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ABSTRACT
Emotion recognition in conversations is essential for ensuring ad-
vanced human-machine interactions. However, creating robust and
accurate emotion recognition systems in real life is challenging,
mainly due to the scarcity of emotion datasets collected in the wild
and the inability to take into account the dialogue context. The
CEMO dataset, composed of conversations between agents and
patients during emergency calls to a French call center, fills this gap.
The nature of these interactions highlights the role of the conversa-
tion’s emotional flow in predicting patient emotions, as context can
often make a difference in understanding observed emotional ex-
pressions. This paper presents a multi-scale conversational context
learning approach for speech emotion recognition, which takes
advantage of this hypothesis. We investigated this approach on
both speech transcriptions and acoustic segments. Experimentally,
our method uses the previous or next information of the targeted
segment. In the text domain, we tested the context window using
a wide range of tokens (from 10 to 100) and at the speech turns
level, considering inputs from both the same and opposing speakers.
According to our tests, the context derived from previous tokens
has a more significant influence on accurate prediction than the fol-
lowing tokens. Furthermore, taking the last speech turn of the same
speaker in the conversation seems useful. In the acoustic domain,
we conducted an in-depth analysis of the impact of the surround-
ing emotions on the prediction. While multi-scale conversational
context learning using Transformers can enhance performance in
the textual modality for emergency call recordings, incorporating
acoustic context is more challenging.

CCS CONCEPTS
• Computing methodologies→ Discourse, dialogue and prag-
matics; Natural language processing.

KEYWORDS
Speech emotion recognition, Multiscale contextual learning, Emo-
tion Recognition in Conversation, Transformers, Emergency call
center

1 INTRODUCTION AND RECENTWORK
In the context of our work, emotion recognition refers to the detec-
tion and categorization of emotional expressions as they manifest
in conversations. This detection is not necessarily correlated to
the individual’s internal feelings but is a measure of an observable
expression.

In recent years, novel methods and techniques have been ap-
plied to speech-based downstream applications with a focus on
the potential benefits of incorporating conversational information

into such systems. This contextual information is usually derived
from previous and subsequent utterances in the form of speech
transcriptions or acoustic contexts.

An early significant approach by [17], utilized a bidirectional
LSTM to assimilate context without distinguish speakers. Extending
this methodology, [12] incorporated a GRU structure within their
ICONmodel to identify speaker relationships. Later, [10], converted
conversations into a graph, employing a graph convolutional neural
network for emotion classification. This work was further devel-
oped by (almost) the same team, who integrated common-sense
knowledge to understand interlocutors’ interactions [9].

Recent work by [18] has used new neural network structures for
context understanding. An extension of this approach was proposed
in [13], which introduced DialogueCRN to fully capture conversa-
tional context from a cognitive point of view. These papers illustrate
the ongoing evolution of the field.

Ongoing research about conversational context in speech tasks
has paralleled the rise of self-supervised pre-training models, which
are now popular for handling downstream tasks. These models have
shown strong results across various speech task benchmarks as
highlighted in [21]. Our paper proposes context-aware fine-tuning,
which utilizes surrounding speech segments during fine-tuning
to improve performance on downstream speech tasks and enrich
Transformer embeddings through the integration of auxiliary con-
text module, as illustrated by [19] and by [15] with their emotion-
aware Transformer Emoformer.

In the field of Speech Emotion Recognition, advances with Trans-
former models in deep learning have reached state-of-the-art per-
formance on acted speech [16] and on widely-known open-source
research database like [2]. Upon appropriate fine-tuning, Trans-
formers are able to learn efficient representations of the inputs.

However, recognizing spontaneous emotions remains a chal-
lenge. But remarkably, Transformer encoder models have shown
significant results over classical approaches on spontaneous emo-
tion recordings [4]. Through a specific integration of multimodal
fusion mechanisms, these models are highly capable of gathering
efficient emotional cues across modalities, [6]. This paper leverages
the French CEMO corpus, which consists of real-life conversational
data collected in an emergency call center [7]. This corpus pro-
vides an excellent opportunity to tackle the challenge of integrating
conversation context in a realistic emergency context.

