
We then derived a new balance law that explicitly gives

the total loss of mechanical angular momentum ΔJ . This
naturally splits into the sum of two terms: a radiative

term ΔðradÞ
J [Eq. (3.23)], which describes the transfer of

angular momentum into radiation, and a static term ΔðstatÞ
J

[Eq. (3.25)], which accounts for the fact that angular
momentum can also be deposited into the static compo-
nents of the gravitational field. Both terms are inherently
physical, as we showed that they are individually invariant
under pure supertranslations.
Interestingly, our definition for J bears a strong resem-

blance to other recent proposals for a supertranslation-
invariant version of the angular momentum [49,51–54], and
in fact, all of these definitions coincide for the initial state of
the binary at Iþ

− . The key novelty in our definition is the
addition of a translation ΔZ in the final state at Iþ

þ. Per the
discussion below Eq. (3.18a), we interpreted this term as
correcting for a shift in the reference point about which the
angular momentum is defined. For the case of two-body
scattering that is the main focus of this work, reasonable
assumptions about the system in the asymptotic past and
future were sufficient to fix ΔZ uniquely—at least, up to
OðG3Þ in the post-Minkowskian expansion. As a kind of
post hoc justification, we found that this inclusion of ΔZ is

essential if ΔðstatÞ
J is to be Lorentz covariant. It remains

an open question as to how ΔZ should be determined at
higher post-Minkowskian orders and for more generic
space-times.
Our formula for the mechanical angular momentum loss

ΔJ ≡ ΔðradÞ
J þ ΔðstatÞ

J is accurate to all orders in G, but
when a post-Minkowskian expansion is performed, one

finds that ΔðstatÞ
J always starts at OðG2Þ, while ΔðradÞ

J starts
only later atOðG3Þ. AtOðG2Þ, we were able to explain why
the space-space components of the Bondi angular momen-
tum flux FJ just so happen to give the same result as that of
ΔJ in the binary’s (intrinsic) c.m. frame, and thus why
previous calculations utilizing the former obtained the
correct result. We also showed how to compute ΔJ

explicitly at OðG2Þ, which is in agreement with the results

in Refs. [3,19–21]. Moreover, we have verified that ΔðstatÞ
J

matches the corresponding static part of the result in
Refs. [20,21] also at OðG3Þ. That these results are all in
agreement establishes a clearer link between the notions of

14We have checked explicitly that Eq. (4.10) does indeed
evaluate to Eq. (4.6) at OðG2Þ once we use the identityRþ∞
−∞ NABdu≡ ΔCAB and substitute in Eqs. (3.14), (3.8), (4.1),
(4.5), and (4.8).
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angular momentum used in these quantum field theoretic
approaches to the two-body problem, on the one hand, and
that of classical general relativity, on the other.
In the future, it will be interesting to refine this

connection by verifying that our total loss ΔJ matches

the results of Refs. [19–21] at OðG3Þ. Computing ΔðradÞ
J

would require knowledge of the waveform ĈAB ≡
ĈABðu; θCÞ and its first derivative NAB ≡ ∂uĈAB up to
OðG2Þ, but in practice, we know that a direct evaluation
of the position-space integral in Eq. (3.23) is too challeng-
ing for existing methods. Even the simpler integral for
the four-momentum flux is prohibitively difficult in posi-
tion space [22,23], which is why exact results have mostly
been obtained via a momentum-space integral involving
the square of the amplitude for on-shell graviton emission
[4–8,10–14]. The key question, then, is how to relate the
Fourier transforms of ĈAB and NAB to the aforementioned
amplitude; the former are objects defined in Bondi gauge,
whereas the latter is usually computed in de Donder
gauge, and the transformation between the two is not
trivial [67,87,88].
The computation of ΔJ at OðG4Þ will also be particu-

larly interesting, because it is at this order that the nonlinear
part of the gravitational memory first contributes, as can be
seen from Eqs. (3.25) and (4.3). Presently, no result for the
angular momentum loss at this order has been obtained via
any approach, and so it will be interesting to see if ours
continues to make the same predictions as those based on
quantum field theory. On a more fundamental level, it will
also be interesting to gain a deeper understanding of how
this work sits in relation to the wider web of connections
that have been drawn between asymptotic symmetries, soft
theorems, and memory effects [33,76,86,89–93].
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APPENDIX A: LORENTZ TENSORS

This appendix provides a dictionary for converting
between the scalar-valued integrals fPðσÞ; JðσÞ;…g of
the Bondi-Sachs formalism and the Lorentz-tensor
representation fPμ; Jμν;…g of the charges and their cor-
responding fluxes. We begin by developing the required
mathematical machinery in Sec. A 1. To illustrate the
general principles of its use, we prove the result of
Eq. (3.5) for the mechanical angular momentum J μν of
a boosted Schwarzschild space-time in Sec. A 2. Explicit
expressions for the fluxes, valid for any space-time, are
then presented in Sec. A 3.

