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Emotion recognition in conversations is essential for ensuring advanced human-machine interactions. However, creating robust and accurate emotion recognition systems in real life is challenging, mainly due to the scarcity of emotion datasets collected in the wild and the inability to take into account the dialogue context. The CEMO dataset, composed of conversations between agents and patients during emergency calls to a French call center, fills this gap. The nature of these interactions highlights the role of the conversation's emotional flow in predicting patient emotions, as context can often make a difference in understanding observed emotional expressions. This paper presents a multi-scale conversational context learning approach for speech emotion recognition, which takes advantage of this hypothesis. We investigated this approach on both speech transcriptions and acoustic segments. Experimentally, our method uses the previous or next information of the targeted segment. In the text domain, we tested the context window using a wide range of tokens (from 10 to 100) and at the speech turns level, considering inputs from both the same and opposing speakers. According to our tests, the context derived from previous tokens has a more significant influence on accurate prediction than the following tokens. Furthermore, taking the last speech turn of the same speaker in the conversation seems useful. In the acoustic domain, we conducted an in-depth analysis of the impact of the surrounding emotions on the prediction. While multi-scale conversational context learning using Transformers can enhance performance in the textual modality for emergency call recordings, incorporating acoustic context is more challenging.

INTRODUCTION AND RECENT WORK

In the context of our work, emotion recognition refers to the detection and categorization of emotional expressions as they manifest in conversations. This detection is not necessarily correlated to the individual's internal feelings but is a measure of an observable expression.

In recent years, novel methods and techniques have been applied to speech-based downstream applications with a focus on the potential benefits of incorporating conversational information into such systems. This contextual information is usually derived from previous and subsequent utterances in the form of speech transcriptions or acoustic contexts.

An early significant approach by [START_REF] Poria | Context-Dependent Sentiment Analysis in User-Generated Videos[END_REF], utilized a bidirectional LSTM to assimilate context without distinguish speakers. Extending this methodology, [START_REF] Hazarika | ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection[END_REF] incorporated a GRU structure within their ICON model to identify speaker relationships. Later, [START_REF] Ghosal | DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation[END_REF], converted conversations into a graph, employing a graph convolutional neural network for emotion classification. This work was further developed by (almost) the same team, who integrated common-sense knowledge to understand interlocutors' interactions [START_REF] Ghosal | COSMIC: COmmonSense Knowledge for eMotion Identification in Conversations[END_REF].

Recent work by [START_REF] Shen | Directed Acyclic Graph Network for Conversational Emotion Recognition[END_REF] has used new neural network structures for context understanding. An extension of this approach was proposed in [START_REF] Hu | DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations[END_REF], which introduced DialogueCRN to fully capture conversational context from a cognitive point of view. These papers illustrate the ongoing evolution of the field.

Ongoing research about conversational context in speech tasks has paralleled the rise of self-supervised pre-training models, which are now popular for handling downstream tasks. These models have shown strong results across various speech task benchmarks as highlighted in [START_REF] Wagner | Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap[END_REF]. Our paper proposes context-aware fine-tuning, which utilizes surrounding speech segments during fine-tuning to improve performance on downstream speech tasks and enrich Transformer embeddings through the integration of auxiliary context module, as illustrated by [START_REF] Shon | Context-Aware Fine-Tuning of Self-Supervised Speech Models[END_REF] and by [START_REF] Li | EmoCaps: Emotion Capsule Based Model for Conversational Emotion Recognition[END_REF] with their emotionaware Transformer Emoformer.

In the field of Speech Emotion Recognition, advances with Transformer models in deep learning have reached state-of-the-art performance on acted speech [START_REF] Lin | A Survey of Transformers[END_REF] and on widely-known open-source research database like [START_REF] Busso | IEMOCAP: Interactive Emotional Dyadic Motion Capture Database[END_REF]. Upon appropriate fine-tuning, Transformers are able to learn efficient representations of the inputs.

However, recognizing spontaneous emotions remains a challenge. But remarkably, Transformer encoder models have shown significant results over classical approaches on spontaneous emotion recordings [START_REF] Deschamps-Berger | End-to-End Speech Emotion Recognition: Challenges of Real-Life Emergency Call Centers Data Recordings[END_REF]. Through a specific integration of multimodal fusion mechanisms, these models are highly capable of gathering efficient emotional cues across modalities, [START_REF] Deschamps-Berger | Exploring Attention Mechanisms for Multimodal Emotion Recognition in an Emergency Call Center Corpus[END_REF]. This paper leverages the French CEMO corpus, which consists of real-life conversational data collected in an emergency call center [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF]. This corpus provides an excellent opportunity to tackle the challenge of integrating conversation context in a realistic emergency context.