Despite the effectiveness of Transformer models, their standard
self-attention mechanism’s quadratic complexity limits application
to relatively small windows [3]. Cutting-edge research has focused
on optimizing the attention mechanisms to a lower complexity
like FlashAttention [3]. Addressing this limitation by lowering the
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Table 1: The 10 most represented emotions and mixtures
of emotions by caller and agent. FEA: Fear, NEU: Neutral,
POS: Positive, ANG: Anger, SAD: Sadness, HUR: Hurt, SUR:
Surprise OTHER: Sum of remaining classes

Caller Segments Speakers Agent Segments Speakers

Total 17679 870 Total 16523 7
FEA 7397 825 NEU 10059 7
NEU 7329 822 POS 4310 7
POS 1187 566 ANG 1213 6
ANG 417 146 FEA 437 7
HUR 261 67 FEA/POS 122 4
SUR 144 118 ANG/POS 65 4
FEA/POS 130 103 ANG/FEA 57 3
FEA/SAD 128 71 POS/SUR 24 4
FEA/HUR 116 55 FEA/SUR 16 4
OTHER 294 171 OTHER 52 3

attention complexity paves the way for future models to be trained
from scratch on huge datasets with wider context.

In this work, we propose a multi-scale hierarchical training sys-
tem adapted to pre-trained standard attention models that are avail-
able in the French community. The proposed approach draws in-
spiration from recent work by [19]. We evaluate the impact of
different types of contextual information for acoustic level and
manual speech transcription. Integrating the acoustic and linguistic
context of dialogue into an emotion detection system remains a
challenge, but this work aims to contribute to these ongoing efforts
and explain the impact of such a system and its limitations.

2 CONVERSATIONAL CORPUS: CEMO
The emergency call center corpus presents a unique opportunity
to examine real-world emotional expression. This rich 20+ hour
dataset captures naturalistic interactions between callers in crisis
and operators. As described by [7, 20], it contains emotional an-
notations across situations ranging from medical emergencies to
psychiatric distress. Segments were coded for major and minor
emotions with fine-grained labels from 7 macro-classes.

The caller can be either the patient or a third party (family,
friend, colleague, neighbor, stranger). The wide range of caller
types (age, gender, origin), accents (regional, foreign), and different
vocal qualities (alterations due to alcohol/medication, a cold, etc.)
also make it an extremely diverse corpus. As shown in Table 1,
the Caller and Agent’s emotional profiles differ. Callers expressed
intense emotions like fear, anger, and sadness, given their crisis
state. In contrast, agents maintained a regulated presence, with
more positive and neutral states, reflecting their professional role.

Inter-rater reliability highlights differences between callers and
agents. Agreement on emotions was higher for callers than agents
(Kappa 0.54 vs 0.35). This suggests agents regulate emotions, pro-
ducing subtle expressions that are challenging to code consistently.
Refining annotation schemes could better capture the complexity
of agents’ emotional states.

Data preparation is key for performance and robustness. As
detailed in Table 2, a balanced CEMO subset (2h40) of 4224 seg-
ments was selected for training/validation/testing. We selected the
4 main classes, and we equally distributed them with 1056 samples

Table 2: Details of the CEMO subset of speech signals and
manual transcripts. ANG: Anger, FEA: Fear, NEU: Neutral,
POS: Positive, Total: Total number of segments.

CEMO𝑠 ANG FEA NEU POS Total

#Speech seg. 1056 1056 1056 1056 4224
#Callers 143 537 450 544 806
#Agents 6 - - - 6
#Dialogues 280 504 425 516 735
Total duration (mn) 39 52 49 20 160
Duration mean (s) 2.2 2.9 2.8 1.1 2.3
Vocabulary size 1146 1500 1150 505 2600
Avg. word count 9.3 11.9 7.9 3.8 8.2

each. Fear and Neutrality were subsampled, prioritizing speaker
diversity. Anger was completed with 670 agent segments of annoy-
ance/impatience, resulting in a class with less speaker diversity
and possible bias. Positive had the most speakers and dialogues,
suggesting heterogeneity. Manual transcriptions were performed
with guidelines similar to the Amities project [11].

