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Abstract

We introduce a vorticity Leray-αmodel with eddy viscosity depending on d(x, ∂Ω)η

where ∂Ω is the boundary of the domain and η ∈]0; 1[. We prove that this system
admits fairly regular weak solutions converging when α goes to 0 to the solution of a
reference system.
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1 Introduction

Let Ω be a C 2 open bounded subset of R3. According to turbulence modelling, we introduce
in this paper the following vorticity Leray-α model

ω̄ × u− div (ϱην̃∇u) + λu+∇p̃ = f in Ω,(1.1)

div (u) = 0 in Ω,(1.2)

ω = curl(u) in Ω,(1.3)

−α2∆ω̄ + ω̄ = P (ω) in R3,(1.4)

u = 0 on ∂Ω,(1.5)

where u models the long time average of the flow, p̃ = p − |u|2

2
is the modified mean

pressure, and f ∈ L2(Ω)3 is a given source term. The linear term λu with λ > 0 is a
damping term.
The eddy viscosity is of the form νturb = ϱην̃, where 0 < η < 1 and ν̃ is a continuous
function satisfying

(1.6) ∀ t ∈ R, 0 < νm ≤ ν̃(t) ≤ νM ,

where νm and νM are constants.
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The function ϱ refers to the Prandtl mixing length (see [20]), which appears like a regular
function behaving like the distance to the boundary d(·, ∂Ω). More precisely, we consider
ϱ : Ω → R+ such that

(1.7) lim
d(x,∂Ω)→0

x∈Ω

ϱ(x)

d(x, ∂Ω)
= 1 and ∀n > 0, ϱn = inf

d(x,∂Ω)≥ 1
n

x∈Ω

ϱ(x) > 0.

The operator P in (1.4) is the extension by 0, which means

(1.8) P (ω) : x 7→
{

ω(x) if x ∈ Ω,
0 if x /∈ Ω.

Equation (1.4) defining ω̄ is the Helmholz equation (studied in detail for instance in [7, 13]),
so that (1.1)-(1.5) is a kind of Leray-α model, which is a LES model.
In this paper we show that (1.1)-(1.5) with η < 1 admits sufficiently regular weak solutions
satisfying the energy balance (3.2) (Theorem 3.1) that converge when α goes to zero to a
solution of the following system

ω × u− div (ϱην̃∇u) + λu+∇p = f in Ω,(1.9)

div (u) = 0 in Ω,(1.10)

ω = curl(u) in Ω,(1.11)

u = 0 on ∂Ω.(1.12)

As previously shown in [1], (1.9)-(1.12) admits weak solutions for 0 ≤ η < 1, but the energy
balance (3.2) can be satisfied if and only if 0 ≤ η < 1/5. Consequently, the convergence
stated in Theorem 3.2 is weak when 1/5 ≤ η < 1 and strong if 0 ≤ η < 1/5.

Leray-α models were first introduced by J. Leray in [15, 16], and have been studied in
detail in [3, 4, 6, 8, 9, 18, 19]. In this kind of models, the convection term is given by
(ū · ∇)u.
By the way, it is possible to apply the filter to both velocities, so that the convection
term becomes (u · ∇)u. This is called Bardina-type models. These have been studied for
instance in [3, 5, 8, 11, 17]. In particular, it is shown that solutions of the α-models are
regular and converge to the Leray solution of NSE, most of time with periodic bound-
ary conditions. A comparison between these different models is made for instance in
[3, 6, 8, 18].

In order to ensure coercivity results, a free-divergence assumption is required for ū. Con-
sequently, the standard Leray-α model adapted to (1.1) should be like

(ū · ∇)u− div (ϱην̃∇u) + λu+∇p = f in Ω,(1.13)

−α2∆ū+ ū+∇q = u in Ω,(1.14)

div (u) = div (ū) = 0 in Ω,(1.15)

u = 0 on Γ.(1.16)

Unfortunately, this model does not provide sufficient results to ensure the existence of
suitable solutions. Indeed, we work in weighted function spaces, which only provides a
W 1,p regularity for u, with 1 ≤ p < 2. This regularity is not enough, because of the
Lagrange multiplier in (1.14).
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This is why the vorticity has been introduced. This quantity appears in [8, 19] to introduce
an α-model called NS-α. In this model, the vorticity term curl(u) × u is replaced by
curl(u)× ū.
Here we consider another version of this model, similar to the NS − ω̄ model introduced
by W.J. Layton and al. in [12, 14], where the vorticity term of (1.9)-(1.12) becomes
curl(ū) × u. A theoretical study is made in [12], for a system of NSE with constant vis-
cosity. This idea is relevant given that there is no free-divergence assumption required to
prove coercivity in the calculations.