Despite the effectiveness of Transformer models, their standard self-attention mechanism's quadratic complexity limits application to relatively small windows [START_REF] Dao | FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness[END_REF]. Cutting-edge research has focused on optimizing the attention mechanisms to a lower complexity like FlashAttention [START_REF] Dao | FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness[END_REF]. Addressing this limitation by lowering the attention complexity paves the way for future models to be trained from scratch on huge datasets with wider context. In this work, we propose a multi-scale hierarchical training system adapted to pre-trained standard attention models that are available in the French community. The proposed approach draws inspiration from recent work by [START_REF] Shon | Context-Aware Fine-Tuning of Self-Supervised Speech Models[END_REF]. We evaluate the impact of different types of contextual information for acoustic level and manual speech transcription. Integrating the acoustic and linguistic context of dialogue into an emotion detection system remains a challenge, but this work aims to contribute to these ongoing efforts and explain the impact of such a system and its limitations.

CONVERSATIONAL CORPUS: CEMO

The emergency call center corpus presents a unique opportunity to examine real-world emotional expression. This rich 20+ hour dataset captures naturalistic interactions between callers in crisis and operators. As described by [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF][START_REF] Vidrascu | Detection of Real-Life Emotions in Call Centers[END_REF], it contains emotional annotations across situations ranging from medical emergencies to psychiatric distress. Segments were coded for major and minor emotions with fine-grained labels from 7 macro-classes.

The caller can be either the patient or a third party (family, friend, colleague, neighbor, stranger). The wide range of caller types (age, gender, origin), accents (regional, foreign), and different vocal qualities (alterations due to alcohol/medication, a cold, etc.) also make it an extremely diverse corpus. As shown in Table 1, the Caller and Agent's emotional profiles differ. Callers expressed intense emotions like fear, anger, and sadness, given their crisis state. In contrast, agents maintained a regulated presence, with more positive and neutral states, reflecting their professional role.

Inter-rater reliability highlights differences between callers and agents. Agreement on emotions was higher for callers than agents (Kappa 0.54 vs 0.35). This suggests agents regulate emotions, producing subtle expressions that are challenging to code consistently. Refining annotation schemes could better capture the complexity of agents' emotional states.

Data preparation is key for performance and robustness. As detailed in Table 2, a balanced CEMO subset (2h40) of 4224 segments was selected for training/validation/testing. We selected the 4 main classes, and we equally distributed them with 1056 samples each. Fear and Neutrality were subsampled, prioritizing speaker diversity. Anger was completed with 670 agent segments of annoyance/impatience, resulting in a class with less speaker diversity and possible bias. Positive had the most speakers and dialogues, suggesting heterogeneity. Manual transcriptions were performed with guidelines similar to the Amities project [START_REF] Hardy | Multi-Layer Dialogue Annotation for Automated Multilingual Customer Service[END_REF].

The transcriptions contain about 2499 nonspeech markers, primarily pauses, breath, and other mouth noises. The vocabulary size is 2.6k, with a mean and median of about 10 words per segment (min 1, max 47). The diagram illustrates the likelihood of moving from each prior emotion category (rows) to each target emotion (columns). Anger persists across turns at a 68% probability. Asymmetry exists between Anger and Fear, with Fear more often following Anger. Surprise is surprisingly followed by Anger, without any wordplay intended.

Figure 2 displays a histogram that illustrates the distribution of gap duration between the context and the target segment. This excludes contiguous segments, corresponding to 3040 Previousto-target and 2895 Target-to-next segments. For non-contiguous segments, there are 1174 and 1152, respectively, for Previous-totarget and Target-to-next segments. Notably, there are only 10 segments that lack any preceding context and 177 segments that do not have any following context. The gaps are mainly due to silences between turns.

METHODOLOGY

Our approach aims at recognizing emotions from speech. The systems presented in this article are based on the incorporation of conversational context via pre-trained transformative attention mechanisms. We have divided this section into two main parts, devoted to single modalities (acoustic and textual). Our aim is to better understand the impact of context in these systems.