The transcriptions contain about 2499 nonspeech markers, pri-
marily pauses, breath, and other mouth noises. The vocabulary size
is 2.6k, with a mean and median of about 10 words per segment
(min 1, max 47).

Figure 1: Transition between the previous and current emo-
tion segments, we only show previous emotions which have
at least 30 segments.

Figure 1 represents the transition probabilities between the emo-
tion expressed in the previous speech turn and the target segment.
The diagram illustrates the likelihood of moving from each prior
emotion category (rows) to each target emotion (columns). Anger
persists across turns at a 68% probability. Asymmetry exists between
Anger and Fear, with Fear more often following Anger. Surprise is
surprisingly followed by Anger, without any wordplay intended.

Figure 2 displays a histogram that illustrates the distribution
of gap duration between the context and the target segment. This
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Figure 2:Histogramof gap duration between context segment
and the segment to predict (segments with a gap of zero are
excluded)

excludes contiguous segments, corresponding to 3040 Previous-
to-target and 2895 Target-to-next segments. For non-contiguous
segments, there are 1174 and 1152, respectively, for Previous-to-
target and Target-to-next segments. Notably, there are only 10
segments that lack any preceding context and 177 segments that do
not have any following context. The gaps are mainly due to silences
between turns.

3 METHODOLOGY
Our approach aims at recognizing emotions from speech. The sys-
tems presented in this article are based on the incorporation of
conversational context via pre-trained transformative attention
mechanisms. We have divided this section into two main parts,
devoted to single modalities (acoustic and textual). Our aim is to
better understand the impact of context in these systems.

First, we tackled the textual modality, i.e., manual transcriptions
of dialogues incorporating the context in a "blind" way a defined
number of conversational elements (named tokens in pre-trained
models). Then, we modified the scale of the contextual window as
a function of speech turns and conducted experiments on specific
conversational segments.

In a second phase, we focused on the acoustic modality, where
we exploited the context of speech turns that had been supported by
the textual approach. We then extended this to hierarchical training
on the assumption that low-level cues for emotion prediction would
be learned by the model during initial context-free training and
that incorporating conversational context in a second phase would
enable higher-level information to be learned.

Our methodology is based on the application of specific Trans-
former encoder models: FlauBERT large [14], and wav2vec2.0 large
[1]. These models use self-supervised learning to create meaningful
abstractions from text and raw audio data. Prior research [5] showed
the successful adaptation of pre-trained models to detect discrete
speech emotion labels from the CEMO corpus [7]. From the avail-
able models, we chose to use the leBenchmark model (Wav2Vec2-
FR-3K) [8], trained on 3,000 hours of French language data. This
decision was guided by the model’s performance on the CEMO
corpus [5].

The training database for the wav2vec2-FR-3K model is com-
prised of spontaneous dialogues recorded by telephone, some with

emotional content, thus mirroring the characteristics of the CEMO
corpus. The multi-head attention layers were fine-tuned for speech
emotion recognition using the CEMO corpus. This was done under
the assumption that the initial layers of the model (Convolutional
layers and Embedding) are robust to this task [5, 21].

4 CONTEXTUAL EXPLORATION OF TEXTUAL
MODALITY

In this research, we propose a fine-tuned system for detecting emo-
tions on the CEMO dataset by incorporating semantic information
from the anterior or posterior parts of speech. During training,
the context is concatenated with speech inputs to be fed into a
Transformer. The proposed system relies on the pre-trained multi-
head attention layers of the FlauBERT model [14], to learn the
relationships between the latent states of the current segment and
its context.

