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Abstract

In this article, we quantify the functional convergence of the rescaled random walk with
heavy tails to a stable process. This generalizes the Generalized Central Limit Theorem
for stable random variables in finite dimension. We show that provided we have a con-
trol between the random walk or the limiting stable process and their respective affine
interpolation, we can lift the rate of convergence obtained for multivariate distributions
to a rate of convergence in some functional spaces.
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1 Introduction

1.1 Motivations

The Stein’s method is one way to bound the Wasserstein-1 (ρ1 for short) distance between
two probability measures on a metric space (E ,d), defined by

ρ1
E (µ,ν) = sup

F∈Lip1(E)

(∫
E

F dµ−
∫

E
F dν

)
(1)

where
Lip1(E) =

{
F : E →R, |F (x)−F (y)| ≤ d(x, y), ∀x, y ∈ E

}
.

It is known [1] that convergence in the ρ1 distance implies the convergence in distribution
and the convergence of first moments. The Stein’s method initiated in the seventies by C.
Stein, was originally built to assess rate of ρ1

R
convergence towards the Gaussian distribu-

tion. It was soon extended to the Poisson limit by L. Chen (see [2] and references therein).
Since then, the majority of the tremendous number of papers dealing with this approach
has been concentrated on Gaussian limits and in a tinier percentage to Poisson limits. It is
only very recently that some attention were devoted to some other limiting regimes, like
convergence to a stable distribution [3–8]. There is here a dramatic difference between the
cases α > 1 and α ≤ 1, since in the latter situation the distribution has no longer a finite
first moment. We refer to monographs such as [9–13] for an overview of non-Gaussian CLT.
In view of the preceding remark, this means that we cannot expect a convergence in the
sense of the Wasserstein-1 distance but we have to restrict the set of test functions taken
in the supremum of (1) as in [8]. We will not deal with this problem here but it is the object
a paper in preparation [14]. We thus assume throughout this work that α belongs to (1,2).
Another extension of the Stein techniques is to consider functional convergence theorems,
i.e. CLT-like theorems in spaces of functions. The first paper to handle such a situation was
[15]. More recently, in a series of paper [16–20], the rate of convergence of some classical
theorems like the Donsker Theorem or the Brownian approximation of a normalized Pois-
son process were established. There are two remarks which can be made here. First, the
rate of convergence depends on the functional space into which we are envisioning the
processes under study. For instance, the sample-paths of a Brownian motion can be seen
as continuous functions or as Hölder continuous functions: The rate of convergence of the
random walk towards the Brownian motion has been shown to be n−1/6 logn (respectively
n−1/6+γ/3) in the space of continuous functions (respectively the space of γ-Hölder con-
tinuous functions for γ< 1/2). The second remark is that we can get rid of the calculations
in infinite dimension which appeared in [20] by considering affine interpolations of the
different processes involved and then reduce the computations to estimates in some finite
dimensional spaces.

The main contribution of this paper is to show how we can convert a rate of conver-
gence for multivariate distributions into a rate of convergence in some Banach spaces
provided we have a control on the error made by replacing some processes by their affine
interpolation. In passing, we greatly simplify one of our former proof developed for the
Donsker theorem in [17]. We treat here the case of a random walk with increments in the
domain of attraction of a stable distribution with finite mean but infinite variance. As a
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key element of our proofs, we derive a moment bound for sums of stable random variables
which seems to be new and interesting by itself.

1.2 Main result

A random variable Y is said to be in the domain of attraction of a stable distribution if for
a collection of random variables Y1, . . . ,Yn independent and with the same distribution as
Y , there exists two sequences (an)n≥0 and (bn)n≥0 such that

an(Y1 +·· ·+Yn)−bn
law−−−−→

n→∞ S,

where S is an α-stable random variable, for α ∈ (0,2]. In the literature, the appartenance to
the domain of attraction has been linked to the tail of the distribution, see e.g. [12] or [11]
for the review of the literature, and complete statement of the theorems.

One of the first paper to use Stein’s method to derive rates of convergence for the stable
central limit is [7]. In that paper, the authors introduce the normal domain of attraction of
an α-stable distribution: random variables whose cumulative distribution functions is of
the form

1−FY (t ) = P(Y ≥ t ) = A+ε(t )

tα
and FY (−t ) = A+ε(−t )

(−t )α
, (2)

whenever t ≥ 1, and where ε is a function with a specified decay at infinity. For (Yn)n≥1 a
sequence of IID random variables of this sort, define

Sn = 1

n1/α

n∑
i=1

Yi .

It is shown in [7] that:

ρ1
R(Sn ,S) ≤ c

n1−2/α
·

Building on that paper, and their subsequent work, we aim at establishing the rate of con-
vergence of the continuous time analog of Sn , namely the random walk (Xn(t ))t≥0 defined
by

Xn(t ) = 1

2n/α

[2n t ]∑
i=1

Yi , (3)

to an α stable process (St )t≥0 in a space of functions. As in some of our previous works,
given p ≥ 1 and η ∈ [0,1], we introduce the fractional Sobolev space

Wη,p =
{

f ∈ Lp ([0,1],Rd );
∫ 1

0

∫ 1

0

| f (s)− f (t )|p
|s − t |1+ηp ds dt <+∞

}
,

equipped with the norm

‖ f ‖p
Wη,p

=
∫ 1

0
| f (t )|p dt +

∫ 1

0

∫ 1

0

| f (s)− f (t )|p
|s − t |1+ηp ds dt .
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Note that for η− 1/p > 0, Wη,p is embedded in the space (η− 1/p)-Hölder continuous
functions whereas for η−1/p < 0, Wη,p can be embedded into the space of p(1−ηp)−1 in-
tegrable functions over [0,1]. Since (Xn(t ))t≥0 and (St )t≥0 induce probability distributions
on some of these functional spaces Wη,p (for η < α−1 < 1 ≤ p < α), their distance can be
quantified by the Wasserstein-1 distance on any of these spaces defined as

ρ1
Wη,p

(
law(Xn), law(S)

)
= sup

F∈Lip1(Wη,p )

(
E [F (Xn)]−E [F (S)]

)
.

Our main result is an upper-bound of this rate of convergence:
Theorem 1. Let (Yi )i≥1 be a sequence of IID random variables of cdf FY , in the normal
domain of attraction of an α-stable distribution with α ∈ (1,2). We assume that their exists
A > 0, γ> 0 and a function ε such that

P[Y1 > t ] = A

2

1

tα
1[1,+∞[(t )+ (1− A)

ε(t )

tα
for t > 0,

P[Y1 ≤ t ] = η

2

1

|min(t ,1)|α + (1− A)
ε(t )

tα
for t ≤ 0,

where ε is a bounded function on [−1,1] such that supt |tγε(t )| < +∞. Let Xn be defined as
in (3). For (η, p) ∈ (0,1/α]× [1,α), there exist υ > 0 and c > 0 both depending on (η, p,α,γ)
such that we have

ρ1
Wη,p

(Xn ,S) ≤ c 2−nυ,

where

υ=
(

1

α
−η

)
p

min
( 2
α −1, γα

)
1+ ( 1

α −η)
p

. > 0. (4)

The strategy we use here is inspired by [17]. First, in Section 2, we consider a projection
of (Xn(t ))t≥0 and (St )t≥0 on a certain finite dimensional space. This reduction to the finite
dimension allows us to rely on [7, 21, 22] to control the distance of the two projected pro-
cesses. Then, the control the sample-paths distances between (Xn(t ))t≥0 and (St )t≥0 and
their respective projections is obtained via Lemma 5 of Section 3. Finally, we summarize
our results and state the final control in Section 3.3. As a key element of our approach, we
establish a moment bound in Section 4 that, up to our knowledge, was not known, even for
Pareto distributions. We prove that when Y1, . . .Yn are in the normal domain of attraction
of a stable distribution, for all p <α,

sup
n

E
[∣∣∣∣Y1 +·· ·+Yn

n1/α

∣∣∣∣p]
<+∞.