First, we tackled the textual modality, i.e., manual transcriptions of dialogues incorporating the context in a "blind" way a defined number of conversational elements (named tokens in pre-trained models). Then, we modified the scale of the contextual window as a function of speech turns and conducted experiments on specific conversational segments.

In a second phase, we focused on the acoustic modality, where we exploited the context of speech turns that had been supported by the textual approach. We then extended this to hierarchical training on the assumption that low-level cues for emotion prediction would be learned by the model during initial context-free training and that incorporating conversational context in a second phase would enable higher-level information to be learned.

Our methodology is based on the application of specific Transformer encoder models: FlauBERT large [START_REF] Le | FlauBERT: Unsupervised Lang. Model Pretraining for French[END_REF], and wav2vec2.0 large [START_REF] Baevski | Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations[END_REF]. These models use self-supervised learning to create meaningful abstractions from text and raw audio data. Prior research [START_REF] Deschamps-Berger | Investigating Transformer Encoders and Fusion Strategies for Speech Emotion Recognition in Emergency Call Center Conversations[END_REF] showed the successful adaptation of pre-trained models to detect discrete speech emotion labels from the CEMO corpus [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF]. From the available models, we chose to use the leBenchmark model (Wav2Vec2-FR-3K) [START_REF] Evain | LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech[END_REF], trained on 3,000 hours of French language data. This decision was guided by the model's performance on the CEMO corpus [START_REF] Deschamps-Berger | Investigating Transformer Encoders and Fusion Strategies for Speech Emotion Recognition in Emergency Call Center Conversations[END_REF].

The training database for the wav2vec2-FR-3K model is comprised of spontaneous dialogues recorded by telephone, some with emotional content, thus mirroring the characteristics of the CEMO corpus. The multi-head attention layers were fine-tuned for speech emotion recognition using the CEMO corpus. This was done under the assumption that the initial layers of the model (Convolutional layers and Embedding) are robust to this task [START_REF] Deschamps-Berger | Investigating Transformer Encoders and Fusion Strategies for Speech Emotion Recognition in Emergency Call Center Conversations[END_REF][START_REF] Wagner | Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap[END_REF].

CONTEXTUAL EXPLORATION OF TEXTUAL MODALITY

In this research, we propose a fine-tuned system for detecting emotions on the CEMO dataset by incorporating semantic information from the anterior or posterior parts of speech. During training, the context is concatenated with speech inputs to be fed into a Transformer. The proposed system relies on the pre-trained multihead attention layers of the FlauBERT model [START_REF] Le | FlauBERT: Unsupervised Lang. Model Pretraining for French[END_REF], to learn the relationships between the latent states of the current segment and its context. The multi-head attention mechanism allows the model to learn relevant parts of the segment to predict within its conversational context. To emphasize this weighting, we mask the embeddings yielded by the Transformer corresponding to the context. The rest of the embeddings are fed into an attention-pooling layer and classified into discrete emotions. We firstly focused on a "blind" semantic approach where the context was selected by the amount of tokens. The average number of seconds for one token in the CEMO dataset is equivalent to 0.2s, then we have an average of 5 tokens per second. We performed some experiments with a window of token numbers from 0 to 100. The results are displayed in the Figure . 3, which shows the UA scores obtained in the prediction of the four discrete emotions. Two regression lines pass through the origin 0, which corresponds to the baseline experiment without context.

There is a positive impact of context unevenly distributed between the anterior and posterior conversational contexts. The previous tokens in our tokens are more useful to enrich the segment embeddings to be predicted. Limits to the interpretability of this approach may arise from the semantic perspective, where we are uncertain whether the number of tokens will be extracted from the middle of a sentence or a speech turn.

To address this hypothesis, we conducted experiments at the speech turn level, using the previous or next segment of speech. We also extended the experiments to speaker type, which could have an impact on how the context is learned by the Transformer.

The results in Table . 3 detailed the different configurations we used. From the results, it seems that incorporating context from the same speaker outperforms the opposite speaker's approach, suggesting that the emotion of a sentence may be more influenced by the speaker's previous sentences rather than the other speaker's. This makes intuitive sense as people's emotions tend to be consistent within a short time frame and are likely to be less influenced by the immediate response from others. The Anger and Fear classes fluctuate the most with context, which may indicate that these emotional states are more complex or nuanced and may be more influenced by context and speaker.

