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We introduce a vorticity Leray-α model with eddy viscosity depending on d(x, ∂Ω) η where ∂Ω is the boundary of the domain and η ∈]0; 1[. We prove that this system admits fairly regular weak solutions converging when α goes to 0 to the solution of a reference system.

Introduction

Let Ω be a C 2 open bounded subset of R 3 . According to turbulence modelling, we introduce in this paper the following vorticity Leray-α model ω × u -div (ϱ η ν∇u) + λu + ∇p = f in Ω, (1.1) div (u) = 0 in Ω, (1.2) ω = curl(u) in Ω, (1.3) -α 2 ∆ ω + ω = P (ω) in R 3 , (1.4) u = 0 on ∂Ω, (1.5) where u models the long time average of the flow, p = p -|u| 2 2 is the modified mean pressure, and f ∈ L 2 (Ω) 3 is a given source term. The linear term λu with λ > 0 is a damping term. The eddy viscosity is of the form ν turb = ϱ η ν, where 0 < η < 1 and ν is a continuous function satisfying

(1.6) ∀ t ∈ R, 0 < ν m ≤ ν(t) ≤ ν M ,
where ν m and ν M are constants.

The function ϱ refers to the Prandtl mixing length (see [START_REF] Prandtl | Mutual influence of wings and propeller[END_REF]), which appears like a regular function behaving like the distance to the boundary d(•, ∂Ω). More precisely, we consider ϱ : Ω → R + such that The operator P in (1.4) is the extension by 0, which means (1.8)

P (ω) : x → ω(x) if x ∈ Ω, 0 if x / ∈ Ω.
Equation (1.4) defining ω is the Helmholz equation (studied in detail for instance in [START_REF] Foias | The navier-stokes-alpha model of fluid turbulence[END_REF][START_REF] Layton | Residual stress of approximate deconvolution models of turbulence[END_REF]), so that (1.1)-(1.5) is a kind of Leray-α model, which is a LES model.

In this paper we show that (1.1)-(1.5) with η < 1 admits sufficiently regular weak solutions satisfying the energy balance (3.2) (Theorem 3.1) that converge when α goes to zero to a solution of the following system ω × u -div (ϱ η ν∇u) + λu + ∇p = f in Ω, (1.9) div (u) = 0 in Ω, (1.10) ω = curl(u) in Ω, (1.11) u = 0 on ∂Ω. (1.12) As previously shown in [START_REF] Amrouche | Tke model involving the distance to the wall. part 1: the relaxed case[END_REF], (1.9)-(1.12) admits weak solutions for 0 ≤ η < 1, but the energy balance (3.2) can be satisfied if and only if 0 ≤ η < 1/5. Consequently, the convergence stated in Theorem 3.2 is weak when 1/5 ≤ η < 1 and strong if 0 ≤ η < 1/5.