2 The Interpolated Random Walk, and Reduction to Finite
Dimension

2.1 Notations and the Interpolated Random Walk

For the sake of simplicity, we choose the dyadic partition to define the affine interpolations
of the random walk. The general situation, for which we have non nested intervals and
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thus side effects, can be handled as in [17]. We consider the sequence of functions:

hi
n(t ) =

p
2n

∫ t

0
1[ i

2n , i+1
2n )(s) ds.

Notice that this sequence actually forms an orthonormal family with respect to the inner
product

〈 f , g 〉 =
∫ 1

0
f ′(s)g ′(s) ds.

We then form the interpolated random walk:

Xn(t ) =
p

2n

2n/α

2n∑
i=1

Yi hi−1
n (t )

= 1

2n/α

b2n tc−1∑
i=1

Yi +
Yb2n tc
2n/α

(
2n t −⌊

2n t
⌋)

.

To obtain a convergence rate, we introduce for m ≤ n (to be determined later) the

projection operator on span{h j
m , j = 0, · · · ,2m −1}:

πm( f ) =
2m−1∑

j=0
〈 f ,h j

m〉 h j
m .

The introduction of this projection operation is the tool that allows us to use results
available in finite dimension. We split the difference as follows:

Xn −S =
(

Xn −πm(Xn)
)
+

(
πm(Xn)−πm(S)

)
+

(
πm(S)−S

)
.

The first and third terms are of the same nature, they represent the gap between a process
and its projection. In Section 3, we prove the Lemma 6 that deduces a control of theses
distances from Hölder sample-path regularity. For the second term above, we will see that
this term is controlled using the finite-dimensional distribution convergence, which is es-
timated using Stein’s method in finite dimension. For that term, we use the control given
by [7], but we also provide new approaches below.

2.2 Reduction to finite dimension

In this section, we show how the the projection operator allows one to reduce the analysis
on finite dimensional spaces, from where we can cite existing work in the literature. This
adapts arguments developed initially in [17].
Lemma 2. The projection of the partial sums write:

πm(Xn)(t ) =
2m∑
j=1

〈Xn ,h j
m〉h j

m(t ) =
2m∑
j=1

p
2m

2
n−m
α

(
1

2
m
α

( j+1)2 j+1∑
i= j 2n−m

Yi

)
h j−1

m (t ).
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Proof. Recall that Xn(t ) =
p

2n

2n/α

∑2n

i=1 Yi hi−1
n (t ). Taking the projection leads to

πm(Xn)(t ) =
p

2n

2n/α

2m∑
j=1

2n∑
i=1

〈hi−1
n ,h j−1

m 〉h j−1
m (t )Yi .

Now, the scalar product 〈hi
n ,h j

m〉 is zero except when the intervals
[ i

2n , i+1
2n

]
and

[
j

2n , j+1
2n

]
are nested. In that case, the scalar product yields the length of the resulting interval, hence

〈hi
n ,h j

m〉 =
p

2n
p

2m

2n . Thus, the projection becomes

πm(Xn)(t ) =
p

2n

2n/α

2m∑
j=1

( j+1)2n−m−1∑
i= j 2n−m

p
2n

p
2m

2n h j−1
m (t )Yi .

We simplify the terms and normalise the inner sum by 2
n−m
α in the above expression to get:

πm(Xn)(t ) =
p

2m

2
m
α

2m∑
j=1

(
1

2
n−m
α

( j+1)2n−m−1∑
i= j 2n−m

Yi

)
h j

m(t ).

The proof is thus complete.

Remark 1. In the proof above, we see that considering the dyadic partition simplifies the

discussion, since the intervals
[ i

2n , i+1
2n

]
and

[
j

2n , j+1
2n

]
are nested. In the case of an arbitrary

partition, we would have boundary terms that needs to be handled. We refer the reader to
[17], where such a discussion is performed.

Meanwhile, we have that the projection πm(S) is:

πm(S)(t ) =
2m∑
j=1

〈S,h j−1
m 〉h j−1

m (t ).

This scalar product can be computed with an integration by parts:

〈S,h j
m〉 =

p
2m

∫
[0,1]

S′(t ) 1
[ j

2m , j+1
2m )

(t ) dt =
p

2m

(
S

(
j +1

2m

)
−S

(
j

2m

))
.

Thus, we have:

πm(S)(t ) =
2m−1∑

j=0
h j

m(t )
p

2m

(
S

(
j +1

2m

)
−S

(
j

2m

))
and each term S

(
j+1
2m

)
−S

(
j

2m

)
(d)= 1

2m/α S1. Hence, for all t ∈ [0,1], we have established that

F
(
πm(Xn)(t )

)
−F

(
πm(S)(t )

)
=

F

(p
2m

2
m
α

2m−1∑
j=0

(
1

2
n−m
α

( j+1)2n−m−1∑
i= j 2n−m

Yi

)
h j

m(t )

)
−F

(p
2m

2m−1∑
j=0

(
S

(
j +1

2m

)
−S

(
j

2m

))
h j

m(t )

)
.
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Let
1

2
n−m
α

( j+1)2n−m−1∑
i= j 2n−m

Yi =U n
m, j , and S

(
j +1

2m

)
−S

(
j

2m

)
= Sm, j ,

we have obtained:

E
[

F
(
πm(Xn)

)]
−E

[
F

(
πm(S)

)]
= E

[
F

(
2m−1∑

j=0
U n

m, j hm
j

)]
−E

[
F

(
2m−1∑

j=0
Sm, j hm

j

)]
, (5)

where U n
m, j and Sm, j are IID. Using the equivalent characterizations of the Wasserstein-

1 distance, we know that there exists a coupling (not necessarily unique) between the
random variables U n

m, j and Sm, j that realizes the distance ρ1
Rd (U n

m, j , Sm, j ) for any j ∈
{0, · · · ,2m − 1}. Let (Û n

m, j , Ŝm, j ) be independent random variables such that for any j ∈
{0, · · · ,2m−1 −1}

ρ1
W (U n

m, j , Sm, j ) = E
[∣∣∣Û n

m, j − Ŝm, j

∣∣∣] .

The difference (5) now gives:

ρ1
Wη,p

(
πm(Xn),πm(S)

)
= sup

F∈Lip1(Wη,p )
E

[
F

(
πm(Xn)

)]
−E

[
F

(
πm(S)

)]
= sup

F∈Lip1(Wη,p )
E

[
F

(
2m∑
j=1

Û n
m, j hm

j

)]
−E

[
F

(
2m∑
j=1

Ŝm, j hm
j

)]

≤
2m−1∑

j=0
ρ1
R(U n

m, j , Sm, j )‖hm
j ‖Wη,p

≤ c 2m2−m(1/2−η)ρ1
R(U n

m,1, Sm,1)

≤ c2m(1/2+η)ρ1
R(U n

m,1, Sm,1).

The last part ρ1
Rd (U n

m,1, Sm,1) is now bounded using the estimate of [7, 21]:

ρ1
R(U n

m,1, Sm,1) = ρ1
Rd

(
1

2
n−m
α

( j+1)2n−m∑
i= j 2n−m

1

2m/α
Yi , j = 1. . . ,2m ,S

)
≤Cα,m2n(1− 2

α ).