The paper is organized as follows. In section 2, we focus on the vorticity Helmholz equa-
tion with a Lp source term. The goal is proving some convergence results that are applied
later.
In section 3, we start by showing the existence of a distributional solution of (1.1)-(1.5)
using a fixed-point strategy, and then we prove the convergence to a solution of (1.9)-(1.12)
when α goes to zero. The value of η has an influence on the sense of the convergence.

I would like to express my gratitude to my PhD advisor Professor Roger LEWANDOWSKI
to have suggested this problem and guided me during this work.

2 Vorticity Leray-α model

This section starts by defining the function spaces in which solutions of (1.9)-(1.12) are
searched. As already done in [1], some Sobolev regularity is given on these spaces.
Then, the solution of the Helmholz vorticity equation is written with a convolution kernel,
to ease the calculations in order to find results on ω̄ starting from equivalent statements
on ω.

2.1 Functions spaces and estimates

We first define a space of smooth functions

(2.1) V = {v ∈ D(Ω)3 / div (v) = 0},

and Vη is the closure of this space for the norm

(2.2) ∥u∥Vη =
(
∥u∥20,2,Ω + ∥ϱη/2∇u∥20,2,Ω

)1/2
.

We start by stating the regularity of Vη functions. Indeed, looking at the norm (2.2), we
understand that such functions are not likely to be H1 if η > 0.

We recall two embedding theorems. The first is from [1, 2] brings a Hs estimate, with
1/2 < s ≤ 1.

Theorem 2.1. Let η ∈ [0; 1[. The continuous embedding

(2.3) Vη ↪→ H1− η
2 (Ω)3

stands, which implies the Sobolev compact embedding

(2.4) Vη ↪→ Lr(Ω)3, where 1 ≤ r <
6

1 + η
.
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The second result from [10] brings a W 1,p estimate with 1 ≤ p < 2.

Theorem 2.2. Let η ∈ [0; 1[. The continuous embedding

(2.5) Vη ↪→ W 1,p(Ω)3

stands for p ∈
[
1;

2

1 + η

[
.

Remark 2.1. The compact Sobolev embedding given by Theorem 2.2 is weaker than this

given by Theorem 2.1. Indeed,
6

1 + 3η
is lower than

6

1 + η
.

Remark 2.2. These two results also give an estimate on the vorticity.

• If u ∈ H1− η
2 (Ω)3, then ω = curl(u) ∈ H− η

2 (Ω)3.

• If u ∈ W 1,p(Ω)3, then ω = curl(u) ∈ Lp(Ω)3.

2.2 Green kernel for the Helmholz problem

Until the end of this section, we simply write ω instead of P (ω). This means

(2.6) ω ∈ Lp(R3)3 with 1 ≤ p <
2

1 + η
and 0 ≤ η ≤ 1.

We focus on the following Helmholz equation, where α > 0 is a constant parameter,
supposed to be near 0.

(2.7) −α2∆ω̄ + ω̄ = ω.

Theorem 2.3 (Green function). Let ω ∈ Lp(R3)3 defined in (2.6), and ω̄ satisfying (2.7).
Then

(2.8) ω̄(x) = Kα ∗ ω(x)

for almost every x ∈ R3, where Kα is the scalar function given by

(2.9)

Kα : R3 → R

x 7→ e−|x|/α

4πα2|x|
.

This result is already proved in [17].

Lemma 2.1. The function Kα given by (2.9) is in Lq(R3,R+) for q ∈ [1; 3[ and

(2.10)

∫
R3

Kα(x)
q dx = Γ(3− q)

(4πα3)1−q

q3−q
,

where Γ refers to the Euler function: Γ(t) =
∫ +∞
0 st−1e−s ds, for any t > 0.

Remark 2.3. When q = 1, we obtain in particular

(2.11)

∫
R3

Kα(x) dx = 1.
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Proof. We use a change of variables which transforms the classical cartesian coordinates
of R3 into spherical coordinates (r, θ, φ) ∈ R+ × [0;π] × [0; 2π], so that the 3D Lebesgue
measure is written

(2.12) dλ(y) = r2 sin(θ) dr dθ dφ.