The multi-head attention mechanism allows the model to learn
relevant parts of the segment to predict within its conversational
context. To emphasize this weighting, we mask the embeddings
yielded by the Transformer corresponding to the context. The rest
of the embeddings are fed into an attention-pooling layer and clas-
sified into discrete emotions.

Figure 3: Prediction Accuracy vs. Context Token Count: To-
kens number represents anterior/posterior tokens to the tar-
get segment. Accuracy is Unweighted Average (UA), in %

We firstly focused on a "blind" semantic approach where the
context was selected by the amount of tokens. The average number
of seconds for one token in the CEMO dataset is equivalent to 0.2s,
then we have an average of 5 tokens per second. We performed
some experiments with a window of token numbers from 0 to 100.
The results are displayed in the Figure. 3, which shows the UA
scores obtained in the prediction of the four discrete emotions. Two
regression lines pass through the origin 0, which corresponds to
the baseline experiment without context.

There is a positive impact of context unevenly distributed be-
tween the anterior and posterior conversational contexts. The pre-
vious tokens in our tokens are more useful to enrich the segment
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Table 3: Comparison of Textual Models (on manual tran-
scriptions) using FlauBERT Embeddings with and without
Contextual Information, sorted by UA: % Contextual infor-
mation: 1st column: Previous or Next segments, 2nd column:
same speaker, opposite speaker or all speakers

Model Context from ANG FEA NEU POS Total

FlauBERT

Previous same speaker 66.0 64.5 70.6 85.7 71.7
Next same speaker 70.4 59.7 72.5 83.6 71.5
Next opposite speaker 67.9 62.3 72.4 82.7 71.3
Previous all speakers 66.3 61.2 72.4 84.8 71.2
Next all speakers 64.1 66.3 68.6 85.2 71.0
Previous opposite speaker 59.4 66.1 71.0 84.3 70.2

FlauBERT Without - 61.1 66.0 68.2 85.1 70.1

embeddings to be predicted. Limits to the interpretability of this
approach may arise from the semantic perspective, where we are
uncertain whether the number of tokens will be extracted from the
middle of a sentence or a speech turn.

To address this hypothesis, we conducted experiments at the
speech turn level, using the previous or next segment of speech.
We also extended the experiments to speaker type, which could
have an impact on how the context is learned by the Transformer.

The results in Table. 3 detailed the different configurations we
used. From the results, it seems that incorporating context from
the same speaker outperforms the opposite speaker’s approach,
suggesting that the emotion of a sentence may be more influenced
by the speaker’s previous sentences rather than the other speaker’s.
This makes intuitive sense as people’s emotions tend to be consis-
tent within a short time frame and are likely to be less influenced
by the immediate response from others. The Anger and Fear classes
fluctuate the most with context, which may indicate that these
emotional states are more complex or nuanced and may be more
influenced by context and speaker.

Contextual experiments on the speech turn scale produced better
or similar results to those obtained on the token scale; see Figure 4
and Table. 3. Even with a large token window, up to 100 tokens (sub-
words for FlauBERT), equivalent to around 20 seconds of speech,
it fails to achieve the best scores, regardless of the turn before or
after the segment to be predicted.

In comparison, the average context speech turn segments last
1 second; thus, the right positioning and semantic meaning of the
text is one of Speech Emotion Recognition’s key performances.

5 CONTEXTUAL EXPLORATION OF
ACOUSTIC MODALITY

Our approach to predict emotions from acoustic is similar to the
text modality. We concatenate raw audio as input to the acous-
tic Transformer and mask the embeddings specific to the context
produced by the Transformer. At this stage, the wav2vec2 model
applies a multi-head attention mechanism on both the surrounding
segments and the target segment.

This mechanism allows the model to focus on different features
in the segment and its surrounding context, potentially improving
the emotional relevance of the embeddings produced.