Leray-α models were first introduced by J. Leray in [START_REF] Leray | Essai sur les mouvements plans d'un liquide visqueux que limitent des parois[END_REF][START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], and have been studied in detail in [START_REF] Berselli | Modeling error of alpha-models of turbulence on a two-dimensional torus. Discrete and continuous dynamical systems[END_REF][START_REF] Luigi | Convergence of approximate deconvolution models to the mean navier-stokes equations[END_REF][START_REF] Cheskidov | On a leray-α model of turbulence[END_REF][START_REF] Jd Gibbon | Estimates for the lans-α, leray-α and bardina models in terms of a navier-stokes reynolds number[END_REF][START_REF] Alexei A Ilyin | A modified-leray-α subgrid scale model of turbulence[END_REF][START_REF] Lunasin | Spectral scaling of the leray-α model for two-dimensional turbulence[END_REF][START_REF] Olson | Viscosity versus vorticity stretching: global wellposedness for a family of navier-stokes-alpha-like models[END_REF]. In this kind of models, the convection term is given by (ū • ∇)u. By the way, it is possible to apply the filter to both velocities, so that the convection term becomes (u • ∇)u. This is called Bardina-type models. These have been studied for instance in [START_REF] Berselli | Modeling error of alpha-models of turbulence on a two-dimensional torus. Discrete and continuous dynamical systems[END_REF][START_REF] Cao | Global well-posedness of the three-dimensional viscous and inviscid simplified bardina turbulence models[END_REF][START_REF] Jd Gibbon | Estimates for the lans-α, leray-α and bardina models in terms of a navier-stokes reynolds number[END_REF][START_REF] Layton | On a well-posed turbulence model[END_REF][START_REF] Lewandowski | On the bardina's model in the whole space[END_REF]. In particular, it is shown that solutions of the α-models are regular and converge to the Leray solution of NSE, most of time with periodic boundary conditions. A comparison between these different models is made for instance in [START_REF] Berselli | Modeling error of alpha-models of turbulence on a two-dimensional torus. Discrete and continuous dynamical systems[END_REF][START_REF] Cheskidov | On a leray-α model of turbulence[END_REF][START_REF] Jd Gibbon | Estimates for the lans-α, leray-α and bardina models in terms of a navier-stokes reynolds number[END_REF][START_REF] Lunasin | Spectral scaling of the leray-α model for two-dimensional turbulence[END_REF].

In order to ensure coercivity results, a free-divergence assumption is required for ū. Consequently, the standard Leray-α model adapted to (1.1) should be like

(ū • ∇)u -div (ϱ η ν∇u) + λu + ∇p = f in Ω, (1.13) -α 2 ∆ū + ū + ∇q = u in Ω, (1.14) div (u) = div (ū) = 0 in Ω, (1.15) u = 0 on Γ. (1.16)
Unfortunately, this model does not provide sufficient results to ensure the existence of suitable solutions. Indeed, we work in weighted function spaces, which only provides a W 1,p regularity for u, with 1 ≤ p < 2. This regularity is not enough, because of the Lagrange multiplier in (1.14). This is why the vorticity has been introduced. This quantity appears in [START_REF] Jd Gibbon | Estimates for the lans-α, leray-α and bardina models in terms of a navier-stokes reynolds number[END_REF][START_REF] Olson | Viscosity versus vorticity stretching: global wellposedness for a family of navier-stokes-alpha-like models[END_REF] to introduce an α-model called NS-α. In this model, the vorticity term curl(u) × u is replaced by curl(u) × ū. Here we consider another version of this model, similar to the N S -ω model introduced by W.J. Layton and al. in [START_REF] Layton | Existence of smooth attractors for the navier-stokes-omega model of turbulence[END_REF][START_REF] Layton | Numerical analysis and computational comparisons of the ns-alpha and ns-omega regularizations[END_REF], where the vorticity term of (1.9)-(1.12) becomes curl(ū) × u. A theoretical study is made in [START_REF] Layton | Existence of smooth attractors for the navier-stokes-omega model of turbulence[END_REF], for a system of NSE with constant viscosity. This idea is relevant given that there is no free-divergence assumption required to prove coercivity in the calculations.

The paper is organized as follows. In section 2, we focus on the vorticity Helmholz equation with a L p source term. The goal is proving some convergence results that are applied later.

In section 3, we start by showing the existence of a distributional solution of (1.1)-(1.5) using a fixed-point strategy, and then we prove the convergence to a solution of (1.9)-(1.12) when α goes to zero. The value of η has an influence on the sense of the convergence. I would like to express my gratitude to my PhD advisor Professor Roger LEWANDOWSKI to have suggested this problem and guided me during this work.

Vorticity Leray-α model

This section starts by defining the function spaces in which solutions of (1.9)-(1.12) are searched. As already done in [START_REF] Amrouche | Tke model involving the distance to the wall. part 1: the relaxed case[END_REF], some Sobolev regularity is given on these spaces. Then, the solution of the Helmholz vorticity equation is written with a convolution kernel, to ease the calculations in order to find results on ω starting from equivalent statements on ω.