We explain how to use [7, 21] in the next paragraph.
Remark 2. It should be noted that the characterization of the Wasserstein-1 distance as
a coupling is new in this setting. It simplifies greatly the proof of the analog result in [17,
Theorem 4.7].

2.3 Control in Finite Dimension

The purpose of this section is to explain how to derive the functional convergence from
existing results in the literature. Many authors have investigated the stable central limit
using Stein’s method, starting from Barbour [15], and more recently, a series of paper [7],
[21], [22]. We will rely on their result in the multidimensional setting.
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The rate of convergence for heavy-tailed random walk converging to stable distri-
butions is obtained in [7]. In a subsequent work [21], this result is extended from one
dimension to the multivariate case. We copy their result here keeping the notations used
in [21].
Theorem 3. Set

Sn = (
ζn,1 −E

[
ζn,1

])+ (
ζn,2 −E

[
ζn,2

])+·· ·+ (
ζn,n −E

[
ζn,n

])
;

Let µ be an α−stable distribution α ∈ (1,2) with Lévy measure

ν(dθ) = ag (θ)dθ+b
d∑

i=1
(σiδei +σ′

iδ−ei )+ cνγ(dθ).

Then we have:

ρ1
W

(
L (Sn),µ

)≤Cα,d

(
n− 1

α

n∑
i=1

E
[∣∣ζn,i

∣∣2−α]
+n− 1

α

n∑
i=1

E
[|ζn,i |

]2 +E

[
n∑

i=1
|Rn,i |

])
,

where the remainder Rn,i is related to the distribution function of the ζn,i and the Lévy
measure of the stable distribution.

They proceed to give an estimation for the remainder in the case where ζn,i are
symmetrized Pareto. The following upper bound can be found in [21] section 5:
Corollary 4. Let τi = εiξi , where εi is a random unit vector such that P(εi ∈ A) = ν(A), and
ξ is a Pareto random variable. Define

Sn =
(
α

ρ1
α

)1/α 1

n1/α

((
τ1 −E [τ1]

)
+·· ·+

(
τn −E [τn]

))
.

Then,
ρ1

W (L (Sn),µ) ≤Cα,d n
α−2
α .

Recall we need a convergence rate for each j = 1, . . . ,2m :

1

2
n−m
α

( j+1)2n−m∑
i= j 2n−m

1

2m/α
Yi ⇒ S

(
j +1

2m

)
−S

(
j

2m

)
.

Since each of the 2m component are independent, the vector:(
S

(
1

2m

)
,S

(
2

2m

)
−S

(
1

2m

)
, . . . ,S (1)−S

(
2m −1

2m

))
(d)= S,

has a stable distribution, whose Lévy measure is

2m∑
j=1

1

2

(
δe j +δ−e j

)
,
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Now, to use Theorem 3, we need to compute each term in the right hand side, and ζn,i

in terms of our to our Yi . Fortunately, in [21], Paragraph 5.2, Example 2 (refer to the arXiv
version 1), is a section devoted to the calculation we need. Using the same notations as in
[21], for a distribution function of the form

Fξ(dr dθ) = A

rα+1 drν(dθ)+ B(rθ)

rβ+1
dr dθ,

the convergence rate towards π, the multidimensional stable distribution, is:

ρ1
W (L (Sn),π) ≤Cα,d ,A,B

(
n

α−2
α +n

α−β
α

)
,

where d is the dimension, that is in our case, 2m . Recall that in our setting, we consider Yi

in the normal domain of attraction (see Equation (2)), we now actually have to prescribe a
decay rate for ε. From now on, assume that

ε(x) ≤ Kε

|x|γ .

Note that this is the decay rate prescribed in [7], this relate to the Example discussed in [21]
by taking γ=β−α≥ 0. Hence, in our case, the convergence rate is

ρ1
W (L (Sn),π) ≤Cα,d ,A,B

(
2
α−2
α n +2

−γ
α n

)
,

where γ relate to the choice of ε. At this point, we need to be very careful with the constant
Cα,d ,A,B , as a compromise between n and m is to be chosen. In [21], this constant comes
from the density estimation for the stable distribution. Since we deal with symmetric sta-
ble distribution (that are unimodal with a mode at zero), it is enough to upper bound the
density at x = 0 to get a good estimate on that constant. Let us denote q(x)dx the density
of S, we have:

q(0) = 1

(2π)2m

∫
R2m

E
[

e〈ξ,S〉
]

dξ

= 1

(2π)2m

∫
R2m

exp
((

e i 〈ξ,θ−1− i 〈ξ,θ〉1{|θ|≤1}

)
×

(
ag (θ) dθ+b

d∑
i=1

(σiδei +σ′
iδ−ei )+ cνγ( dθ)

))
dξ.

In general, one would proceed by change of variable looking for Gamma functions to com-
pute this integral. We point out that if the Lévy measure had had a density with respect
to Lebesgue measure, the volume of the sphere S2m−1 would have come into considera-
tion. However, because stable distribution S we consider has independent increments, this
constant becomes linear in the dimension 2m :
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We therefore obtain the rate in Wasserstein distance:

ρ1
Rd

(
1

2
n−m
α

( j+1)2n−m∑
i= j 2n−m

1

2m/α
Yi , j = 1. . . ,2m ,S

)
≤Cα,A,ε2m

(
2n(1− 2

α ) +2−n γ
α

)
.

3 Approximation and Final Estimate

In what follows, the constants may change from line to line.

3.1 Approximation Lemma

Let τm = (t m
k ) where t n

k = k2−m , k = 0, ...,2m be the dyadic partition of [0,1]. Let F be a
stochastic process and πm(F ) be its linear interpolation along τm , that is

πm(F )t = Ft m
k
+ [t − t k

m]2m[Ft m
k+1

−Ft m
k

], t ∈ [t m
k , t m

k+1], k = 0, ...,2m −1.

Lemma 5. Let 1 < p < α < 2, let F be a stochastic process such that there exists C > 0 such
that

E
[|Ft −Fs |p

]≤C |t − s|p/α, ∀ s, t ∈ [0,1]2. (6)

Then for η< 1/α, there exists a constant C > 0 (depending onα, p,η) such that, for all m ≥ 1:

I m =
∫ ∫

[0,1]2

E [|πm(F )t −πm(F )s −Ft +Fs |p ]

|t − s|1+pη ds dt ≤C 2−m(1/α−η)p .

J m =
∫ 1

0
E

[|πm(F )t −Ft |p
]

dt ≤C 2−m p
α .

Remark 3. The stable process satisfies the assumption of Lemma 6, since for any 0 ≤ s < t ≤
1, we have

S(t )−S(s)
d= (t − s)1/αS(1)

and S(1) ∈ Lp for any p <α.
Remark 4. Since p/α< 1, (6) does not entail that F has continuous sample-paths. Moreover,

note that we have I m + J m = E
[
‖F −πm(F )‖p

Wη,p

]
. Hence, this Lemma gives a control of the

norm, in Wη,p , of the difference between a process and its affine interpolation provided that
we have a bound on the moments of its increments.

Proof. Without loss of generality, let s < t . First, let us assume that s and t are elements
of τm , that is s = k2−m , t = l2−m . Then Ft − Fs = πm(F )t −πm(F )s , in other words, the
projection agrees with the process on the points on the partition.