Figure 4: Illustration of CCFTE Concatenation of Context
Features with Target Embeddings, figure from [19]

Table 4: Comparison of Acoustic Models Using wav2vec2 Em-
beddings with and without Contextual Information, MWCE:
Masking w2v2 context embed., CCFTE: Concatenation of
Context Features with Target Embeddings, sorted by UA

Model Strategy Context MWCE CCFTE ANG FEA NEU POS Total

wav2vec2 - Without - - 73.0 70.2 72.2 87.1 75.6

wav2vec2 Concatenation

Previous ✓ ✓ 71.1 73.1 70.7 86.6 75.4
Next ✓ ✓ 68.1 73.7 73.1 86.4 75.3
Next ✓ - 71.2 67.2 75.6 85.4 74.9
Previous ✓ - 66.4 63.0 79.2 85.4 73.5

To adjust the wav2vec2-FR-3K model to our needs, we added an
attention pooling layer and a classifier. One drawback of this ap-
proach is the higher computational cost of the Transformer acoustic
model compared to the textual one. Due to the specifications of
our computational clusters, we are limited to a maximum length of
around 6.5 seconds for the large wav2vec2 model.

Following the results obtained on the context at a speech turns
level with the text modality, we incorporate the context from the
previous or next turn of the target segment. Furthermore, we im-
plemented a novel way to enrich the yielded wav2vec2 embeddings
through a dedicated auxiliary context module influenced by [19].
The auxiliary module is detailed in Figure 4, it gathers the em-
beddings from the surrounding segments into a context attention
pooling layer. This pool, together with a fully connected network,
generates a context vector that provides a compact, informative
representation of the surrounding context.

𝐶𝑖 = FullyConnected(AttentionPooling(𝐸𝑖 , 𝑆𝑖 )) (1)
In the equation above, 𝐶𝑖 is the context vector for the 𝑖-th seg-

ment, 𝐸𝑖 signifies the embeddings of the target segment, and 𝑆𝑖 is
the input segment. The context vector is then concatenated with
each of the embeddings of the target segment, effectively underlin-
ing the contextual information into the final classifier prediction.

Table 4 presents results evaluating the incorporation of con-
textual acoustic information to enhance the emotion recognition
performance of wav2vec2 embeddings. Across conditions, two pro-
posed context integration methods were examined - masking the
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Table 5: Hierarchical Training: Fine-tuning of Models with
and without Context from a Baseline Checkpoint, MWCE:
Masking w2v2 context embed., CCFTE: Concatenation of
Context Features with Target Embeddings, sorted by UA

Model Strategy Context MWCE CCFTE ANG FEA NEU POS Total

wav2vec2 - - - - 76.5 72.7 69.9 85.6 76.2

wav2vec2 Concatenation

next ✓ ✓ 74.7 70.0 72.8 87.1 76.2
next ✓ - 76.2 70.1 70.7 87.5 76.1
previous ✓ - 73.6 71.5 72.1 86.6 75.9
previous ✓ ✓ 75.5 70.4 70.9 85.4 75.5

context embedding (MWCE) and concatenating context features
with target embeddings (CCFTE) - using either previous or next
utterances as context.

Notably, the baseline wav2vec2 model with no context elicited
the highest total unweighted accuracy (UA) of 75.6%, exceeding
all context-enhanced models. This suggests intrinsic limitations of
the concatenation-based context integration approaches assessed.
Both MWCE and CCFTE concatenation utilizing prior context mod-
estly boosted performance to 75.4% UA. However, the next con-
text yielded negligible gains, indicating contextual benefits may be
asymmetric.

Despite the disappointing results of our preliminary experiments
using acoustic models trained on isolated utterances, we continue
to further explore this approach building on prior textual results.
We were seeking of a way to leverage the meaningful contextual
signals that could be present in adjacent turns. We shifted the
method to a hierarchical training framework where acoustic models
were first trained on the target segments using isolated utterances
without conversational context. Subsequently, we fine-tuned the
model to adapt to the surrounding conversation segments, thereby
learning higher-level emotional cues that are context-dependent.
Simultaneously, we train a parallel model from the same baseline
checkpoint to serve as a comparison, ensuring our fine-tuning
process contributes positively to the emotion prediction task.