Contextual experiments on the speech turn scale produced better or similar results to those obtained on the token scale; see Figure 4 and Table . 3. Even with a large token window, up to 100 tokens (subwords for FlauBERT), equivalent to around 20 seconds of speech, it fails to achieve the best scores, regardless of the turn before or after the segment to be predicted.

In comparison, the average context speech turn segments last 1 second; thus, the right positioning and semantic meaning of the text is one of Speech Emotion Recognition's key performances.

CONTEXTUAL EXPLORATION OF ACOUSTIC MODALITY

Our approach to predict emotions from acoustic is similar to the text modality. We concatenate raw audio as input to the acoustic Transformer and mask the embeddings specific to the context produced by the Transformer. At this stage, the wav2vec2 model applies a multi-head attention mechanism on both the surrounding segments and the target segment. This mechanism allows the model to focus on different features in the segment and its surrounding context, potentially improving the emotional relevance of the embeddings produced. To adjust the wav2vec2-FR-3K model to our needs, we added an attention pooling layer and a classifier. One drawback of this approach is the higher computational cost of the Transformer acoustic model compared to the textual one. Due to the specifications of our computational clusters, we are limited to a maximum length of around 6.5 seconds for the large wav2vec2 model.

Following the results obtained on the context at a speech turns level with the text modality, we incorporate the context from the previous or next turn of the target segment. Furthermore, we implemented a novel way to enrich the yielded wav2vec2 embeddings through a dedicated auxiliary context module influenced by [START_REF] Shon | Context-Aware Fine-Tuning of Self-Supervised Speech Models[END_REF]. The auxiliary module is detailed in Figure 4, it gathers the embeddings from the surrounding segments into a context attention pooling layer. This pool, together with a fully connected network, generates a context vector that provides a compact, informative representation of the surrounding context.

𝐶 𝑖 = FullyConnected(AttentionPooling(𝐸 𝑖 , 𝑆 𝑖 ))
(1) In the equation above, 𝐶 𝑖 is the context vector for the 𝑖-th segment, 𝐸 𝑖 signifies the embeddings of the target segment, and 𝑆 𝑖 is the input segment. The context vector is then concatenated with each of the embeddings of the target segment, effectively underlining the contextual information into the final classifier prediction.

Table 4 presents results evaluating the incorporation of contextual acoustic information to enhance the emotion recognition performance of wav2vec2 embeddings. Across conditions, two proposed context integration methods were examined -masking the context embedding (MWCE) and concatenating context features with target embeddings (CCFTE) -using either previous or next utterances as context. Notably, the baseline wav2vec2 model with no context elicited the highest total unweighted accuracy (UA) of 75.6%, exceeding all context-enhanced models. This suggests intrinsic limitations of the concatenation-based context integration approaches assessed. Both MWCE and CCFTE concatenation utilizing prior context modestly boosted performance to 75.4% UA. However, the next context yielded negligible gains, indicating contextual benefits may be asymmetric.

Despite the disappointing results of our preliminary experiments using acoustic models trained on isolated utterances, we continue to further explore this approach building on prior textual results. We were seeking of a way to leverage the meaningful contextual signals that could be present in adjacent turns. We shifted the method to a hierarchical training framework where acoustic models were first trained on the target segments using isolated utterances without conversational context. Subsequently, we fine-tuned the model to adapt to the surrounding conversation segments, thereby learning higher-level emotional cues that are context-dependent. Simultaneously, we train a parallel model from the same baseline checkpoint to serve as a comparison, ensuring our fine-tuning process contributes positively to the emotion prediction task.

The obtained results, detailed in Table 5 demonstrate the limited gains achieved through hierarchical fine-tuning with concatenated context. Critically, all context-enhanced models fail to improve over the baseline wav2vec2 model at 76.2% UA. This implies significant shortcomings in the concatenation-based context integration paradigm.

Although small improvements are achieved using the previous context with MWCE+CCFTE, the global hierarchical learning methodology provides insignificant improvements to acoustic modeling. These results reveal shortcomings compared to text-based modeling approaches.

In particular, the minimal gains from concatenating context features (CCFTE) reveal this technique inadequately incorporates conversational patterns. The embedding masking (MWCE) is somewhat more beneficial, but the context integration remains insufficient.