Let T m
k = [t m

k , t m
k+1], for k = 0, ...,2m − 1. Let i , j ∈ {0, ...,2m} i ≤ j then for s ∈ T m

j and

t ∈ T m
i we have

πm(F )t −πm(F )s −Ft +Fs

=
{

(t − s)2m[Ft m
i+1

−Ft m
i

]− [Ft −Fs ], if i = j

[t − t m
j ]2m[Ft m

j+1
−Ft m

j
]− [t m

i+1 − s]2m[Ft m
i+1

−Ft m
i

]− [Ft −Ft m
i

]+ [Ft m
i+1

−Fs ] otherwise.

10



Then,

|πm(F )t −πm(F )s −Ft +Fs |p ≤ 4p−1×
[
|t − s|p 2mp |Ft m

i+1
−Ft m

i
|p +|Ft −Fs |p

]
, if i = j[

[t − t m
j ]p 2mp |Ft m

j+1
−Ft m

j
|p +|t m

i+1 − s|p 2mp |Ft m
i+1

−Ft m
i
|p +|Ft −Ft m

i
|p +|Ft m

i+1
−Fs |p

]
otw.

Using Fubini to exchange the integration order, we have:

I m = 2
∫ 1

0

∫ t

0

E [|πm(F )t −πm(F )s −Ft +Fs |p ]

|t − s|1+pη ds dt = I m
1 + I m

2

where

I m
1 =

2m−1∑
i=0

∫
T m

i

∫
T m

i ,s<t

E [|πm(F )t −πm(F )s −Ft +Fs |p ]

|t − s|1+pη ds dt ,

I m
2 = 2

2m−1∑
j=1

j−1∑
i=0

∫
T m

j

∫
T m

i

E [|πm(F )t −πm(F )s −Ft +Fs |p ]

|t − s|1+pη ds dt .

In the integral I m
1 , t and s are in the same interval T m

k , thus are at a distance at most 2−m ,
where as in I m

2 , s and t are not in the same interval T m
k . Note crucially that for I m

2 , the
denominator in |s − t | is not singular.

For I m
1 , since t and s are in the same T m

i , we can split the expectation as:

E
[∣∣∣πm(F )t −πm(F )s −Ft +Fs

∣∣∣p]
≤ 4p−1E

[
|t − s|p 2mp |Ft m

i+1
−Ft m

i
|p +|Ft −Fs |p

]
.

Using the fact that E[|Ft −Fs |p ] ≤ |t − s|p/α, we can bound I m
1 ≤ 4p−1[I m

1,1 + I m
1,2], where:

I m
1,1 =

2m−1∑
i=0

∫ ∫
T m

i ×T m
i ,s<t

|t − s|p 2−m[ p
α−p]

|t − s|1+pη ds dt = 2
2m−1∑

i=0
2−m[ p

α−p]
∫

T m
i

∫ t

t m
i

(t − s)p−pη−1 ds dt

I m
1,2 =

2m−1∑
i=0

∫ ∫
T m

i ×T m
i ,s<t

|t − s| p
α

|t − s|1+pη ds dt = 2
2m−1∑

i=0

∫
T m

i

∫ t

t m
i

|t − s| p
α−pη−1 ds dt .

Integrating in s, we get:

I m
1,1 = 2

2m−1∑
i=0

2−m( p
α−p) 1

p(1−η)

∫
T m

i

(t − t m
i )p−pη dt ,

I m
1,2 = 2

2m−1∑
i=0

1

p(1/α−η)

∫
T m

i

|t − t m
i | p

α−pη dt .

11



Recall that T m
i = [i 2−m , (i +1)2−m], we get:

I m
1,1 = 2

2m−1∑
i=0

2−m( p
α−p) 1

p(1−η)(p −pη+1)
2−m(p−pη+1),

I m
1,2 = 2

2m−1∑
i=0

1

p(1/α−η)(1−pη+p/α)
2−m( p

α−pη+1)

and

I m
1,1 = 2−m[ p

α−p] 2

p(1−η)(p −pη+1)
2−m(p−pη),

I m
1,2 =

2

p[−η+1/α](1−pη+p/α)
2−m[ p

α−pη].

Note that the crucial part is that we assumed α > 1 and η < 1/α, thus, the exponent is
indeed negative. Now, we turn to the study of I m

2 . In this case, s and t are not in the same
interval T m

k , we can split the expectation four ways:

E
[∣∣∣πm(F )t −πm(F )s −Ft +Fs

∣∣∣p]
≤4p−1

[
[t − t m

j ]p 2mp E
[
|Ft m

j+1
−Ft m

j
|p

]
+E

[
|Ft −Ft m

i
|p

]
+E

[
|Ft m

i+1
−Fs |p

]
+|t m

i+1 − s|p 2mp E
[
|Ft m

i+1
−Ft m

i
|p

]
.

This prompts us to split I m
2 four ways according to the above decomposition.

I m
2 ≤ 2

4∑
l=1

I m
2,l

For the first contribution above, and since p > 1, we can use the Lemma 6. We get

I m
2,1 = 2

2m−1∑
j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

[t − t m
j ]p 2mp E

[
|Ft m

j+1
−Ft m

j
|p

]
|t − s|1+pη ds dt

≤ 2
2m−1∑

j=1

j−1∑
i=0

∫ ∫
T m

j ×T n
i

2−m[ p
α−p]

|t − t m
j |p

|t − s|1+pη ds dt .

We can now simply compute the remaining integrals:

I m
2,1 ≤ 2

2m−1∑
j=1

∫ ∫
T m

j ×[0,t m
j ]

2−m[ p
α−p]

|t − t m
j |p

|t − s|1+pη ds dt

≤ 2
2−m[ p

α−p]

pη

2m−1∑
j=1

∫
T m

j

|t − t m
j |p−pη dt

≤ 2
2−m[ p

α−p+p−pη+1−1]

pη(p −pη+1)
≤ 21−m[ p

α−pη]

pη(p −pη+1)
·

12



Again, we note that since p ≥ 1 and 1/α > η, this exponent is indeed negative. For the
second contribution, we proceed similarly, using (6) to estimate:

I m
2,2 = 2

2m−1∑
j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

E
[
|Ft −Ft m

i
|p

]
|t − s|1+pη ds dt

≤ 2
2m−1∑

j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

|t − t m
j | p

α

|t − s|1+pη ds dt .

Here the sum of integrals in d on T m
i yields an integral on s between 0 and t m

j . We can

therefore estimate

I m
2,2 ≤

2

pη

2m−1∑
j=1

∫
T m

j

|t − t m
j | p

α−pη dt ≤ 21−m( p
α−η)

pη(1−pη+p/α)
·

Now, for the terms involving s ∈ T m
i , we use (6) to estimate:

I m
2,3 = 2

2m−1∑
j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

E
[
|Ft m

i+1
−Fs |p

]
|t − s|1+pη ds dt

≤ 2
2m−1∑

j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

|s − t m
i+1|

p
α

|t − s|1+pη ds dt .