The Fubini-Tonelli theorem then yields

(2.13)

∫∫∫
R3

Kα(y)
q dy =

∫ +∞

r=0

∫ π

θ=0

∫ 2π

φ=0

e−qr/α

(4π)qα2qrq
r2 sin(θ) dr dθ dφ

=
(4π)1−q

α2q

∫ +∞

0
r2−qe−qr/α dr.

The change of variables s =
qr

α
yields

(2.14)

∫ +∞

0
r2−qe−qr/α dr =

(
α

q

)3−q ∫ +∞

0
s2−qe−s ds.

This integral is defined if and only if 2− q > −1, which means q < 3. When this condition
is satisfied, (2.13) yields

(2.15)

∫
R3

Kα(y)
q dy =

(4π)1−q

α2q

(
α

q

)3−q ∫ +∞

0
s2−qe−s ds,

which corresponds to (2.10).

Since the vector function ω̄ is defined as a convolution, the Young inequality gives some
regularity results for ω̄. Indeed, the extension by 0 preserves the Lp norms.

Lemma 2.2 (Lγ-regularity for ω̄). Let ω ∈ Lp(R3)3 with p defined by (2.6), and Kα ∈
Lq(R3) with q ∈ [1; 3[.

• If 0 ≤ η < 1/3, ω̄ ∈ Lγ(R3)3 with 1 ≤ γ ≤ +∞.

• If η = 1/3, ω̄ ∈ Lγ(R3)3 with 1 ≤ γ < +∞.

• If 1/3 < η ≤ 1, ω̄ ∈ Lγ(R3)3 with 1 ≤ γ <
6

3η − 1
.

Proof. Since Kα ∈ Lq(R3) and ω ∈ Lp(R3)3, the Young inequality yields

(2.16) ω̄ ∈ Lγ(R3)3 with 1 +
1

γ
=

1

p
+

1

q
.

The assumptions on p and q yield

(2.17)
1 + η

2
+

1

3
<

1

p
+

1

q
≤ 2,

which means

(2.18)
η

2
− 1

6
<

1

γ
≤ 1.

We see that η
2 −

1
6 is always striclty lower than 1, and it is positive if and only if η > 1/3.

Consequently, when η ≤ 1/3 we directly obtain the result. And if η > 1/3, (2.18) yields

(2.19) 1 ≤ γ <
6

3η − 1
.

Hence the result.
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2.3 Main convergence results

The two next results are the main statements of this paper. First, we consider the case
where α is fixed. The following lemma will be used to find solutions of the approximated
system (1.1)-(1.5), by a fixed-point method.

Lemma 2.3 (Convergence when α is fixed). Let (ωn)n∈N be a sequence of Lp(R3)3 func-
tions (1 ≤ p < +∞) that weakly converges to ω ∈ Lp(R3)3. Let (ω̄n)n∈N be the sequence
of the solutions of (2.7) with source term ωn, and ω̄ the solution of (2.7) with source term
ω.
Then (ω̄n)n∈N weakly converges in Lp(R3)3 to ω̄.

Proof. Let ϕ ∈ Lp′(R3), the Fubini theorem yields

(2.20)

∫
R3

ω̄n(x)ϕ(x) dx =

∫∫
x,y∈R3

ωn(y)Kα(x− y)ϕ(x) dx dy

=

∫
y∈R3

ωn(y)

(∫
x∈R3

Kα(x− y)ϕ(x) dx

)
dy.

Since ϕ ∈ Lp′(R3) and Kα ∈ L1(R3), the function
[
y 7→

∫
R3 Kα(x− y)ϕ(x) dx

]
is in

Lp′(R3). Hence the weak convergence of (ωn)n∈N yields the result.

The following theorem gives the convergence of the solutions ω̄ of (2.7) when α goes
to zero. This will be used later to show the convergence of a sequence of solutions of
(1.1)-(1.5) to a solution of (1.9)-(1.12).

Theorem 2.4. Let (αn)n∈N be a sequence of positive numbers such that αn −→
n→+∞

0, and p

be defined by (2.6). Let (ωαn)n∈N be a sequence of Lp(R3)3 functions that weakly converges
to ω ∈ Lp(R3)3.
Let (ω̄αn)n∈N satisfy for all n ∈ N

(2.21) −α2
n∆ω̄αn + ω̄αn = ωαn .

Then (ω̄αn)n∈N weakly converges to ω in Lp(R3)3.