The obtained results, detailed in Table 5 demonstrate the limited
gains achieved through hierarchical fine-tuning with concatenated
context. Critically, all context-enhanced models fail to improve
over the baseline wav2vec2 model at 76.2% UA. This implies signifi-
cant shortcomings in the concatenation-based context integration
paradigm.

Although small improvements are achieved using the previ-
ous context with MWCE+CCFTE, the global hierarchical learning
methodology provides insignificant improvements to acoustic mod-
eling. These results reveal shortcomings compared to text-based
modeling approaches.

In particular, the minimal gains from concatenating context fea-
tures (CCFTE) reveal this technique inadequately incorporates con-
versational patterns. The embeddingmasking (MWCE) is somewhat
more beneficial, but the context integration remains insufficient.

We furthermore tried other experiments which did not yield
better results; these experiments were based on MFCC cues of the
surrounding segments.

6 ANALYSIS OF PREDICTION ACCURACY
BASED ON THE PREVIOUS SEGMENT’S
EMOTION

Figure 5: Prediction accuracy of the target emotions based on
the previous segment’s emotion, A: prediction on acoustic,
T: prediction on speech transcripts, % in UA

The Figure 5, illustrates the distribution of previous emotion
labels of the 4 targeted emotions. To compare the results obtained
with conversational context, we took the same configuration with
context taken from previous segments (whatever the speakers)
for two different sets of predictions: speech transcriptions (T) and
acoustic (A). Both models performance are respectively 71.2% (T)
and 75.4% (A) UA (see Table 3 and 4).

Across both experiments, the Positive emotion and Neutral state
segments seem to be predicted most accurately when the previous
emotion is also Positive, resulting from 86.7% to 88.6% UA for both
acoustic and transcriptions. The best results for Fear are obtained
from Anger previous segment, 77.8% (A) and 70.8% (T). For Anger
class an high UA is obtained for the segments with anterior Fear
emotion expressed. The acoustic and textual model results are het-
erogeneous for the Anger class; the acoustic model outperforms
the textual model when the previous segment was Fear (89.5% (A)
vs. 71.5% (T)), on the other hand, when the previous segment was
Anger, the textual model had great results over the acoustic model
(68.7% (T) vs. 58.7% (A)).

7 CONCLUSION
This paper explored Multiscale Contextual Learning for Speech
Emotion Recognition in emergency call center conversations using
the CEMO corpus collected in-the-wild. We conducted experiments
incorporating contextual information from both speech transcrip-
tions and acoustic signals with varying scales of the context. Overall,
acoustic models demonstrate superior performance compared to
text models, Table 3, 5.
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For text modeling with FlauBERT’s Transformer embeddings,
the context derived from previous tokens has a more significant
influence on accurate prediction than following tokens, Table 3.
Furthermore, taking the context from the same speaker in the con-
versation leads to better results in Table 3.

For acoustic modeling with wav2vec2.0 Transformer embed-
dings, we did not improve our results by using contextual informa-
tion, Table 4. Despite pursuing a hierarchical training framework,
Table 5, the results are disappointing and reveal challenges in effec-
tively modeling sequential unimodal acoustic context using feature
concatenation.

We also conducted an in-depth analysis of the impact of the pre-
vious emotions on the predictions.While multi-scale conversational
context learning using Transformers can enhance performance in
the textual modality for emergency call recordings, incorporating
acoustic context is more challenging, see Table 4. Advanced context
modeling techniques are needed to fully leverage conversational
dependencies in speech emotion recognition. Extending the con-
text to model inter-speaker dynamics and relationships throughout
full conversations is an important direction. Advances in atten-
tion mechanisms to handle wider contexts will also enable further
progress on context-aware speech emotion recognition.
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