Functions spaces and estimates

We first define a space of smooth functions (2.1)

V = {v ∈ D(Ω) 3 / div (v) = 0},
and V η is the closure of this space for the norm (2.2)

∥u∥ Vη = ∥u∥ 2 0,2,Ω + ∥ϱ η/2 ∇u∥ 2 0,2,Ω 1/2 .
We start by stating the regularity of V η functions. Indeed, looking at the norm (2.2), we understand that such functions are not likely to be H 1 if η > 0.

We recall two embedding theorems. The first is from [START_REF] Amrouche | Tke model involving the distance to the wall. part 1: the relaxed case[END_REF][START_REF] Amrouche | The dirichlet and neumann problems in lipschitz and in C 1,1 domains[END_REF] brings a H s estimate, with 1/2 < s ≤ 1.

Theorem 2.1. Let η ∈ [0; 1[. The continuous embedding

(2.3) V η → H 1-η 2 (Ω) 3
stands, which implies the Sobolev compact embedding

(2.4) V η → L r (Ω) 3 , where 1 ≤ r < 6 1 + η .
The second result from [START_REF] Kufner | Weighted Sobolev spaces[END_REF] brings a W 1,p estimate with 1 ≤ p < 2.

Theorem 2.2. Let η ∈ [0; 1[. The continuous embedding

(2.5) V η → W 1,p (Ω) 3 stands for p ∈ 1; 2 1 + η .
Remark 2.1. The compact Sobolev embedding given by Theorem 2.2 is weaker than this given by Theorem 2.1. Indeed,

6 1 + 3η is lower than 6 1 + η .
Remark 2.2. These two results also give an estimate on the vorticity.

• If u ∈ H 1-η 2 (Ω) 3 , then ω = curl(u) ∈ H -η 2 (Ω) 3 . • If u ∈ W 1,p (Ω) 3 , then ω = curl(u) ∈ L p (Ω) 3 .

Green kernel for the Helmholz problem

Until the end of this section, we simply write ω instead of P (ω). This means

(2.6) ω ∈ L p (R 3 ) 3 with 1 ≤ p < 2 1 + η and 0 ≤ η ≤ 1.
We focus on the following Helmholz equation, where α > 0 is a constant parameter, supposed to be near 0.

(2.7) -α 2 ∆ ω + ω = ω.

Theorem 2.3 (Green function).

Let ω ∈ L p (R 3 ) 3 defined in (2.6), and ω satisfying (2.7). Then

(2.8) ω(x) = K α * ω(x)
for almost every x ∈ R 3 , where K α is the scalar function given by (2.9)

K α : R 3 → R x → e -|x|/α 4πα 2 |x| .
This result is already proved in [START_REF] Lewandowski | On the bardina's model in the whole space[END_REF].

Lemma 2.1. The function K α given by (2.9)

is in L q (R 3 , R + ) for q ∈ [1; 3[ and (2.10) R 3 K α (x) q dx = Γ(3 -q) (4πα 3 ) 1-q q 3-q ,
where Γ refers to the Euler function: Γ(t) = +∞ 0 s t-1 e -s ds, for any t > 0.

Remark 2.3. When q = 1, we obtain in particular

(2.11) R 3 K α (x) dx = 1.
Proof. We use a change of variables which transforms the classical cartesian coordinates of R 3 into spherical coordinates (r, θ, φ) ∈ R + × [0; π] × [0; 2π], so that the 3D Lebesgue measure is written (2.12) dλ(y) = r 2 sin(θ) dr dθ dφ.

The Fubini-Tonelli theorem then yields (2.13)

R 3 K α (y) q dy = +∞ r=0 π θ=0 2π φ=0
e -qr/α (4π) q α 2q r q r 2 sin(θ) dr dθ dφ

= (4π) 1-q α 2q +∞ 0 r 2-q e -qr/α dr.
The change of variables s = qr α yields (2.14) +∞ 0 r 2-q e -qr/α dr = α q

3-q +∞ 0 s 2-q e -s ds.