1. Basis vectors

In Sec. II B of the main text, we introduced the
Lorentzian coordinates xμ ≡ ðt; x; y; zÞ and two null vec-
tors, nμ and n̄μ. Two more spacelike vectors are needed to
form a basis that spans Minkowski space. We introduce

eμA ¼ ∂nμ

∂θA
ðθA ∈ fθ;ϕgÞ ðA1Þ

as the two basis vectors tangent to the unit 2-sphere.
Together, our four basis vectors satisfy

nμn̄μ ¼ −2; ημνe
μ
Ae

ν
B ¼ ΩAB;

nμnμ ¼ n̄μn̄μ ¼ nμe
μ
A ¼ n̄μe

μ
A ¼ 0; ðA2Þ

where indices are always raised and lowered with the two
metrics ημν and ΩAB.
The vectors eμA and their duals also allow us to map a

tensor defined on the 2-sphere onto Minkowski space; for
instance, the Lorentzian version of the shear tensor CAB is
Cμν ≡ eAμeBνCAB. Another important tensor that we will
need is the induced metric

Ωμν ¼ eAμeBνΩAB ¼ ημν þ nðμn̄νÞ; ðA3Þ

where the last equality follows from Eq. (A2). This map is,
of course, not always invertible, because a general tensor
Xμ1���μn can also have components that are orthogonal to eμA.
For these objects, it is useful to introduce the transverse
projection

½Xμ1���μn �T ≔ Ωμ1
ν1 � � �Ωμn

νnX
ν1���νn ; ðA4Þ

which can then be readily pulled back onto the 2-sphere. As
a piece of terminology, we shall say that a tensor Aμ1���μn is
transverse if Aμ1���μn ¼ ½Aμ1���μn �T.
With these definitions in hand, we are now in a position

to map the covariant derivative DA onto Minkowski space.
Its counterpart is the angular partial derivative operator,

ðμ ≔ eAμ
∂

∂θA
≡ rΩμ

ν ∂

∂xν
: ðA5Þ
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To see how the two derivative operators DA and ðμ are
connected, consider the action of ðν on the transverse
vector Aμ. We find that

ðνAμ ¼ eBν ∂BðeμAAAÞ
¼ eBν e

μ
Að∂BAAÞ þ eBνAAð∂BeμAÞ: ðA6Þ

Direct evaluation reveals that ∂Be
μ
A ¼ eμCΓC

AB − r̂μΩAB,
where ΓC

AB is the Levi-Civita connection on ΩAB, and
recall that r̂μ ¼ ðnμ − n̄μÞ=2 is the unit spacelike vector
pointing in the outward radial direction. Substituting this
back into Eq. (A6) and usingDBAA ¼ ∂BAA þ ΓA

BCAC, we
then obtain

ðνAμ ¼ eBν e
μ
AðDBAAÞ − r̂μAν: ðA7Þ

This result tells us that even if Aμ is transverse, ðνAμ

can have a component that is not tangent to the 2-sphere. It
is nevertheless straightforward to project this unwanted
component away; we have that ½ðνAμ�T ¼ eBν e

μ
AðDBAAÞ,

and more generally

½ðαAμ���
ν����T ¼ ðeCαeμAeBν � � �ÞðDCAA���

B���Þ: ðA8Þ
Two useful identities involving ðμ are

ðμnν ¼ −ðμn̄ν ¼ Ωμν; ðA9aÞ

ðαΩμν ¼ −2r̂ðμΩνÞα: ðA9bÞ

The first line follows directly from Eqs. (A1) and (A2),
whereas the second follows from Eqs. (A3) and (A9a).

2. Mechanical angular momentum

To illustrate how this map is used, here we prove the
result in Eq. (3.5) for the mechanical angular momentum
J ≡ jðM;BÞ of a boosted Schwarzschild black hole. Our
starting point is the definition for jðM;BÞ in Eq. (3.4),
which becomes

jðM;BÞ ¼
Z

d2Ω
8π

Mð2YADAB − BDAYAÞ ðA10Þ

after an integration by parts. Next, we convert the direc-
tional derivative YADA and the scalar quantity DAYA into
their Lorentz-tensor counterparts. By combining the para-
metrization of YA in Eq. (2.9) with the definition provided
in Eq. (A1), we see that

YA ¼ −ωμνnμeνA: ðA11Þ
Contracting this withΩAB

∂B and using Eq. (A5) then yields

YA
∂A ¼ −ωμνnμðν: ðA12Þ

This will suffice for our purposes, as the derivative operator
YADA in Eq. (A10) acts only on the scalar function B.