Proof. Let ϕ ∈ D(R3), by the Fubini theorem

(2.22)

∫
R3

ω̄αn(x)ϕ(x) dx =

∫∫
x,y∈R3

ωαn(y)Kαn(x− y)ϕ(x) dx dy

=

∫
y∈R3

ωαn(y)

(∫
x∈R3

Kαn(x− y)ϕ(x) dx

)
dy.

The change of variables z = x−y
αn

in the middle integral yields

(2.23)

∫
R3

Kαn(x− y)ϕ(x) dx =

∫
R3

e−|x−y|/αn

4πα2
n|x− y|

ϕ(x) dx =

∫
R3

e−|z|

4π|z|
ϕ(y + αnz) dz.

Then (2.22) becomes

(2.24)

∫
R3

ω̄αn(x)ϕ(x) dx =

∫
z∈R3

K1(z)

(∫
y∈R3

ωαn(y)ϕ(y + αnz) dy

)
dz.
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We now aim at showing the following convergence for any fixed z ∈ R3

(2.25)

∫
R3

ωαn(y)ϕ(y + αnz) dy −→
n→+∞

∫
R3

ω(y)ϕ(y) dy.

To do so, we decompose the difference

(2.26)

∫
R3

ωαn(y)ϕ(y + αnz) dy −
∫
R3

ω(y)ϕ(y) dy =

∫
R3

(ωαn(y)− ω(y))ϕ(y) dy

+

∫
R3

ωαn(y) (ϕ(y + αnz)− ϕ(y)) dy.

On one hand, the weak convergence of (ωαn)n∈N yields

(2.27)

∫
R3

(ωαn(y)− ω(y))ϕ(y) dy −→
n→+∞

0.

On the other hand, the Hölder inequality yields

(2.28)

∫
R3

ωαn(y) (ϕ(y + αnz)− ϕ(y)) dy ≤ ∥ωαn∥p
(∫

R3

|ϕ(y + αnz)− ϕ(y)|p
′
dy

)1/p′

−→
n→+∞

0,

by the Lebesgue theorem. Hence (2.25).
Then the following domination stands:

(2.29)

∣∣∣∣K1(z)

(∫
y∈R3

ωαn(y)ϕ(y + αnz) dy

)∣∣∣∣ ≤ K1(z)∥ωαn∥p∥ϕ∥p′ ,

which is L1(R3).
Therefore by the Lebesgue theorem, (2.25) and (2.29)

(2.30)

∫
R3

ω̄αn(x)ϕ(x) dx −→
n→+∞

∫
R3

ω(y)ϕ(y) dy.

The density of D(R3) in Lp′(R3) yields the result.

3 Solutions of the Leray-α approximated system

This section aims at proving the existence of solutions of (1.9)-(1.12), in three steps. First,
we solve a linearized system by the Lax-Milgram theorem. Such a solution is unique, and
can be written Tu. Then the existence of solutions of (1.1)-(1.5) is shown by using the
Leray-Schauder fixed-point theorem on the operator T .
We then obtain a sequence (uαn)n∈N of solutions, corresponding to a sequence of parame-
ters (αn)n∈N converging to 0. Finally, Theorem 2.4 provides the convergence to a solution
of (1.9)-(1.12).

3.1 Variational formulation

The function ω̄ in (1.1)-(1.5) is obtained this way.

• We consider the extension by 0 of ω ∈ Lp(Ω)3, still named the same,

• ω̄ satisfies (2.7), so that ω̄ ∈ Lγ(R3)3, where γ is given by Corollary 2.2.

• we take the restriction of ω̄ to Ω, still named the same.

7



We write the variational formulation of system (1.1)-(1.5)

(3.1)


u ∈ Vη,

∀ v ∈ Vη,

∫
Ω
(ω̄(u)× u) · v +

∫
Ω
ϱην̃∇u : ∇v + λ

∫
Ω
u · v =

∫
Ω
f · v.

Taking v = u in (3.1) yields the following energy balance

(3.2)

∫
Ω
ϱην̃|∇u|2 + λ

∫
Ω
|u|2 =

∫
Ω
f · u.

These two equations have a sense if and only if the integrals are defined. The condition is
given by the following lemma.

Lemma 3.1 (Critical exponents). Let f ∈ L2(Ω)3 and λ > 0. For any η ∈]0; 1[, all the
integrals in (3.1) are well defined.