Which gives after integration:

I m
2,3 ≤ 2

2m−2∑
i=0

2m−1∑
j=i+1

∫ ∫
T m

j ×T m
i

|s − t m
i+1|

p
α

|t − s|1+pη ds dt

= 2
2m−2∑

i=0

∫
T m

i

∫ 1

t m
i+1

|s − t m
i+1|

p
α

|t − s|1+pη ds dt

= 2

pη

2m−2∑
i=0

∫
T m

i

|s − t m
i+1|

p
α−pη ds ≤ 21−m[ p

α−pη]

pη(1−pη+p/α)
·

The last term handled similarly:

I m
2,4 = 2

2m−1∑
j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

|t m
i+1 − s|p 2mp E

[
|Ft m

i+1
−Ft m

i
|p

]
|t − s|1+pη ds dt

= 21−m[ p
α−p]

2m−1∑
j=1

j−1∑
i=0

∫ ∫
T m

j ×T m
i

|s − t m
i+1|p

|t − s|1+pη ds dt

= 21−m[ p
α−p]

2m−1∑
i=0

2m−1∑
j=i+1

∫ ∫
T m

j ×T m
i

|s − t m
i+1|p

|t − s|1+pη ds dt

13



= 21−m[ p
α−p]

2m−1∑
i=0

∫ ∫
[t m

I+,1]×T m
i

|s − t m
i+1|p

|t − s|1+pη ds dt

≤ 2−m[ p
α−p]

2m−1∑
i=0

∫
[t m

I+,1]

|s − t m
i+1|p−pη

pη
ds

= 21−m[ p
α−pη]

pη(p −pη+1)
·

Then, there exists a constant C depending on p,η,α, such that

|Ik,l |m ≤C 2−m[ p
α−1], for (k, l ) ∈ {(1,2, (1,1)}∪ {(2, i ), i = 1, ...,4}, ∀m

The case of Jn is simpler since

E[sup
t

|πm(F )t −Ft |p ] ≤C 2−m p
α .

The proof is thus complete.

Remark 5. Since Im + Jm = E
[
‖F −πm(F )‖p

Wη,p

]
, we get the estimate:

E
[
‖F −πm(F )‖p

Wη,p

]
≤C

(
2−m p

α +2−m(1/α−η)p
)
≤C 2−m

( 1
α−η

)
p .

3.2 The Interpolated Process Fits the setting of Lemma 5

In this section, we show how the interpolated random walk satisfies the assumptions of
Lemma 5.
Lemma 6. Assume that for some p <α,

sup
n

E
[∣∣∣∣Y1 +·· ·+Yn

n1/α

∣∣∣∣p]
<+∞. (7)

Then, for some C > 0, for all n ≥ 1, we have:

E
[∣∣∣Xn(t )−Xn(s)

∣∣∣p]
≤C |t − s|p/α.

Proof. We start with the case where t and s are on the grid: t = k2−n and s = j 2−n . Without
loss of generality, assume t > s. In this case, the increment of the interpolated process
writes:

Xn(t )−Xn(s) = 1

2n/α

k−1∑
i= j

Yi .

From (7), we deduce that for all n ∈N, there exists some constant C > 0 such that :

E
[∣∣∣Y1 +·· ·+Yn

∣∣∣p]
≤C np/α.
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Hence, we directly get:

E
[|Xn(t )−Xn(s)|p] = E

[∣∣∣∣∣ 1

2n/α

k−1∑
i= j

Yi

∣∣∣∣∣
p]

≤ C
1

2np/α
|k − j |p/α

= C

∣∣∣∣ k

2n − j

2n

∣∣∣∣p/α

=C |t − s|p/α,

thus, the moment condition in lemma 5 is satisfied for points on the grid.
Now, let us discuss the case where t and s are not on the grid, but in the same sub-

interval [ j 2−n , ( j +1)2−n]. In that case, the increment of the interpolated process reduces
to

Xn(t )−Xn(s) = 1

2n/α
Y j

p
2n(t − s).

In that case, we get:

E
[|Xn(t )−Xn(s)|p]= p

2pn(t − s)p

2np/α
E

[|Y j |p
]

.

Since α≤ 2, we have p
2 ≤ p

α , thus (2n)p/2 ≤ (2n)p/α. Hence, we get:

E
[|Xn(t )−Xn(s)|p]≤C (t − s)p ≤C (t − s)p/α,

the last inequality being true since t and s are in the same sub-interval, hence t − s ≤ 1.
It remains us to discuss the case where t or s are not on the grid, and in separate sub-

intervals. In that case, we introduce s+ and t−, on the grid {k2−n ,k = 1, . . . ,2n} such that
s ≤ s+ ≤ t− ≤ t . We can always split the difference into:

Xn(t )−Xn(s) =
(

Xn(t )−Xn(t−)
)
+

(
Xn(t−)−Xn(s+)

)
+

(
Xn(s+)−Xn(s)

)
.

Now, t and t− are in the same sub-interval, and so are s and s+. Moreover, s+ and t−
are on the grid, hence, we can directly use the controls explained above to get:

E
[|Xn(t )−Xn(s)|p]≤C

(
(t − t−)p/α+ (t−− s+)p/α+ (s+− s)p/α

)
≤Cp (t − s)p/α,

where for the last inequality, we used the fact that ap +bp ≤ Cp (a +b)p , that holds with
Cp = 21−p if p ≤ 1 and Cp = 1 if p ≥ 1. Hence, Lemma 5 is applicable and the norm in Wη,p

is controlled.
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3.3 Derivation of the Final Rate of convergence

In this section, we derive the final rate of convergence of the interpolated random walk
(Xn(t ))t∈[0,1],n≥0 towards the stable process S in Wη,p . Recall:

ρ1
Wη,p

(Xn ,S) = sup
F∈Lip1

(
E [F (Xn)]−E [F (S)]

)
.

Let F be a Lipschitz function from Wη,p to R. We have:

E [F (Xn)−F (S)] =
(
E [F (Xn)]−E [F (πm(Xn))]

)
+

(
E [F (πm(Xn))]−E [F (πm(S))]

)
+

(
E [F (πm(S))]−E [F (S)]

)
≤ E

[
‖Xn −πm(Xn)‖Wη,p

]
+ρ1

W

(
πm(Xn),πm(S)

)
+E

[
‖S −πm(S)‖Wη,p

]
.

Thus,

ρ1
Wη,p

(Xn ,S) = sup
F∈Lip(Wη,p )

E [F (Xn)]−E [F (S)]

≤ E
[
‖Xn −πm(Xn)‖Wη,p

]
+ρ1

Wη,p
(πm(Xn),πm(S))+E

[
‖S −πm(S)‖Wη,p

]
.

We plug-in each the controls we obtained for each term, to get:

ρ1
Wη,p

(Xn ,S) ≤C
(
2−m

( 1
α−η

)
p +2m2n α−2

α +2m2−n γ
α +2−m

( 1
α−η

)
p
)

Crucially, we can already notice we can choose m and n such that every exponent is actu-
ally negative. Up to a modification of the constant, we can group the first and fourth term
together, to get an estimate:

ρ1
Wη,p

(Xn ,S) ≤C
(
2−m

( 1
α−η

)
p +2m2−n

( 2
α−1

)
+2m2−n γ

α

)
. (8)

We see that we need to choose m in terms of n to ensure that:

• 2−m
( 1
α−η

)
p tends to 0 as fast as possible, that is m as large as possible,

• 2m2−n
( 2
α−1

)
tends to 0 as fast as possible, that is m ≤ n

( 2
α −1

)
.

• 2m2−n γ
α tends to 0 as fast as possible, that is m ≤ n γ

α .

One can solve this optimization problem to find the optimal m in terms of n, but the
calculations are quite heavy. Hence, we provide a more tractable calculation giving a
sub-optimal rate. First, note that

ρ1
Wη,p

(Xn ,S) ≤C
(
2−m

( 1
α−η

)
p +2m−n×min

( 2
α−1, γα

))
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We set m = κn, and find κ such that the exponent match:

−κ
(

1

α
−η

)
p = κ−min

(
2

α
−1,

γ

α

)
⇒ κ= min

( 2
α −1, γα

)
1+ ( 1

α −η)
p

.