To get an expression for DAYA, we instead contract
Eq. (A11) with eAα to obtain Yα ¼ −ωμνnμΩν

α. We can
use this to show that

DBYA ¼ eρBe
α
AððρYαÞ

¼ −ωμνe
ρ
Be

α
A

�
Ωμ

ρΩν
α þ

1

2
nμn̄νΩρα

�
; ðA13Þ

where the second line follows from Eqs. (A2) and (A9).
Contracting with ΩAB then yields DAYA ¼ −ωμνnμn̄ν as a
special case. These results allow us to write

jðM;BÞ ¼
Z

d2Ω
8π

ωμνMð−2nμðνBþ Bnμn̄νÞ: ðA14Þ

Now using B ¼ ðn · bÞ, we see that the integrand

ωμνMð−2nμðνBþ Bnμn̄νÞ ¼ ωμνMbρð−2nμΩνρ þ nρnμn̄νÞ
¼ 2ωμνMbμnν: ðA15Þ

The first equality follows from Eq. (A9), while the second
follows from Eq. (A3). Putting everything together, we
obtain

jðM;BÞ ¼ ωμνbμ
�Z

d2Ω
4π

Mnν
�
: ðA16Þ

The integral in parentheses gives the four-momentum pν of
the black hole. Differentiating with respect to ωμν and using

∂ωρσ=∂ωμν ¼ 2δ½μρ δ
ν�
σ then returns the result in Eq. (3.5).

3. Flux formulas

Here we present explicit expressions for the various
fluxes in their Lorentz-tensor form. These results all follow
from a straightforward application of the identities derived
in earlier parts of this appendix. First, Eqs. (2.15) and (2.18)
give us the four-momentum flux15

Fμ
P ¼

Z
dud2Ω
32πG

ðNρσNρσÞnμ: ðA17Þ

From Eqs. (2.16) and (2.18), we obtain the Bondi angular
momentum flux

Fμν
J ¼

Z
dud2Ω
32πG

½4Cρ½μNν�
ρ − 2Nρσn½μðν�Cρσ

− n½μn̄ν�Nρσ
∂uðuCρσÞ�: ðA18Þ

For the total mechanical angular momentum loss, the
radiative term in Eq. (3.23) becomes

15Notice that the term in Eq. (2.15) that is linear in the news
tensor does not contribute to Fμ

P as it vanishes after an integration
by parts; it contributes only to the flux of supermomentum.
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Δμν
J ðradÞ ¼

Z
dud2Ω
32πG

½4Ĉρ½μNν�
ρ − 2Nρσn½μðν�Ĉρσ

− n½μn̄ν�Nρσ
∂uðuĈρσÞ

− NρσNρσð2ð½μC− − C−n̄½μÞnν��; ðA19Þ

while its alternative form in Eq. (3.33) in terms of the
invariant tensors CAB and NAB maps onto

Δμν
J ðradÞ ¼

Z
dud2Ω
32πG

½4Cρ½μNν�
ρ − 2Nρσn½μðν�Cρσ

− n½μn̄ν�Nρσ
∂uðuCρσÞ�: ðA20Þ

Finally, the static term in Eq. (3.25) becomes

Δμν
J ðstatÞ ¼

Z
d2Ω
4π

Mþð2ð½μΔS − ΔSn̄½μÞnν�: ðA21Þ

APPENDIX B: BOOSTED
SCHWARZSCHILD METRIC

In Sec. III A of the main text, we motivated our definition
of the mechanical angular momentum J by appealing
to the explicit form of the Bondi metric components
fM;NA; CABg for a boosted Schwarzschild space-time.
Those expressions, which are given in Eq. (3.1), are derived
in this appendix. We begin in Sec. B 1 by writing down the
most general metric for a boosted Schwarzschild black hole
in harmonic coordinates. The transformation to Bondi
coordinates then proceeds in two stages. It is convenient
to first transform the metric into Newman-Unti coordinates
[95], which we do in Sec. B 2, before subsequently trans-
forming to Bondi coordinates, which we do in Sec. B 3.
(This same set of transformations is discussed in Ref. [67]
in the context of the multipolar post-Minkowskian expan-
sion, which can be used to describe, e.g., the space-time
around an inspiraling binary.)