This integral is defined if and only if 2 -q > -1, which means q < 3. When this condition is satisfied, (2.13) yields

(2.15)

R 3 K α (y) q dy = (4π) 1-q α 2q
α q

3-q +∞ 0 s 2-q e -s ds, which corresponds to (2.10).

Since the vector function ω is defined as a convolution, the Young inequality gives some regularity results for ω. Indeed, the extension by 0 preserves the L p norms.

Lemma 2.2 (L γ -regularity for ω). Let ω ∈ L p (R 3 ) 3 with p defined by (2.6), and K α ∈ L q (R 3 ) with q ∈ [1; 3[.

• If 0 ≤ η < 1/3, ω ∈ L γ (R 3 ) 3 with 1 ≤ γ ≤ +∞. • If η = 1/3, ω ∈ L γ (R 3 ) 3 with 1 ≤ γ < +∞. • If 1/3 < η ≤ 1, ω ∈ L γ (R 3 ) 3 with 1 ≤ γ < 6 3η -1 . Proof. Since K α ∈ L q (R 3 ) and ω ∈ L p (R 3 ) 3 , the Young inequality yields (2.16) ω ∈ L γ (R 3 ) 3 with 1 + 1 γ = 1 p + 1 q .
The assumptions on p and q yield (2.17)

1 + η 2 + 1 3 < 1 p + 1 q ≤ 2, which means (2.18) η 2 - 1 6 < 1 γ ≤ 1.
We see that η 2 -1 6 is always striclty lower than 1, and it is positive if and only if η > 1/3. Consequently, when η ≤ 1/3 we directly obtain the result. And if η > 1/3, (2.18) yields

(2.19) 1 ≤ γ < 6 3η -1 .
Hence the result.

Main convergence results

The two next results are the main statements of this paper. First, we consider the case where α is fixed. The following lemma will be used to find solutions of the approximated system (1.1)-(1.5), by a fixed-point method.

Lemma 2.3 (Convergence when α is fixed). Let (ω n ) n∈N be a sequence of L p (R 3 ) 3 functions (1 ≤ p < +∞) that weakly converges to ω ∈ L p (R 3 ) 3 . Let ( ωn ) n∈N be the sequence of the solutions of (2.7) with source term ω n , and ω the solution of (2.7) with source term ω.

Then ( ωn ) n∈N weakly converges in L p (R 3 ) 3 to ω.

Proof. Let ϕ ∈ L p ′ (R 3 ), the Fubini theorem yields (2.20)

R 3 ωn (x)ϕ(x) dx = x,y∈R 3 ω n (y)K α (x -y)ϕ(x) dx dy = y∈R 3
ω n (y)

x∈R 3 K α (x -y)ϕ(x) dx dy. Since ϕ ∈ L p ′ (R 3 ) and K α ∈ L 1 (R 3 ), the function y → R 3 K α (x -y)ϕ(x) dx is in L p ′ (R 3
). Hence the weak convergence of (ω n ) n∈N yields the result.

The following theorem gives the convergence of the solutions ω of (2.7) when α goes to zero. This will be used later to show the convergence of a sequence of solutions of (1.1)-(1.5) to a solution of (1.9)-(1.12).

Theorem 2.4. Let (α n ) n∈N be a sequence of positive numbers such that α n -→ n→+∞ 0, and p be defined by (2.6). Let (ω αn ) n∈N be a sequence of L p (R 3 ) 3 functions that weakly converges to ω ∈ L p (R 3 ) 3 . Let ( ωαn ) n∈N satisfy for all n ∈ N (2.21) -α 2 n ∆ ωαn + ωαn = ω αn .

Then ( ωαn ) n∈N weakly converges to ω in L p (R 3 ) 3 .