Proof. The definition of Vη directly yields the three last integrals in (3.1) are finite. In
order to show that

∫
Ω(ω̄ × u) · v is finite for u,v ∈ Vη, we have to distinguish the two

cases of Lemma 2.2.

If η ≤ 1/3, ω̄ ∈ L∞(Ω)3 and u,v ∈ Lr(Ω)3 for 1 ≤ r <
6

1 + η
. The Hölder inequality then

yields

(3.3)

∫
Ω
|(ω̄ × u) · v| ≤ ∥ω̄∥0,∞,Ω∥u∥0,r,Ω∥v∥0,r,Ω, if

2

r
= 1.

This condition can be fulfilled if and only if
6

1 + η
> 2, which means η < 2. This is the

case, since η ≤ 1/3.

If, η > 1/3, ω̄ ∈ Ls(Ω)3 with 1 ≤ s <
6

3η − 1
. The functions u and v have the same

regularity as before. The Hölder inequality yields

(3.4)

∫
Ω
|(ω̄ × u) · v| ≤ ∥ω̄∥0,s,Ω∥u∥0,r,Ω∥v∥0,r,Ω, if

1

s
+

2

r
= 1.

This equality of exponents can be fulfilled if and only if
3η − 1

6
+

1 + η

3
< 1, which is

equivalent to η < 1.

Now we can initiate the method explained at the beginning of this section.

3.2 Solutions for the vorticity Leray-α system

The variational problem (3.1) is linearized by considering a vorticity field w which does
not depend on u.

(3.5)


u ∈ Vη,

∀ v ∈ Vη,

∫
Ω
(w × u) · v +

∫
Ω
ϱην̃∇u : ∇v + λ

∫
Ω
u · v =

∫
Ω
f · v,
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Lemma 3.2 (Linearized problem). Let η ∈ [0; 1[, f ∈ L2(Ω), λ > 0 and w ∈ Ls(Ω) for

(3.6)


1 ≤ s ≤ +∞ if η < 1/3,
1 ≤ s < +∞ if η = 1/3,
1 ≤ s < 6

3η−1 if η > 1/3.

The variational problem (3.5) admits a unique solution.

Proof. The Lax-Milgram Theorem is applied to the bilinear form B(u,v) = A(u,v) +
bw(u,v), where A and bw are defined by

A(u,v) =

∫
Ω
ϱην̃∇u : ∇v + λ

∫
Ω
u · v,(3.7)

bw(u,v) =

∫
Ω
(w × u) · v.(3.8)

First, we write

(3.9) |A(u,v)| ≤ (λ+ νM )∥u∥Vη∥v∥Vη .

Let r ∈
[
1; 6

1+η

[
, we have

(3.10) |bw(u,v)| ≤ c∥w∥0,s,Ω∥u∥0,r,Ω∥v∥0,r,Ω ≤ C∥u∥Vη∥v∥Vη .

Inequalities (3.9) and (3.10) yield the continuity of the bilinear form B on Vη. Let us show
it is coercive, by considering any v ∈ Vη.

(3.11) B(v,v) =

∫
Ω
ϱην̃|∇v|2 + λ

∫
Ω
|v|2 ≥ min(νm, λ)∥v∥2Vη

.

Finally, the linear form ℓ : v 7→
∫
Ω f · v is continuous on Vη, since f ∈ L2(Ω)3.

This concludes the proof.

Lemma 3.2 yields the existence of an operator T associating to any function u ∈ Vη the
solution of the linearized problem where w = ω̄(u), which means

(3.12) ∀ v ∈ Vη,

∫
Ω
(ω̄(u)× Tu) · v +

∫
Ω
ϱην̃∇Tu : ∇v + λ

∫
Ω
Tu · v =

∫
Ω
f · v.

Replacing v by Tu in (3.12) yields

(3.13)

∫
Ω
ϱην̃|∇Tu|2 + λ

∫
Ω
|Tu|2 =

∫
Ω
f · Tu,

that yields the bound

(3.14) ∥Tu∥Vη ≤
∥f∥0,2,Ω

min(νm, λ)
=: M.

Then we use the Leray-Schauder fixed point theorem to prove the following result.