1. Harmonic coordinates

Let x̃μ ≡ ðt̃; x̃; ỹ; z̃Þ denote a set of Lorentzian coordi-
nates that satisfy the harmonic condition e∂μð ffiffiffiffiffiffi

−g̃
p

g̃μνÞ ¼ 0,
where g̃μν are the components of the inverse metric in
this coordinate chart, g̃ is the determinant of its inverse,
and e∂μ ≡ ∂=∂x̃μ is the partial derivative with respect to
these coordinates. Analogously to how the Bondi coor-
dinates ðu; r; θAÞ have corresponding Lorentzian coordi-
nates xμ ≡ ðt; x; y; zÞ, we can introduce the retarded
coordinates ðũ; r̃; θ̃AÞ via
ðt̃; x̃; ỹ; z̃Þ ¼ ðũþ r̃; r̃ sin θ̃ cos ϕ̃; r̃ sin θ̃ sin ϕ̃; r̃ cos θ̃Þ:

ðB1Þ
This correspondence allows us to define the null vector ñμ,
the unit radial vector ˆ̃rμ, and the two basis vectors ẽμA, which

are tangent to the unit 2-sphere, in the same way as how
their Bondi counterparts fnμ; r̂μ; eμAg are defined in
Appendix A, except that we here use the harmonic
coordinates x̃μ in place of the Bondi coordinates xμ. Just
like their Bondi counterparts, these vectors are to be
understood as living in the tangent bundle on Iþ, and
so their indices are to be raised and lowered with the
Minkowski metric ημν, not the full metric g̃μν.
Now consider the space-time around a single

Schwarzschild black hole of mass m, whose center of
energy travels along the worldline x̃μðτÞ ¼ bμ þ pμτ=m.
(We can set ημνbμpν ¼ 0 without loss of generality.) As
discussed in Sec. III A, this worldline is only inferred via
extrapolation, since the harmonic coordinates do not
actually extend past the event horizon. More rigorously,
the displacement vector bμ and the four-momentum pμ are
defined as the constant vectors whose components para-
metrize the Poincaré transformation that takes us from the
black hole’s rest frame to this generic inertial frame.
By starting with the inverse metric in the rest frame [see,

e.g., Eq. (5.172) of Ref. [96]] and then performing this
Poincaré transformation, we find that we can write

g̃μν¼−
�
ρþGm
ρ−Gm

�
pμpν

m2
þ ρ2

ðρþGmÞ2Π
μν−

G2m2

ðρþGmÞ2 ρ̂
μρ̂ν;

ðB2Þ

where the projection operator Πμν ¼ ημν þ pμpν=m2, the
scalar function ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Πμνðx̃μ − bμÞðx̃ν − bνÞp
, and the

spacelike vector ρ̂μ ¼ Πμ
νðx̃ν − bνÞ=ρ; the indices on Πμν

are lowered with the Minkowski metric. It is worth
stressing that the expression in Eq. (B2) is not generally
covariant, as it holds only in harmonic coordinates; it is,
however, Lorentz covariant. As a sanity check, note that if
we undo the translation (i.e., send x̃μ ↦ x̃μ þ bμ) and then
boost ourselves back into the black hole’s rest frame such
that pμ → ðm; 0Þ, then ρ → r̃ and ρ̂μ → ˆ̃rμ, and we indeed
recover Eq. (5.172) of Ref. [96].

2. Newman-Unti coordinates

As an intermediate step to obtaining the metric in
Bondi coordinates, we shall first transform Eq. (B2) into
Newman-Unti coordinates ðu; R; θAÞ. These differ from the
Bondi coordinates ðu; r; θAÞ of the main text only by the
choice of radial coordinate [97]; the retarded time u and
the angular coordinates θA are the same in both cases. To
determine the relation between the harmonic coordinates x̃μ

and these Newman-Unti coordinates xa ≡ ðu; R; θAÞ, we
use the standard transformation law

gabðxÞ ¼ ∂xa

∂x̃μ
∂xb

∂x̃ν
g̃μνðx̃Þ ðB3Þ

along with the gauge conditions
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guu ¼ guA ¼ 0; guR ¼ −1: ðB4Þ

Sans serif indices fa; b;…g are used to emphasize that we
are working in a nonrectangular coordinate chart. The fact
that it is easier to impose the condition guR ¼ −1 and then
later transform from R to r, as opposed to imposing the
Bondi gauge condition ∂r detðgAB=r2Þ ¼ 0 directly, is why
the Newman-Unti coordinates are a useful intermedi-
ate step.
The metric in Eq. (B2) is an exact solution to the vacuum