Proof. Let ϕ ∈ D(R 3 ), by the Fubini theorem

(2.22) R 3 ωαn (x)ϕ(x) dx = x,y∈R 3 ω αn (y)K αn (x -y)ϕ(x) dx dy = y∈R 3
ω αn (y)

x∈R 3 K αn (x -y)ϕ(x) dx dy.
The change of variables z = x-y αn in the middle integral yields (2.23)

R 3 K αn (x -y)ϕ(x) dx = R 3 e -|x-y|/αn 4πα 2 n |x -y| ϕ(x) dx = R 3 e -|z| 4π|z| ϕ(y + α n z) dz.
Then (2.22) becomes (2.24)

R 3 ωαn (x)ϕ(x) dx = z∈R 3 K 1 (z) y∈R 3
ω αn (y)ϕ(y + α n z) dy dz.

We now aim at showing the following convergence for any fixed z ∈ R 3

(2.25)

R 3 ω αn (y)ϕ(y + α n z) dy -→ n→+∞ R 3
ω(y)ϕ(y) dy.

To do so, we decompose the difference (2.26)

R 3 ω αn (y)ϕ(y + α n z) dy - R 3 ω(y)ϕ(y) dy = R 3
(ω αn (y) -ω(y)) ϕ(y) dy

+ R 3
ω αn (y) (ϕ(y + α n z) -ϕ(y)) dy.

On one hand, the weak convergence of (ω αn ) n∈N yields (2.27)

R 3
(ω αn (y) -ω(y)) ϕ(y) dy -→ n→+∞ 0.

On the other hand, the Hölder inequality yields

(2.28) R 3 ω αn (y) (ϕ(y + α n z) -ϕ(y)) dy ≤ ∥ω αn ∥ p R 3 |ϕ(y + α n z) -ϕ(y)| p ′ dy 1/p ′ -→ n→+∞ 0,
by the Lebesgue theorem. Hence (2.25).

Then the following domination stands:

(2.29) K 1 (z)

y∈R 3 ω αn (y)ϕ(y + α n z) dy ≤ K 1 (z)∥ω αn ∥ p ∥ϕ∥ p ′ , which is L 1 (R 3 ).
Therefore by the Lebesgue theorem, (2.25) and (2.29)

(2.30)

R 3 ωαn (x)ϕ(x) dx -→ n→+∞ R 3 ω(y)ϕ(y) dy.
The density of D(R 3 ) in L p ′ (R 3 ) yields the result.

Solutions of the Leray-α approximated system

This section aims at proving the existence of solutions of (1.9)-(1.12), in three steps. First, we solve a linearized system by the Lax-Milgram theorem. Such a solution is unique, and can be written T u. Then the existence of solutions of (1.1)-(1.5) is shown by using the Leray-Schauder fixed-point theorem on the operator T .

We then obtain a sequence (u αn ) n∈N of solutions, corresponding to a sequence of parameters (α n ) n∈N converging to 0. Finally, Theorem 2.4 provides the convergence to a solution of (1.9)-(1.12).

Variational formulation

The function ω in (1.1)-(1.5) is obtained this way.

• We consider the extension by 0 of ω ∈ L p (Ω) 3 , still named the same,

• ω satisfies (2.7), so that ω ∈ L γ (R 3 ) 3 , where γ is given by Corollary 2.2.

• we take the restriction of ω to Ω, still named the same.

We write the variational formulation of system (1.1)-(1.5)

(3.1)    u ∈ V η , ∀ v ∈ V η , Ω ( ω(u) × u) • v + Ω ϱ η ν∇u : ∇v + λ Ω u • v = Ω f • v.
Taking v = u in (3.1) yields the following energy balance

(3.2) Ω ϱ η ν|∇u| 2 + λ Ω |u| 2 = Ω f • u.
These two equations have a sense if and only if the integrals are defined. The condition is given by the following lemma. Proof. The definition of V η directly yields the three last integrals in (3.1) are finite. In order to show that Ω ( ω × u) • v is finite for u, v ∈ V η , we have to distinguish the two cases of Lemma 2.2.