Theorem 3.1. Let f ∈ L2(Ω)3 and λ > 0. The operator T defined by (3.12) has a
fixed point in the closed ball B̄Vη(0,M) simply named B. This means that (3.1) admits a
solution in B.
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Proof. The fixed point theorem will be applied on B , which is a nonempty closed bounded
convex subset of Vη. The continuity of T and compactness of T (B) need to be proved.
To do so, we consider a sequence (un)n∈N of functions in B that weakly converges to a
certain u in Vη. The goal is showing that (Tun)n∈N strongly converges to Tu in Vη. We
recall that Tun is defined by

(3.15) ∀ v ∈ Vη,

∫
Ω
(ω̄(un)× Tun) · v +

∫
Ω
ϱην̃∇Tun : ∇v + λ

∫
Ω
Tun · v =

∫
Ω
f · v.

Since (Tun)n∈N is bounded in Vη, a subsequence still named the same way weakly converges
to a certain φ in Vη. The first step of the proof consists in showing that φ = Tu.
The weak convergence and the compact Sobolev embedding (2.4) directly yield for any
v ∈ Vη ∫

Ω
ϱην̃∇Tun : ∇v −→

n→+∞

∫
Ω
ϱην̃∇φ : ∇v,(3.16)

λ

∫
Ω
Tun · v −→

n→+∞

∫
Ω
φ · v.(3.17)

For the vorticity term, we write the decomposition

(3.18)

∫
Ω
(ω̄(un)× Tun) · v −

∫
Ω
(ω̄(u)×φ) · v =

∫
Ω
((ω̄(un)− ω̄(u))×φ) · v

+

∫
Ω
(ω̄(un)× (Tun −φ)) · v.

On one hand, the assumption and Theorem 2.2 imply un ⇀
n→+∞

u in W 1,p(Ω)3 for

(3.19) 1 ≤ p <
2

1 + η
, with 0 ≤ η < 1.

This yields curl(un) ⇀
n→+∞

curl(u) in Lp(Ω)3, and the extensions by 0 satisfy

(3.20) ω(un) ⇀
n→+∞

ω(u) in Lp(R3)3,

In particular, (ω(un))n∈N is bounded in Lp(Ω), with the same values of p. Therefore,
Lemma 2.2 yields

(3.21) ∥ω̄(un)∥0,s,Ω ≤ ∥Kα∥0,q,Ω∥ω(un)∥0,p,Ω,

with s given by (3.6) and 1 ≤ q < 3. Thus, (ω̄(un))n∈N is bounded in Ls(Ω). We obtain

(3.22)

∣∣∣∣∫
Ω
(ω̄(un)× (Tun −φ)) · v

∣∣∣∣ ≤ c1∥ω̄(un)∥0,s,Ω∥Tun −φ∥0,r,Ω∥v∥0,r,Ω −→
n→+∞

0,

where r is given by (2.4).

On the other hand, convergence (3.20) and Lemma 2.3 yield

(3.23) ω̄(un) ⇀
n→+∞

ω̄(u) in Lp(R3)3.

And the restrictions weakly converge in Lp(Ω)3. This yields

(3.24)

∫
Ω
((ω̄(un)− ω̄(u))×φ) · v −→

n→+∞
0.

10



To sum up, convergences (3.16), (3.17), (3.22) and (3.24) yield

(3.25) ∀ v ∈ Vη,

∫
Ω
(ω̄(u)×φ) · v +

∫
Ω
ϱην̃∇φ : ∇v + λ

∫
Ω
φ · v =

∫
Ω
f · v.

That means φ = Tu.

Now the strong convergence has to be proved. Taking v = Tun in (3.15) and v = Tu in
(3.12) yields ∫

Ω
ϱην̃|∇Tun|2 + λ

∫
Ω
|Tun|2 =

∫
Ω
f · Tun,(3.26) ∫

Ω
ϱην̃|∇Tu|2 + λ

∫
Ω
|Tu|2 =

∫
Ω
f · Tu.(3.27)

What was done before directly yields

λ

∫
Ω
|Tun|2 −→

n→+∞
λ

∫
Ω
|Tu|2,(3.28) ∫

Ω
f · Tun −→

n→+∞

∫
Ω
f · Tu,(3.29)

so that we deduce

(3.30)

∫
Ω
ϱην̃|∇Tun|2 −→

n→+∞

∫
Ω
ϱην̃|∇Tu|2.

The weak convergence and (3.30) yield the strong convergence Tun −→
n→+∞

Tu in Vη for

the norm

(3.31) Nν(u) :=
(
∥u∥20,2,Ω + ∥ϱη/2ν̃1/2∇u∥20,2,Ω

)1/2
.