Einstein equations, but to solve for xa as a function of x̃μ, it
is helpful to perform a post-Minkowskian expansion. We
can do this because we are ultimately interested only in the
metric components fM;NA; CABg, and so it suffices to
determine just the first few terms in the 1=r expansion of
the Bondi metric. Since a boosted Schwarzschild space-
time must admit smooth u → 0 and bμ → 0 limits, it
follows from dimensional analysis that Newton’s constant
G only ever appears in the Bondi metric as part of the
dimensionless combination Gm=r. This means that terms
that are of higher order in G are also of higher order in the
1=r expansion. BecauseM and CAB enter the Bondi metric
starting at Oð1=rÞ [see Eq. (2.2)], we only need to work up
to OðGÞ to determine these two quantities exactly.
However, we will need to work up to OðG2Þ to determine
NA exactly, since this quantity first enters the metric
starting at Oð1=r2Þ. We therefore write

g̃μν ¼ ημν −
X
n≥1

Gnh̃μνn ; ðB5Þ

with the first two terms in this expansion given by

h̃μν1 ¼ 2m
ρ

�
ημν þ 2pμpν

m2

�
; ðB6aÞ

h̃μν2 ¼ m2

ρ2

�
ρ̂μρ̂ν − 3ημν −

pμpν

m2

�
: ðB6bÞ

The result for h̃μν1 can also be found in Refs. [31,54].
We now assume that the relation between xa and x̃μ

can also be expanded perturbatively in powers of G.
Substituting the ansatz

u ¼ ũþ
X
n≥1

Gnζunðx̃Þ; ðB7aÞ

R ¼ r̃þ
X
n≥1

GnζRn ðx̃Þ; ðB7bÞ

θA ¼ θ̃A þ
X
n≥1

GnζAnðx̃Þ ðB7cÞ

into Eq. (B3) and then imposing the four Newman-Unti
gauge conditions in Eq. (B4), we obtain a set of partial

differential equations for ζan at each order n in G. We
have that

∂

∂r̃
ζu1 ¼ −

1

2
h̃μν1 ñμñν; ðB8aÞ

∂

∂r̃
ζR1 ¼ h̃μν1 ñμ ˆ̃rν þ ˆ̃rμe∂μζu1; ðB8bÞ

∂

∂r̃
ζA1 ¼ 1

r̃
ẽAμ ðh̃μν1 ñν þ e∂μζu1Þ ðB8cÞ

at first order in G, while at second order, we find that

∂

∂r̃
ζu2 ¼ −

1

2
h̃μν2 ñμñν þ

1

2
e∂μζu1e∂μζu1 þ h̃μν1 ñμe∂νζu1; ðB9aÞ

∂

∂r̃
ζR2 ¼ h̃μν2 ñμ ˆ̃rν þ ˆ̃rμe∂μζu2 þ e∂μζu1e∂μζR1

þ h̃μν1 ñνe∂μζR1 − h̃μν1 ˆ̃rμe∂νζu1; ðB9bÞ

∂

∂r̃
ζA2 ¼ 1

r̃
ẽAμ ðh̃μν2 ñν þ e∂μζu2 − h̃μν1 e∂νζu1Þ

þ e∂μζu1e∂μζA1 þ h̃μν1 ñμe∂νζA1 : ðB9cÞ

These two sets of equations can also be found in Ref. [67].
Notice that each line in Eqs. (B8) and (B9) is a linear

differential equation whose most general solution must
therefore be the sum of a particular integral and a
complementary function. These complementary functions,
which are all independent of r̃, account for two types of
residual gauge freedoms: BMS transformations, and the
freedom to shift the origin of the radial coordinate R
[67,97]. The latter gauge freedom is present because the
Newman-Unti radius R is the affine parameter along null
geodesics with du ¼ dθA ¼ 0; the Bondi radius r exhibits
no such residual freedom because it is not an affine
parameter. Given that we eventually want to go into
Bondi coordinates, we shall fix this residual gauge freedom
in R by imposing the boundary condition given above
Eq. (2.4) of Ref. [97], which is tantamount to requiring
that detðgAB=R2Þ ¼ detΩAB þOð1=R2Þ. For the remaining
complementary functions associated with the BMS group,
we shall set them all to zero for the time being. The
arbitrary supertranslation β, which plays a key role in the
discussion of Sec. III, can be added in at the end of the
calculation by using the results in Eq. (2.18) of Ref. [57].
The solution to Eq. (B8) subject to these boundary

conditions is given by (see also Refs. [31,50,67])