If η ≤ 1/3, ω ∈ L ∞ (Ω) 3 and u, v ∈ L r (Ω) 3 for 1 ≤ r < 6 1 + η
. The Hölder inequality then yields

(3.3) Ω |( ω × u) • v| ≤ ∥ ω∥ 0,∞,Ω ∥u∥ 0,r,Ω ∥v∥ 0,r,Ω , if 2 r = 1.
This condition can be fulfilled if and only if 6 1 + η > 2, which means η < 2. This is the case, since η ≤ 1/3.

If, η > 1/3, ω ∈ L s (Ω) 3 with 1 ≤ s < 6 3η -1
. The functions u and v have the same regularity as before. The Hölder inequality yields

(3.4) Ω |( ω × u) • v| ≤ ∥ ω∥ 0,s,Ω ∥u∥ 0,r,Ω ∥v∥ 0,r,Ω , if 1 s + 2 r = 1.
This equality of exponents can be fulfilled if and only if 3η

-1 6 + 1 + η 3 < 1, which is equivalent to η < 1.
Now we can initiate the method explained at the beginning of this section.

Solutions for the vorticity Leray-α system

The variational problem (3.1) is linearized by considering a vorticity field w which does not depend on u.

(3.5)    u ∈ V η , ∀ v ∈ V η , Ω (w × u) • v + Ω ϱ η ν∇u : ∇v + λ Ω u • v = Ω f • v, Lemma 3.2 (Linearized problem). Let η ∈ [0; 1[, f ∈ L 2 (Ω), λ > 0 and w ∈ L s (Ω) for (3.6)    1 ≤ s ≤ +∞ if η < 1/3, 1 ≤ s < +∞ if η = 1/3, 1 ≤ s < 6 3η-1 if η > 1/3.
The variational problem (3.5) admits a unique solution.

Proof. The Lax-Milgram Theorem is applied to the bilinear form

B(u, v) = A(u, v) + b w (u, v)
, where A and b w are defined by

A(u, v) = Ω ϱ η ν∇u : ∇v + λ Ω u • v, (3.7) b w (u, v) = Ω (w × u) • v. (3.8)
First, we write

(3.9) |A(u, v)| ≤ (λ + ν M )∥u∥ Vη ∥v∥ Vη . Let r ∈ 1; 6 1+η , we have (3.10) |b w (u, v)| ≤ c∥w∥ 0,s,Ω ∥u∥ 0,r,Ω ∥v∥ 0,r,Ω ≤ C∥u∥ Vη ∥v∥ Vη .
Inequalities (3.9) and (3.10) yield the continuity of the bilinear form B on V η . Let us show it is coercive, by considering any v ∈ V η .

(3.11)

B(v, v) = Ω ϱ η ν|∇v| 2 + λ Ω |v| 2 ≥ min(ν m , λ)∥v∥ 2 Vη .
Finally, the linear form ℓ :

v → Ω f • v is continuous on V η , since f ∈ L 2 (Ω) 3 .
This concludes the proof.

Lemma 3.2 yields the existence of an operator T associating to any function u ∈ V η the solution of the linearized problem where w = ω(u), which means

(3.12) ∀ v ∈ V η , Ω ( ω(u) × T u) • v + Ω ϱ η ν∇T u : ∇v + λ Ω T u • v = Ω f • v.
Replacing v by T u in (3.12) yields

(3.13) Ω ϱ η ν|∇T u| 2 + λ Ω |T u| 2 = Ω f • T u,
that yields the bound

(3.14) ∥T u∥ Vη ≤ ∥f ∥ 0,2,Ω min(ν m , λ) =: M.
Then we use the Leray-Schauder fixed point theorem to prove the following result. Proof. The fixed point theorem will be applied on B , which is a nonempty closed bounded convex subset of V η . The continuity of T and compactness of T (B) need to be proved.

To do so, we consider a sequence (u n ) n∈N of functions in B that weakly converges to a certain u in V η . The goal is showing that (T u n ) n∈N strongly converges to T u in V η . We recall that T u n is defined by

(3.15) ∀ v ∈ V η , Ω ( ω(u n ) × T u n ) • v + Ω ϱ η ν∇T u n : ∇v + λ Ω T u n • v = Ω f • v.
Since (T u n ) n∈N is bounded in V η , a subsequence still named the same way weakly converges to a certain φ in V η . The first step of the proof consists in showing that φ = T u.