Our final bound comes out to be:

ρ1
W (Xn ,S) ≤C 2−nυ,

with

υ=
(

1

α
−η

)
p

min
( 2
α −1, γα

)
1+ ( 1

α −η)
p

.

4 Proof of the Moment Condition

In this section, we prove that the moment condition 7 actually holds for all p < α. Recall
that a random variable Y is in the normal domain of attraction of a stable distribution if
its distribution function FY is of the form:

1−FY (t ) = P(Y ≥ t ) = A+ε(t )

tα
and FY (−t ) = A+ε(−t )

(−t )α
,

whenever |t | ≥ 1. We split this paragraph into two parts in order to isolate the main
ideas. We first deal with the symmetrized Pareto case in subsection 4.1, then deal with the
full case in subsection 4.2. In both case, the proof uses a technique very reminiscent of
Stein’s method. The key is to perform an integration by parts with respect to the Pareto
distribution.

4.1 The case of Symmetrized Pareto

Theorem 7. Let Y1, . . . ,Yn independent and identically distributed with probability density
function:

P(Y ∈ dy) = α

2

dy

|y |α+1 1{|y |>1}.

Then, it holds that for all p <α:

sup
n

E

[∣∣∣∣∣ 1

n1/α

n∑
i=1

Yi

∣∣∣∣∣
p]

<+∞.

This result is of independent interest in the sense that, to the best of our knowledge, this
estimate is not present in the literature. This result is not surprising however, the Pareto
distributions being in the domain of attraction of the stable distribution, similar estimate
are expected to hold.

Similarly to the non-integrable case, the idea is to relate the moment of 1
n1/α

∑
Yi to the

moment of a stable random variable. However, the lack of uniform Lipschitz property of
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x 7→ |x|p at 0 prevents us from using the results of [7] directly. We introduce the function
φp :

φp (x) =
{
|x|p if |x| > 1
p
2 x2 + (1− p

2 ) else.
(9)

This function interpolates a parabola close to the origin and the function x 7→ |x|p . By
construction, it holds that

|x|p ≤ 1+φp (x), (10)

and φp ∈ C
2,p
b , meaning twice differentiable with p-Hölder first derivative and bounded

second derivative. We will use this function to establish the moment condition. Namely,
we prove:

E

[
φp

(
1

n1/α

n∑
j=1

Yi

)]
<+∞. (11)

Estimate (11) coupled with inequality (10) on φp yield the moment condition of
Theorem 7. We now focus of establishing (11).

Lemma 8. Let G ∈C
2,p
b (R). Let Y with probability density function

P(Y ∈ dy) = α

2

dy

|y |α+1 1{|y |>1}.

It holds that

2

α
E

[
G ′(Y )Y

]= LG(0)−
(
G(1)+G(−1)−2G(0)

)
−

∫
|y |≤1

(
G(y)−G(0)−G ′(0)y

) α dy

|y |α+1 ,

where L is the non local operator:

Lϕ(x) =
∫ +∞

−∞

(
ϕ(x + y)−ϕ(x)−ϕ′(x)y

) α dy

|y |1+α .

Proof. We start by expressing the left hand side using the pdf of Y :

E
[
G ′(Y )Y

] =
∫
|y |>1

G ′(y)y
α

2

dy

|y |α+1 1{|y |>1}

=
∫ +∞

1
G ′(y)y

α

2

dy

yα+1 +
∫ −1

−∞
G ′(y)y

α

2

dy

(−y)α+1

= E++E−.

By integration by parts, we have:

E+ =
∫ +∞

1
G ′(y)

α

2

dy

yα
= α

2

[
G(y)−G(0)

yα

]+∞
1

− α

2

∫ +∞

1

(
G(y)−G(0)

) (−α)

yα+1 dy

= α

2

(
α

∫ +∞

1

(
G(y)−G(0)

) 1

yα+1 dy −
(
G(1)−G(0)

))
.
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Similarly, for the negative side, we have:

E− = −
∫ −1

−∞
G ′(y)

α

2

dy

(−y)α
=−α

2

[
G(y)−G(0)

(−y)α

]−1

−∞
+ α

2

∫ −1

−∞

(
G(y)−G(0)

) (−1)(−α)

(−y)α+1 dy

= α

2

(
α

∫ −1

−∞

(
G(y)−G(0)

) 1

(−y)α+1 dy −
(
G(−1)−G(0)

))
.

We can group the two integrals together writing:∫ −1

−∞

(
G(y)−G(0)

) (−1)(−α)

(−y)α+1 dy +
∫ −1

−∞

(
G(y)−G(0)

) 1

(−y)α+1 dy =
∫
|y |>1

(
G(y)−G(0)

) dy

|y |α+1 .

Besides, since the distribution is symmetric, we can add G ′(0)y under the integral without
changing its value:

α

∫
|y |>1

(
G(y)−G(0)

) dy

|y |α+1 =
∫
|y |>1

(
G(y)−G(0)−G ′(0)y

) α dy

|y |α+1 .

Adding the integral for |y | ≤ 1, we get:

α

∫
|y |>1

(
G(y)−G(0)

) dy

|y |α+1 = LG(0)−
∫
|y |≤1

(
G(y)−G(0)−G ′(0)y

) α dy

|y |α+1 .

Consequently, we finally have:

E
[
G ′(Y )Y

]= α

2

(
LG(0)−

(
G(1)+G(−1)−2G(0)

)
−

∫
|y |≤1

(
G(y)−G(0)−G ′(0)y

) α dy

|y |α+1

)
.

Proof of Theorem 7. Consequently, we see that we can bound E
[
G ′(Y )Y

]
with the second

derivative of G . Let us now define some notations. Recall the function φp defined in(9)
above. We use bold letters to denote vectors in Rn . Besides, capital letters will denote
random variables.

Let Y = (Y1, . . . ,Yn) be a vector with IID entries, such that

P(Yi ∈ dy) = α

2

dy

|y |α+1 1{|y |>1}.

Let also S = (S1, . . . ,Sn) be a stable process inRn with independent coordinates. For any

function F ∈C
2,p
b , it holds that

E [F (Y)]−E [F (S)] =−
∫ +∞

0
E [L Pt F (Y)] dt , (12)
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where L is the generator of the stable driven Ornstein-Uhlenbeck process:

dXt =− 1

α
Xt dt + dSt ,

We note here that the generator L has the expression:

Lϕ(x) =− 1

α
∇ϕ(x) ·x+

n∑
i=1

∫
R

(
F (x+uei )−F (x)−∇F (x) ·u

) 1

|u|α+1 du,

where ei is the canonical basis element of Rn .
We use equation 12 with

F (x) =φp

(
x1 +·· ·+xn

n1/α

)
.

This leads us to the identity:

E
[
φp

(
Y1 +·· ·+Yn

n1/α

)]
−E

[
φp

(
S1 +·· ·+Sn

n1/α

)]
=−

∫ +∞

0
E [L Pt F (Y)] dt . (13)

Now, since S = (S1, . . . ,Sn) be a stable process in Rn , it has finite moments of order p < α.
Thus, equation (11) will hold as soon as we control the right hand side of (13). Hence, we
need to control:

E =
n∑

i=1
E

[
− 1

α
∂yi G(Y)Yi +

∫
R

(
G(Y+uei )−G(Y)−∇G(Y) ·u

) 1

|u|α+1 du

]
,

where G = Pt F . Let us denote for i = 1, . . . ,n

G\Yi (y) =G
(
Y1, . . . ,Yi−1, y,Yi+1, . . . ,Yn

)
.