ζu1 ¼ 2ðñ · pÞ log r̃þOðr̃−1Þ; ðB10aÞ

ζR1 ¼ ð−ñ · pÞ þ ð ˆ̃r · pÞð4 − 2 log r̃Þ þOðr̃−1Þ; ðB10bÞ

r̃ζA1 ¼ 2ẽAμpμð1 − log r̃Þ þOðr̃−1Þ: ðB10cÞ
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Only the leading terms in a 1=r̃ expansion are presented for
the sake of readability, but it is necessary to determine ζu1 ,
ζR1 , and r̃ζA1 down to Oðr̃−2Þ in order to correctly read off
fM;NA; CABg. For the second-order equations in Eq. (B9),
we must also determine ζu2 , ζ

R
2 , and r̃ζA2 down to Oðr̃−2Þ.

Having solved for ζan, we may now substitute the
results back into Eq. (B7) to determine the inverse
metric in Newman-Unti coordinates. We note, of course,
that because Eq. (B7) gives us xa as a function of x̃μ, and
because g̃μν is also a function of x̃μ, this substitution returns
the components of the Newman-Unti metric as functions of
the harmonic coordinates x̃μ. It then remains to perform the
inverse of the transformation in Eq. (B7) to express these
components properly as functions of the Newman-Unti
coordinates. Since ðu; R; θAÞ are equal to ðũ; r̃; θ̃AÞ at zeroth
order in G, we will need the inverse of Eq. (B7) only up to
first order. Equations (B7a) and (B7b) are easy enough to
invert, and we get

ũ ¼ u − Gζu1ðxÞ þOðG2Þ; ðB11aÞ

r̃ ¼ R −GζR1 ðxÞ þOðG2Þ: ðB11bÞ

For the angular coordinates, what we really need to
know is how the basis vectors in the two coordinate
systems are related, since all of the angular dependence
in Eqs. (B2), (B8), and (B9) arise from inner products like
ðñ · pÞ, ð ˆ̃r · bÞ, and so on. By first substituting Eq. (B7c)
into the definition for nμ in Eq. (2.8), we find that
nμ ¼ ñμ þGζA1 ðx̃Þ∂ñμ=∂θ̃A þOðG2Þ. Inverting this rela-
tion then tells us that

ñμ ¼ nμ −GζA1 ðxÞeμA þOðG2Þ; ðB11cÞ

after having used the definition of eμA in Eq. (A1). Likewise,

ˆ̃rμ ¼ r̂μ − GζA1 ðxÞeμA þOðG2Þ: ðB11dÞ

In a similar way, we substitute Eq. (B7c) into Eq. (A1) and
then use the chain rule to eventually find that

ẽAμ ¼ eAμ − G½ζB1 ðxÞeνBðνeAμ − ζA1 ðxÞr̂μ� þOðG2Þ: ðB11eÞ

3. Bondi coordinates

Given the metric in Newman-Unti coordinates
ðu; R; θAÞ, we define the Bondi radius r via [97]

r ¼
�
det gABðu; R; θCÞ
detΩABðθCÞ

�
1=4

: ðB12Þ

This relation could now be used to transform our explicit
result for a boosted Schwarzschild metric into Bondi
coordinates, but in practice, it is easier to use Eq. (B12)

to transform the general Bondi metric in Eq. (2.1) into
Newman-Unti coordinates. Having done so, one finds that
for any nonradiative spacetime with NAB ¼ 0 [67],

gRR ¼ 1 −
2GM
R

þOðR−2Þ; ðB13aÞ

R2gAB ¼ ΩAB −
1

R
CAB þOðR−2Þ; ðB13bÞ

RgRA¼ 1

2R
DBCABþ 2

3R2
GNA−

1

2R2
CABDCCBCþOðR−3Þ:

ðB13cÞ

Comparing these general formulas with our explicit
expressions for the boosted Schwarzschild metric allows
us to read off the desired result for fM;NA; CABg as given
in Eq. (3.1).

APPENDIX C: DERIVING THE LOSS
OF MECHANICAL ANGULAR MOMENTUM

This appendix is divided into three parts. We begin by
listing a number of useful identities in Appendix C 1.
The result in Eq. (3.22), which is an integral step in the
derivation of the radiated flux ΔðradÞ

J , is then proved in
Appendix C 2. Finally, in Appendix C 3, we prove the

result in Eq. (4.10) for the static term ΔðstatÞ
J .