The weak convergence and the compact Sobolev embedding (2.4) directly yield for any

v ∈ V η Ω ϱ η ν∇T u n : ∇v -→ n→+∞ Ω ϱ η ν∇φ : ∇v, (3.16) λ Ω T u n • v -→ n→+∞ Ω φ • v. (3.17)
For the vorticity term, we write the decomposition (3.18)

Ω ( ω(u n ) × T u n ) • v - Ω ( ω(u) × φ) • v = Ω (( ω(u n ) -ω(u)) × φ) • v + Ω ( ω(u n ) × (T u n -φ)) • v.
On one hand, the assumption and Theorem 2.2 imply

u n ⇀ n→+∞ u in W 1,p (Ω) 3 for (3.19) 1 ≤ p < 2 1 + η , with 0 ≤ η < 1.
This yields curl(u n ) ⇀ n→+∞ curl(u) in L p (Ω) 3 , and the extensions by 0 satisfy

(3.20) ω(u n ) ⇀ n→+∞ ω(u) in L p (R 3 ) 3 ,
In particular, (ω(u n )) n∈N is bounded in L p (Ω), with the same values of p. Therefore, Lemma 2.2 yields

(3.21) ∥ ω(u n )∥ 0,s,Ω ≤ ∥K α ∥ 0,q,Ω ∥ω(u n )∥ 0,p,Ω ,
with s given by (3.6) and 1 ≤ q < 3. Thus, ( ω(u n )) n∈N is bounded in L s (Ω). We obtain

(3.22) Ω ( ω(u n ) × (T u n -φ)) • v ≤ c 1 ∥ ω(u n )∥ 0,s,Ω ∥T u n -φ∥ 0,r,Ω ∥v∥ 0,r,Ω -→ n→+∞ 0,
where r is given by (2.4).

On the other hand, convergence (3.20) and Lemma 2.3 yield

(3.23) ω(u n ) ⇀ n→+∞ ω(u) in L p (R 3 ) 3 .
And the restrictions weakly converge in L p (Ω) 3 . This yields (3.24)

Ω (( ω(u n ) -ω(u)) × φ) • v -→ n→+∞ 0.
To sum up, convergences (3.16), (3.17), (3.22) and (3.24) yield

(3.25) ∀ v ∈ V η , Ω ( ω(u) × φ) • v + Ω ϱ η ν∇φ : ∇v + λ Ω φ • v = Ω f • v.
That means φ = T u.

Now the strong convergence has to be proved. Taking v = T u n in (3.15) and v = T u in (3.12) yields

Ω ϱ η ν|∇T u n | 2 + λ Ω |T u n | 2 = Ω f • T u n , (3.26) Ω ϱ η ν|∇T u| 2 + λ Ω |T u| 2 = Ω f • T u. (3.27)
What was done before directly yields .

λ Ω |T u n | 2 -→ n→+∞ λ Ω |T u| 2 , (3.28) Ω f • T u n -→ n→+∞ Ω f • T u, (3.29) so that we deduce (3.30) Ω ϱ η ν|∇T u n | 2 -→ n→+∞ Ω ϱ η ν|∇T u| 2 .
Given that this norm and ∥•∥ Vη are equivalent, we obtain the strong convergence T u n -→ n→+∞ T u in V η , which concludes the proof.

Convergence to the solutions of the original problem

In this subsection, we consider a sequence of parameters (α n ) n∈N converging to 0, and a sequence (u αn ) n∈N of solutions of (1.1)-(1.5) with the parameter α n in (1.4). We prove that this sequence converges to a solution u of (1.9)-(1.12).