We furthermore tried other experiments which did not yield better results; these experiments were based on MFCC cues of the surrounding segments. The Figure 5, illustrates the distribution of previous emotion labels of the 4 targeted emotions. To compare the results obtained with conversational context, we took the same configuration with context taken from previous segments (whatever the speakers) for two different sets of predictions: speech transcriptions (T) and acoustic (A). Both models performance are respectively 71.2% (T) and 75.4% (A) UA (see Table 3 and4).

ANALYSIS OF PREDICTION ACCURACY BASED ON THE PREVIOUS SEGMENT'S EMOTION

Across both experiments, the Positive emotion and Neutral state segments seem to be predicted most accurately when the previous emotion is also Positive, resulting from 86.7% to 88.6% UA for both acoustic and transcriptions. The best results for Fear are obtained from Anger previous segment, 77.8% (A) and 70.8% (T). For Anger class an high UA is obtained for the segments with anterior Fear emotion expressed. The acoustic and textual model results are heterogeneous for the Anger class; the acoustic model outperforms the textual model when the previous segment was Fear (89.5% (A) vs. 71.5% (T)), on the other hand, when the previous segment was Anger, the textual model had great results over the acoustic model (68.7% (T) vs. 58.7% (A)).

CONCLUSION

This paper explored Multiscale Contextual Learning for Speech Emotion Recognition in emergency call center conversations using the CEMO corpus collected in-the-wild. We conducted experiments incorporating contextual information from both speech transcriptions and acoustic signals with varying scales of the context. Overall, acoustic models demonstrate superior performance compared to text models, Table 3,5.

For text modeling with FlauBERT's Transformer embeddings, the context derived from previous tokens has a more significant influence on accurate prediction than following tokens, Table 3. Furthermore, taking the context from the same speaker in the conversation leads to better results in Table 3.

For acoustic modeling with wav2vec2.0 Transformer embeddings, we did not improve our results by using contextual information, Table 4. Despite pursuing a hierarchical training framework, Table 5, the results are disappointing and reveal challenges in effectively modeling sequential unimodal acoustic context using feature concatenation.

We also conducted an in-depth analysis of the impact of the previous emotions on the predictions. While multi-scale conversational context learning using Transformers can enhance performance in the textual modality for emergency call recordings, incorporating acoustic context is more challenging, see Table 4. Advanced context modeling techniques are needed to fully leverage conversational dependencies in speech emotion recognition. Extending the context to model inter-speaker dynamics and relationships throughout full conversations is an important direction. Advances in attention mechanisms to handle wider contexts will also enable further progress on context-aware speech emotion recognition.

Ethics and reproducibility

The use of the CEMO database or any subsets of it, carefully respected ethical conventions and agreements ensuring the anonymity of the callers. All evaluations are performed on 5 folds with a classical cross-speaker folding strategy that is speaker-independent between training, validation, and test sets. During each fold, system training is optimized on the best Unweighted Accuracy (UA) of the validation set. The outputs of each fold are combined for the final results. The experiments were carried out using Pytorch on GPUs (Tesla V100 with 32 Gbytes of RAM). To ensure the reproducibility and comparability of the runs, we set a random seed to 0 and prevent our system from using non-deterministic algorithms. This work was performed using HPC resources from GENCI-IDRIS (Grant 2022-AD011011844R1).
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 1 Figure 1: Transition between the previous and current emotion segments, we only show previous emotions which have at least 30 segments.

Figure 1

 1 Figure1represents the transition probabilities between the emotion expressed in the previous speech turn and the target segment. The diagram illustrates the likelihood of moving from each prior emotion category (rows) to each target emotion (columns). Anger persists across turns at a 68% probability. Asymmetry exists between Anger and Fear, with Fear more often following Anger. Surprise is surprisingly followed by Anger, without any wordplay intended.Figure2displays a histogram that illustrates the distribution of gap duration between the context and the target segment. This
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 2 Figure 2: Histogram of gap duration between context segment and the segment to predict (segments with a gap of zero are excluded)
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 3 Figure 3: Prediction Accuracy vs. Context Token Count: Tokens number represents anterior/posterior tokens to the target segment. Accuracy is Unweighted Average (UA), in %
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 4 Figure 4: Illustration of CCFTE Concatenation of Context Features with Target Embeddings, figure from [19]