1. Useful identities

To streamline our discussion, we begin by listing a
number of identities that will be essential in later parts of
this appendix. For starters, we have that

ðDADB −DBDAÞXC ¼ 2ΩA½CΩD�BXD ðC1Þ

for any vector XA. This identity follows from the defini-
tion of the Riemann tensor and the fact that RABCD ¼
2ΩA½CΩD�B in the case of a round 2-sphere.
Next up are several identities for the conformal Killing

vector YA. First, we note that the contraction of Eq. (2.7)
with any symmetric and traceless tensor XAB yields

XABDAYB ¼ 0: ðC2Þ

Second, if we first differentiate Eq. (2.7), we get

DCDBYA ¼ ΩABDCDDYD −DCDAYB

¼ ΩABDCDDYD −DADCYB − 2ΩB½CYA�; ðC3Þ

where the second line follows from using Eq. (C1). Now,
symmetrizing over the indices B and C and using Eq. (2.7),
we obtain
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DðBDCÞYA ¼ ΩAðBDCÞDDYD −
1

2
ΩBCDADDYD

−ΩBCYA þΩAðBYCÞ: ðC4Þ

Contracting this with the symmetric and traceless tensor
XBC then yields

XBCDBDCYA ¼ XABDBDCYC þ XABYB: ðC5Þ

A third identity involving three derivatives on YA reads [65]

XABDADBDCYC ¼ 0: ðC6Þ

Finally, we will also make use of the fact that [49]

YABDCXBC ¼ 2YBCD½AXB�C ðC7Þ

for any pair of symmetric and traceless tensors, XAB

and YAB.

2. Radiative term

Here we prove the result for jðΔM;C−Þ in Eq. (3.22),
which we use in the main text to obtain the radiated flux

ΔðradÞ
J . Our starting point is Eq. (3.20), into which we

substitute the expression for ΔM in Eq. (3.21). Having
done so, we see that there are two types of terms in the
result: those proportional to ΔCAB, and those proportional
to ΔE. The former read

Z
d2Ω
32πG

ΔCABDADBð2YCDCC− − C−DCYCÞ; ðC8Þ

where we have already integrated by parts twice to move the
derivatives off ΔCAB. After using the product rule to
distribute these derivatives, we find that several terms vanish
or cancel one another due to the identities in Eqs. (C2), (C5),
and (C6). For the terms that survive, we use Eq. (C1) to show
that DADBDCC− ¼ DCDADBC− þ 2ΩA½BDC�C−, and thus
find that Eq. (C8) is equivalent to

Z
d2Ω
32πG

ΔCABð2YCDCDADBC− −DCYCDADBC−

þ 4DAYCDBDCC−Þ: ðC9Þ

Now use Eq. (3.8) to rewrite DADBC− in terms of C−
AB.

Integrating by parts and using ΔCAB ≡ R∞
−∞ NABdu then

yields

−
Z

dud2Ω
32πG

YA

�
NBCDAC−

BC − 2DBðNBCC−
ACÞ

þ 1

2
DAðNBCC−

BCÞ
�
: ðC10Þ

To complete the derivation, we must add to Eq. (C10) the
terms in jðΔM;C−Þ that are proportional to ΔE. They read

−
Z

d2Ω
8π

ð2YADAC− − C−DAYAÞΔE

¼ −
Z

dud2Ω
32πG

�
YADAC− −

1

2
C−DAYA

�
N2

¼ −
Z

dud2Ω
32πG

YA

�
N2DAC− þ 1

2
DAðN2C−Þ

�
: ðC11Þ

The first equality follows from using the definition of ΔE
below Eq. (3.21) and writing N2 ≡ NABNAB for brevity,
while the second follows from integrating by parts. The sum
of Eqs. (C10) and (C11) gives us the desired result
in Eq. (3.22).

3. Static term

Here we show that the two expressions for ΔðstatÞ
J in

Eqs. (3.25) and (4.10) are equivalent. We start by inserting
the expression for Mþ in Eq. (4.7) into the former. After a
straightforward integration by parts to move the derivatives

off fþAB, we find that ΔðstatÞ
J is equal toZ

d2Ω
8π

�
1

4G
fþABD

ADBð2YCDCΔS − ΔSDCYCÞ

þ ð3r̂ − t̂Þ · Pþð2YCDCΔS − ΔSDCYCÞ
�
: ðC12Þ

Now notice that the first line above is structurally identical
to Eq. (C8), and so all of the steps taken in the previous part
of this appendix follow through. The only key difference is
that ΔZ, which is contained in ΔS, lives in the kernel of the
differential operator ð2DADB − ΩABD2Þ, and so drops out
when we integrate by parts. Ultimately, we arrive at the
expression

Z
dud2Ω
32πG

YA

�
−fBCþ DANBC þ 2DBðfBCþ NACÞ

−
1

2
DAðfBCþ NBCÞ

�
þ
Z

d2Ω
8π

�
3ðr̂ · PþÞð2YCDCΔS

− ΔSDCYCÞ þ 3ðt̂ · PþÞðDAYAÞΔS
�
: ðC13Þ

To get the final term, we have also performed one more
integration by parts while using the fact that ðt̂ · PþÞ is a
constant. Equation (C13) is still not quite the desired result,
however. Observe that we essentially have to exchange
ðfþAB; NABÞ ↦ ð−NAB; f

þ
ABÞ to go from this to Eq. (4.10).