Theorem 3.2. Let η ∈ [0; 1[, λ > 0 and f ∈ L 2 (Ω) 3 . Let (α n ) n∈N be a sequence of positive numbers such that α n -→ n→+∞ 0, and (u αn ) n∈N a sequence of functions satisfying for any

v ∈ V η (3.32) Ω ( ω(u αn ) × u αn ) • v + Ω ϱ η ν∇u αn : ∇v + λ Ω u αn • v = Ω f • v,
where ω(u αn ) is obtained with the method detailed in section 3, with equation

(3.33) -α 2 n ∆ ω(u αn ) + ω(u αn ) = ω(u αn ).
• If 0 ≤ η < 1/5, a subsequence of (u αn ) n∈N strongly converges in V η to a function u satisfying for any v ∈ V η (3.34)

Ω (ω(u) × u) • v + Ω ϱ η ν∇u : ∇v + λ Ω u • v = Ω f • v.
• If 1/5 ≤ η < 1, a subsequence of (u αn ) n∈N converges at the distribution sense to a function u ∈ V η satisfying (3.34) for any v ∈ V.

Proof. Let u αn ∈ V η satisfying (3.32). Taking v = u αn directly yields ∥u αn ∥ Vη ≤ M , where M > 0 is defined in (3.14). Therefore (u αn ) n∈N is bounded, so there is a subsequence still named the same way which weakly converges in V η to a certain function u ∈ V η . As in the proof of Theorem 3. 

Lemma 3 . 1 (

 31 Critical exponents). Let f ∈ L 2 (Ω)3 and λ > 0. For any η ∈]0; 1[, all the integrals in (3.1) are well defined.

Theorem 3 . 1 .

 31 Let f ∈ L 2 (Ω)3 and λ > 0. The operator T defined by (3.12) has a fixed point in the closed ball BVη (0, M ) simply named B. This means that (3.1) admits a solution in B.

2 0

 2 The weak convergence and (3.30) yield the strong convergence T u n -→ n→+∞ T u in V η for the norm (3.31) N ν (u) := ∥u∥ 2 0,2,Ω + ∥ϱ η/2 ν 1/2 ∇u∥

  1, we directly obtain for any v ∈ V η Ω ϱ η ν∇u αn : ∇v -→ n→+∞ Ω ϱ η ν∇u : ∇v, (3.35)λ Ω u αn • v -→ n→+∞ λ Ω u • v. (3.36)Thus, we only need to focus on the transport term, and we write a decomposition(3.37)Ω ( ω(u αn ) × u αn ) • v -Ω (ω(u) × u) • v = Ω (( ω(u αn ) -ω(u)) × u) • v + Ω ( ω(u αn ) × (u αn -u)) • v. Case 1 (0 ≤ η < 1/5) : we consider any test function v ∈ V η . On one hand, u αn Vη ⇀ n→+∞ u which implies ω(u αn ) (u αn ) -ω(u)) × u) • v -→ n→+∞ 0.On the other hand, taking s given by (3.6), we have(3.39) Ω ( ω(u αn ) × (u αn -u)) • v ≤ ∥ ω(u αn )∥ 0,s,Ω ∥u αn -u∥ 0,r,Ω ∥v∥ 0,r,Ω -→ n→+∞ 0,with the same arguments as in Theorem 3.1. Consequently, (3.37) yields(3.40) Ω ( ω(u αn ) × u αn ) • v -→ n→+∞ Ω (ω(u) × u) • v.Passing to the limit in(3.32) shows that u satisfies (3.34). Now the strong convergence needs to be proved. Taking v = u αn in (3.32) and v = u in (3.34) yields Ω ϱ η ν|∇u αn | 2 + λ Ω |u αn | 2 = Ω f • u αn , (3.41) Ω ϱ η ν|∇u| 2 + λ Ω |u| 2 = Ω f • u. (3.42)

We conclude with the same method as used in the proof of Theorem 3.1.

Case 2 (1/5 ≤ η < 1) : we consider a test function v ∈ V. The proof is the same as before, but u and u αn cannot be taken as test functions, so that the convergence is not strong.