In other words, G\Yi is the (random) function G where we replace the i -th component by
the variable y ∈R. By conditioning in the sum by Y1, . . . ,Yi−1,Yi+1, . . . ,Yn , it holds that

E =
n∑

i=1
E

[
− 1

α
G ′

\Yi
(Yi )Yi +

∫
R

(
G\Yi (Yi +u)−G\Yi (Yi )−G ′

\Yi
(Yi ) ·u

) 1

|u|α+1 du

]
.

These notations allows us to reduce to the once dimensional case, and use Lemma 8 above.
Namely, we deduce that:

E
[
G ′

\Yi
(Yi )Yi

]
= E

[
α

2

(
LG\Yi (0)−

(
G\Yi (1)+G\Yi (−1)−2G\Yi (0)

)
−

∫
|y |≤1

(
G\Yi (y)−G\Yi (0)−G ′

\Yi
(0)y

) α dy

|y |α+1

)]
.

Recall G = Pt F , we need to control
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E [L Pt F (Y)] =
n∑

i=1
E

[
− 1

α
G ′

\Yi
(Yi )Yi +LG(Yi )

]
=

n∑
i=1

E

(
1

2

(
−LG\Yi (0)+

(
G\Yi (1)+G\Yi (−1)−2G\Yi (0)

)
+

∫
|y |≤1

(
G\Yi (y)−G\Yi (0)−G ′

\Yi
(0)y

) α dy

|y |α+1

)
+LG(Yi )

)
.

Looking at this identity, it appears that the quantity we need to focus on is LG\Yi (Yi )−
LG\Yi (0), all other terms can be controlled by ‖G ′′‖∞ from a Taylor’s expansion. We have:

LG\Yi (Yi )−LG\Yi (0) =
∫ +∞

−∞

(
G\Yi (Yi + y)−G\Yi (Yi )−G ′

\Yi
(Yi )y

) α dy

|y |α+1

−
∫ +∞

−∞

(
G\Yi (y)−G\Yi (0)−G ′

\Yi
(0)y

) α dy

|y |α+1 ·

We split this integral between {|y | ≤ 1}, where we can do a Taylor’s expansion, and {|y | > 1}:

LG\Yi (Yi )−LG\Yi (0)

=
∫

{|y |≤1}

((
G\Yi (Yi + y)−G\Yi (y)

)− (
G\Yi (Yi )−G\Yi (0)

)− (
G ′

\Yi
(Yi )−G ′

\Yi
(0)

)
y
) α dy

|y |α+1

+
∫

{|y |>1}

((
G\Yi (Yi + y)−G\Yi (y)

)− (
G\Yi (Yi )−G\Yi (0)

)− (
G ′

\Yi
(Yi )−G ′

\Yi
(0)

)
y
) α dy

|y |α+1

= I + II .

We now turn to the second integral above. First, noticing that on {|y | > 1}, the measure
α dy
|y |α+1 is finite and symmetric, we can cancel the compensation term. Next, we have:

G\Yi (Yi + y)−G\Yi (y) =
∫ 1

0
G ′

\Yi
(y +θYi ) ·Yi dθ,

G\Yi (Yi )−G\Yi (0) =
∫ 1

0
G ′

\Yi
(0+θYi ) ·Yi dθ.

This gives us:

II =
∫

{|y |>1}

∫ 1

0

(
G ′

\Yi
(y +θYi )−G ′

\Yi
(θYi )

)
Yi dθ

α dy

|y |α+1 .

Now, we do an additional Taylor’s expansion, writing that

G ′
\Yi

(y +θYi )−G ′
\Yi

(θYi ) =
∫ 1

0
G ′′

\Yi
(θYi +µy)ydµ,
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which can be bounded, since 1{|y |>1}
α dy
|y |α+1 integrates |y | at infinity. This gives us the

following estimate:
E [II ] ≤ ‖G ′′‖∞E [|Y1|] .

Remark 6. We point out that this last estimate is rather tricky. Doing bluntly a second
order Taylor estimation on G\Yi would not work here because y2 is not integrable at in-

finity against α dy
|y |α+1 . Instead, here, the second increment y is replaced by Yi , which can be

estimated.

For the sake of completeness, let us write the estimate we obtain for I :

E [I ] ≤ ‖G ′′‖∞ 1

2−α ·

Hence, we managed to relate every terms in (12) to the derivatives of G . We have the
following lemma:

Lemma 9. For any F ∈C
2,p
b , it holds that

• ∇Pt F (x) ≤ e−t/αPt (∇F )(x).
• If ∇F is Lipschitz, then ∇Pt F is Lipschitz, with

|∇Pt F (x)−∇Pt F (y)| ≤Ce−t/α|x − y |β−1.

Recalling G = Pt F , derivatives of G actually yields an additional 1/n1/α factor. Hence,
our final estimate is the following:

E [L Pt F (Y)] =
n∑

i=1
E

[
− 1

α
G ′

\Yi
(Yi )Yi +LG(Yi )

]
=

n∑
i=1

E
[

1

2

(
−LG\Yi (0)+

(
G\Yi (1)+G\Yi (−1)−2G\Yi (0)

)
+

∫
|y |≤1

(
G\Yi (y)−G\Yi (0)−G ′

\Yi
(0)y

) α dy

|y |α+1

)
+LG(Yi )

]
.

Finally, in this sum, we bound each term by ‖G ′′‖∞ = 1
n2/α e−t/α‖φ′′

p‖∞. Now recall that
φp interpolates between a 2nd order polynomial and x 7→ xp , with p ≤ 2, hence, its second
derivative is bounded.

This gives us the upper bound:

|E | ≤C
n∑

i=1

1

n2/α
e−t/α‖φ′′

p‖∞ =C n1− 2
α e−t/α. (14)

The presence of the exponential term allows us to integrate in t from 0 to∞, and finally,
the proof is complete.

Note that we also established the following lemma:
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Lemma 10. Let G be a C 2,p
b function with bounded derivative then,∣∣∣∣∫|u|≤1

[G(u + y)−G(y)−uG ′(y)]
1

|u|α+1 du

∣∣∣∣≤ 2

2−α‖G"‖∞, (15)∣∣L(G)(y)−L(G)(0)
∣∣≤Cα‖G"‖∞[1+|y |], ∀y ∈R. (16)

4.2 In the Normal domain of attraction

In this paragraph, we demonstrate how to establish the moment condition (7) for a gen-
eral random variable in a Normal Stable domain of attraction. We recall that for a random
variable Y to be in the normal domain of attraction of a stable distribution, we require its
distribution function Fy to satisfy:

1−FY (t ) = P(Y ≥ t ) = A+ε(t )

tα
and FY (−t ) = A+ε(−t )

(−t )α
,

whenever |t | ≥ 1. From that decomposition, we see that we can extract a Pareto compo-
nent from FY . We let PY ( dy) = ηPZ ( dy)+ (1−η)µ( dy), where PZ is the distribution of a
symmetrized Pareto.
Remark 7. The constant η is chosen according to A and α to ensure that we indeed define a
probability distribution. In the case where the constant η= 1, notice that we recover the pre-
vious symmetrized Pareto distribution. This constant η will also play a role in the generator
below.

Observe now that µ is simply a signed measure, for which we have the following
information:

• µ is centered, signed and finite

• µ(t ;+∞) = ε(t )

tα
, if t ≥ 1, and µ(−∞;−t ] = ε(−t )

(−t )α
, it t ≤−1

• |µ| ≤PY +PZ ≤ (1+‖ε‖∞)PZ

Proposition 11. For all 1 <α<β there exists a constant cα,β,η such that for all Y a random

variable with distribution in Dα,η and G ∈Fβ and A > 1

E
[
L α,ηG(Y )

]≤ cα,β,η

[
‖G"‖∞+ (1−η)(1+‖ε‖∞)

{
Aβ−α‖G ′‖β−1,Hol + A2−α‖G"‖∞

}]
.