Table 5 :

 5 Hierarchical Training: Fine-tuning of Models with and without Context from a Baseline Checkpoint, MWCE: Masking w2v2 context embed., CCFTE: Concatenation of Context Features with Target Embeddings, sorted by UA Model Strategy Context MWCE CCFTE ANG FEA NEU POS Total

Figure 5 :

 5 Figure 5: Prediction accuracy of the target emotions based on the previous segment's emotion, A: prediction on acoustic, T: prediction on speech transcripts, % in UA

Table 1 :

 1 The 10 most represented emotions and mixtures of emotions by caller and agent. FEA: Fear, NEU: Neutral, POS: Positive, ANG: Anger, SAD: Sadness, HUR: Hurt, SUR: Surprise OTHER: Sum of remaining classes

	Caller	Segments Speakers	Agent	Segments Speakers
	Total	17679	870	Total	16523	7
	FEA	7397	825	NEU	10059	7
	NEU	7329	822	POS	4310	7
	POS	1187	566	ANG	1213	6
	ANG	417	146	FEA	437	7
	HUR	261	67	FEA/POS	122	4
	SUR	144	118	ANG/POS	65	4
	FEA/POS	130	103	ANG/FEA	57	3
	FEA/SAD	128	71	POS/SUR	24	4
	FEA/HUR	116	55	FEA/SUR	16	4
	OTHER	294	171	OTHER	52	3

Table 2 :

 2 Details of the CEMO subset of speech signals and manual transcripts. ANG: Anger, FEA: Fear, NEU: Neutral, POS: Positive, Total: Total number of segments.

	CEMO 𝑠	ANG FEA NEU POS Total
	#Speech seg.	1056 1056 1056 1056 4224
	#Callers	143	537	450	544	806
	#Agents	6	-	-	-	6
	#Dialogues	280	504	425	516	735
	Total duration (mn)	39	52	49	20	160
	Duration mean (s)	2.2	2.9	2.8	1.1	2.3
	Vocabulary size	1146 1500 1150 505	2600
	Avg. word count	9.3	11.9	7.9	3.8	8.2

Table 3 :

 3 Comparison of Textual Models (on manual transcriptions) using FlauBERT Embeddings with and without Contextual Information, sorted by UA: % Contextual information: 1st column: Previous or Next segments, 2nd column: same speaker, opposite speaker or all speakers

	Model	Context from	ANG FEA NEU POS Total
		Previous same speaker	66.0	64.5 70.6	85.7 71.7
		Next	same speaker	70.4	59.7 72.5	83.6 71.5
	FlauBERT	Next Previous all speakers opposite speaker 67.9 66.3	62.3 72.4 61.2 72.4	82.7 71.3 84.8 71.2
		Next	all speakers	64.1	66.3 68.6	85.2 71.0
		Previous opposite speaker 59.4	66.1 71.0	84.3 70.2
	FlauBERT Without -	61.1	66.0 68.2	85.1 70.1

Table 4 :

 4 Comparison of Acoustic Models Using wav2vec2 Embeddings with and without Contextual Information, MWCE: Masking w2v2 context embed., CCFTE: Concatenation of Context Features with Target Embeddings, sorted by UA

	Model	Strategy	Context MWCE CCFTE ANG FEA NEU POS Total
	wav2vec2 -	Without -	-	73.0	70.2 72.2	87.1 75.6
			Previous ✓	✓	71.1	73.1 70.7	86.6 75.4
	wav2vec2 Concatenation	Next Next	✓ ✓	✓ -	68.1 71.2	73.7 73.1 67.2 75.6	86.4 75.3 85.4 74.9
			Previous ✓	-	66.4	63.0 79.2	85.4 73.5

ACKNOWLEDGMENTS

The Ph.D. thesis of Theo Deschamps-Berger is supported by the ANR AI Chair HUMAAINE at LISN-CNRS, led by Laurence Devillers and reuniting researchers in computer science, linguists, and behavioral economists from the Paris-Saclay University. The data annotation work was partially financed by several EC projects: FP6-CHIL and NoE HUMAINE. The authors would like to thank M. Lesprit and J. Martel for their help with data annotation. The work is conducted in the framework of a convention between the APHP France and the LISN-CNRS.