Given that this norm and ∥·∥Vη are equivalent, we obtain the strong convergence Tun −→
n→+∞

Tu in Vη, which concludes the proof.

3.3 Convergence to the solutions of the original problem

In this subsection, we consider a sequence of parameters (αn)n∈N converging to 0, and a
sequence (uαn)n∈N of solutions of (1.1)-(1.5) with the parameter αn in (1.4). We prove
that this sequence converges to a solution u of (1.9)-(1.12).

Theorem 3.2. Let η ∈ [0; 1[, λ > 0 and f ∈ L2(Ω)3. Let (αn)n∈N be a sequence of positive
numbers such that αn −→

n→+∞
0, and (uαn)n∈N a sequence of functions satisfying for any

v ∈ Vη

(3.32)

∫
Ω
(ω̄(uαn)× uαn) · v +

∫
Ω
ϱην̃∇uαn : ∇v + λ

∫
Ω
uαn · v =

∫
Ω
f · v,

where ω̄(uαn) is obtained with the method detailed in section 3, with equation

(3.33) −α2
n∆ω̄(uαn) + ω̄(uαn) = ω(uαn).

11



• If 0 ≤ η < 1/5, a subsequence of (uαn)n∈N strongly converges in Vη to a function u
satisfying for any v ∈ Vη

(3.34)

∫
Ω
(ω(u)× u) · v +

∫
Ω
ϱην̃∇u : ∇v + λ

∫
Ω
u · v =

∫
Ω
f · v.

• If 1/5 ≤ η < 1, a subsequence of (uαn)n∈N converges at the distribution sense to a
function u ∈ Vη satisfying (3.34) for any v ∈ V.

Proof. Let uαn ∈ Vη satisfying (3.32). Taking v = uαn directly yields ∥uαn∥Vη ≤ M ,
where M > 0 is defined in (3.14).
Therefore (uαn)n∈N is bounded, so there is a subsequence still named the same way which
weakly converges in Vη to a certain function u ∈ Vη. As in the proof of Theorem 3.1, we
directly obtain for any v ∈ Vη∫

Ω
ϱην̃∇uαn : ∇v −→

n→+∞

∫
Ω
ϱην̃∇u : ∇v,(3.35)

λ

∫
Ω
uαn · v −→

n→+∞
λ

∫
Ω
u · v.(3.36)

Thus, we only need to focus on the transport term, and we write a decomposition

(3.37)

∫
Ω
(ω̄(uαn)× uαn) · v −

∫
Ω
(ω(u)× u) · v =

∫
Ω
((ω̄(uαn)− ω(u))× u) · v

+

∫
Ω
(ω̄(uαn)× (uαn − u)) · v.

Case 1 (0 ≤ η < 1/5) : we consider any test function v ∈ Vη.

On one hand, uαn

Vη
⇀

n→+∞
u which implies ω(uαn)

Lp

⇀
n→+∞

ω(u). Thus, Theorem 2.4 yields

ω̄(uαn)
Lp

⇀
n→+∞

ω(u). We deduce

(3.38)

∫
Ω
((ω̄(uαn)− ω(u))× u) · v −→

n→+∞
0.

On the other hand, taking s given by (3.6), we have

(3.39)

∣∣∣∣∫
Ω
(ω̄(uαn)× (uαn − u)) · v

∣∣∣∣ ≤ ∥ω̄(uαn)∥0,s,Ω∥uαn − u∥0,r,Ω∥v∥0,r,Ω −→
n→+∞

0,

with the same arguments as in Theorem 3.1.
Consequently, (3.37) yields

(3.40)

∫
Ω
(ω̄(uαn)× uαn) · v −→

n→+∞

∫
Ω
(ω(u)× u) · v.

Passing to the limit in (3.32) shows that u satisfies (3.34).

Now the strong convergence needs to be proved. Taking v = uαn in (3.32) and v = u in
(3.34) yields ∫

Ω
ϱην̃|∇uαn |2 + λ

∫
Ω
|uαn |2 =

∫
Ω
f · uαn ,(3.41) ∫

Ω
ϱην̃|∇u|2 + λ

∫
Ω
|u|2 =

∫
Ω
f · u.(3.42)

12



We conclude with the same method as used in the proof of Theorem 3.1.

Case 2 (1/5 ≤ η < 1) : we consider a test function v ∈ V.
The proof is the same as before, but u and uαn cannot be taken as test functions, so that
the convergence is not strong.
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