Proof of Proposition 11. The main lines of the proof is similar, we first derive from Stein’s
equation:

E [F (Y )]−E [F (S)] =
∫ t

0
E [L Pt F (Y )] dt ,

where L is the generator of the Orstein Uhlenbeck process:

Lϕ(x) = − 1

α
ϕ′(x) · x +

∫ +∞

−∞

(
ϕ(x + y)−ϕ(x)−ϕ′(x)y

)ηα
2

1

|y |1+α dy

= − 1

α
ϕ′(x) · x +ηLϕ(x)
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Remark 8. We point out here the coefficient η that was not present or rather equal to one in
the Pareto case. We can put this coefficient here, up to a modification of the Lévy measure of
the stable process, and this saves a renormalisation by some coefficient σ in Nourdin [7].

Let Y be a random variable with distribution in Fα,η and Z be a random variable with
symmetric Pareto distribution and FY , FZ their distribution function. Then FY −ηFZ is a
function of finite bounded variation associated to a signed measure µ such that

|µ| ≤PY +PZ ≤ (1+‖ε‖∞)PZ ,

µ(]t ,+∞[) = ε(t )

tα
∀ t > 1,

µ(]−∞, t ]) = ε(t )

tα
.

With these notations in hand, since Y is a centered random variable

E [L (G)(Y )] =− 1

α

∫
R

y
[
G ′(y)−G ′(0)

][
η dPZ (y)+ (1−η)dµ(y)

]
+η

∫
R

L(G)(y) dPY (y).

Using Lemma 8 for the integral with respect to dPZ we obtain

E [L (G)(Y )] =−α
2
η [G(1)+G(−1)−2G(0)]

1

α
η

∫
|u|≤1

[
G(u)−G(0)−uG ′(0)

] du

|u|α+1

+η
∫
R

[
L(G)(y)−L(G)(0)

]
dPY (y)

− 1

α

∫
R

y
[
G ′(y)−G ′(0)

]
(1−η)dµ(y).

Using Lemma 10 the three first terms of the right member are bounded by Cα,η‖G"‖∞
where Cα,η depends only on α and η.

For the last term, notice how whenη= 1, then term is not present, and the result follows
from the Pareto case. When η< 1, we shall use the following Lemma to bound the last term
by for some A > 1 to be chosen later.∣∣∣∣∫

R
y

[
G ′(y)−G ′(0)

]
dµ(y)

∣∣∣∣≤Cα,β,η

[
Aβ−α‖G ′‖β,Höl + A2−α‖G"‖∞

]
Thus this achieves the proof of Proposition 11 under Lemma 12.

Lemma 12. Under the assumptions of Proposition 11, there exists a constant Cα,β,η such

that for all G ∈Fα,β and A > 1∣∣∣∣∫
R

y
[
G ′(y)−G ′(0]

]
dµ(y)

∣∣∣∣≤Cα,β,η

[
Aβ−α‖G ′‖β−1,Höl + A2−α‖G"‖∞

]
.
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Proof of Lemma 12 :. Let A > 1 We split the integral in fourth terms :∫
R

y
[
G ′(y)−G ′(0]

]
dµ(y) =

∫
{|y |≤1}

y
[
G ′(y)−G ′(0]

]
dµ(y)

+
∫

{|y |≥A}
y

[
G ′(y)−G ′(0)

]
dµ(y)

+
∫ A

1
y

[
G ′(y)−G ′(0)

]
dµ(y)+

∫ −1

−A
y

[
G ′(y)−G ′(0)

]
dµ(y).

The first one is bounded using Taylor expansion by∣∣∣∣∫
{|y |≤1}

y
[
G ′(y)−G ′(0)

]
dµ(y)

∣∣∣∣≤ ‖G"‖∞|µ(R)| ≤ 2‖G"‖∞.

Using the fact that G ′ isβ−1 Hölder continuous and that |µ| ≤ (1+‖ε‖∞)PZ (anαPareto
distribution) the second term is bounded by∣∣∣∣∫

{|y |≥A}
y

[
G ′(y)−G ′(0)

]
dµ(y)

∣∣∣∣≤ ‖G ′‖β−1,Höl(1+‖ε‖∞)
∫

{|y |≥A}
|y |β dPZ (y)

≤ ‖G ′‖β−1,Höl(1+‖ε‖∞)
α

β−α ·

For the third one, we perform an integration by part∫ A

1
y
[
G ′(y)−G ′(0)

]
dµ(y) = [−y

[
G ′(y)−G ′(0)

]
µ(]y,+∞[)

]A
1

+
∫ A

1

([
G ′(y)−G ′(0)

]+ yG"(y)
)
µ(]y,∞[) dy.

Thus since ∣∣µ(]y,+∞[)
∣∣≤ (1+‖ε‖∞)

2

1

yα

it is bounded by∣∣∣∣∫ A

1
y

[
G ′(y)−G ′(0)

]
dµ(y)

∣∣∣∣≤ 2
[

1+ α

2−α
]
‖G"‖∞(1+‖ε‖∞)

[
1+ A2−α]

.

The integral on ]− A,−1] term is bounded in the same spirit. This achieves the proof of
Lemma 12, and thus the proof of Proposition 11 is complete.

Let us now return to the general case. Recall that the goal is to control

E [F (Y)] = E
[
φp

(
Y1 +·· ·+Yn

n1/α

)]
,
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where Yi ’s are in the normal domain of attraction. Hence, we need to control:

E =
n∑

i=1
E

[
− 1

α
∂yi G(Y)Yi +η

∫
R

(
G(Y+uei )−G(Y)−∇G(Y) ·u

) 1

|u|α+1 du

]
.

Keeping the notations as in the previous paragraph, we can reduce this calculation to
the one dimensional case by conditioning. Let G = Pt F and for i = 1, . . . ,n:

G\Yi (y) =G
(
Y1, . . . ,Yi−1, y,Yi+1, . . . ,Yn

)
.

We need to control:

E =
n∑

i=1
E

[
− 1

α
G ′

\Yi
(Yi )Yi +η

∫
R

(
G\Yi (Yi +u)−G\Yi (Yi )−G ′

\Yi
(Yi ) ·u

) 1

|u|α+1 du

]
.

Now, we can plug the one-dimensional result from Proposition 11:

E ≤ cα,β,η

n∑
i=1

E
[
‖G"\Yi ‖∞+ (1−η)(1+‖ε‖∞)

{
Aβ−α‖G ′

\Yi
‖β−1,Höl + A2−α‖G"\Yi ‖∞

}]
.

Finally, we recall that ‖G ′′‖∞ = 1
n2/α e−2t/α‖φ′′

p‖∞ and

‖G ′‖β−1,Höl ≤Ce−t/α 1

nβ/α
‖φp‖∞.

This power in n prompts us to chose A = nδ, where δ< 1
α , so that

n × Aβ−α‖G ′
\Yi

‖β−1,Höl −→
n→+∞ 0.

A similar calculation leads to the same restriction over δ for the contribution of
A2−α‖G ′′

\Yi
‖∞. This choice of A lets us finally control the difference by something bounded

in n. As for the integral in time, the extra e−t/α factor allows us to integrate from 0 to +∞,
thus the moment condition holds.
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