We do so by using Eq. (C7) to show that

DBðfBCþ NACÞ ¼ DAðNBCfþBCÞ −DBðNBCfþACÞ: ðC14Þ

Inserting this into Eq. (C13) achieves the desired outcome.
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APPENDIX D: OTHER DEFINITIONS
OF ANGULAR MOMENTUM

Several references [49,51–53] have proposed a super-
translation-invariant definition of the angular momentum
that, in our notation, reads

JðinvÞðσÞ ≔ JðσÞ − jðMðσÞ; CðσÞÞ: ðD1Þ
Both arguments of the function jð·; ·Þ, which is as defined
in Eq. (3.4), are to be evaluated on the cut σ. In the general
case, the shear tensor need not have the form in Eq. (3.2),
but the scalar potential C≡ Cðu; θAÞ can still be extracted
from CAB via the more general decomposition

CAB ¼ −ð2DADB −ΩABD2ÞCþ ϵCðADBÞDCC̄; ðD2Þ
where ϵAB is the volume form on σ and C̄≡ C̄ðu; θAÞ is a
second scalar potential, sometimes called the magnetic-
parity piece of the shear [57]. (In this terminology, C is the
electric-parity piece of the shear.)
From Eqs. (3.9) and (3.16a), we see that JðinvÞ coincides

with our definition for the mechanical angular momentumJ
on the initial cutIþ

− , but JðinvÞ andJ are inequivalent on the
final cutIþ

þ because of the shift in reference pointΔZ thatwe
have corrected for. Consequently, If we let ΔðinvÞ ≔ J−ðinvÞ −
JþðinvÞ denote the total loss of JðinvÞ betweenI

þ
− andIþ

þ, then
the difference between ΔðinvÞ and our result for ΔJ is

ΔJ − ΔðinvÞ ¼ jðMþ;ΔZÞ: ðD3Þ
Now appropriating the results of Appendix C 3, we find that
Eq. (D3) is equivalent to

Z
d2Ω
8π

ð3ðr̂ · PþÞð2YCDCΔZ − ΔZDCYCÞ

þ 3ðt̂ · PþÞðDAYAÞΔZÞ: ðD4Þ

Reasoning similar to that belowEq. (4.10) of Sec. IV B tells
us that the space-space components of ΔðinvÞ and ΔJ agree
atOðG2Þ in the binary’s c.m. frame, but otherwise these two
quantities are generally inequivalent. Moreover, as dis-
cussed in Sec. IVA, the quantity jðMþ;ΔZÞ is not Lorentz
covariant because projection operators like Pl≤1 and Pl≥2
applied to ΔS do not commute with Lorentz boosts. Since
we can verify explicitly that ΔJ is Lorentz covariant,
Eq. (D3) implies that ΔðinvÞ does not transform covariantly
under boosts.
A different proposal for a supertranslation-invariant

definition of the angular momentum was put forward by
Javadinezhad and Porrati (JP) in Ref. [50]. Their definition
reads

JðJPÞðσÞ ¼ JðσÞ − jðMðσÞ; C−Þ þ jðMðσÞ; CÞ: ðD5Þ

fActually, the definition in Ref. [50] is valid only for
DAYA ¼ 0; in the Lorentz-tensor representation, this
would correspond to defining just the space-space
components JijðJPÞ. To facilitate a clearer comparison

with our own result, we have offered a natural extension
of their definition that holds in the more general
case DAYA ≠ 0.g
The effect of the second and third terms in Eq. (D5) is to

remove the contribution of the initial shear C− from the
Bondi angular momentum J and replace it by the function
C≡ CðθAÞ, which is chosen in such a way that the space-
space components of ΔðJPÞ ≔ J−ðJPÞ − JþðJPÞ yield the same

result as the Bondi flux Fij
J when the latter is computed in

the intrinsic gauge. It then follows from the discussion
below Eq. (4.10) thatΔij

ðJPÞ also agrees with the result ofΔ
ij
J

atOðG2Þ in the intrinsic c.m. frame, but generallyΔðJPÞ and
ΔJ are inequivalent.
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