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Abstract: This paper focuses on the critical role of temperature in ultrafast direct laser writing pro-
cesses, where temperature changes can trigger or exclusively drive certain transformations, such as 
phase transitions. It is important to consider both the temporal dynamics and spatial temperature 
distribution for the effective control of material modifications. We present analytical expressions for 
temperature variations induced by multi-pulse absorption, applicable to pulse durations signifi-
cantly shorter than nanoseconds within a spherical energy source. The objective is to provide easy-
to-use expressions to facilitate engineering tasks. Specifically, the expressions are shown to depend 
on just two parameters: the initial temperature at the center denoted as T00 and a factor Rτ represent-
ing the ratio of the pulse period τp to the diffusion time τd. We show that temperature, oscillating 
between Tmax and Tmin, reaches a steady state and we calculate the least number of pulses required 
to reach the steady state. The paper defines the occurrence of heat accumulation precisely and elu-
cidates that a temperature increase does not accompany systematically heat accumulation but de-
pends on a set of laser parameters. It also highlights the temporal differences in temperature at the 
focus compared to areas outside the focus. Furthermore, the study suggests circumstances under 
which averaging the temperature over the pulse period can provide an even simpler approach. This 
work is instrumental in comprehending the diverse temperature effects observed in various exper-
iments and in preparing for experimental setup. It also aids in determining whether temperature 
plays a role in the processes of direct laser writing. Toward the end of the paper, several application 
examples are provided. 

Keywords: temperature distribution; femtosecond pulsed laser; interaction laser–dielectric solid 
 

1. Introduction 
In the context of an ultrafast laser interacting with solids, temperature plays a special 

role in the transformation processes. Some of the processes can be thermally activated, 
others can be temperature driven, such as phase transition but not thermally activated. 
The objective of this paper is to develop an analytic approximation to predict the behavior 
of the spatial temperature distribution and the temperature evolution over time according 
to the key laser parameter combinations and then to deduce their importance. This ap-
proach seeks to provide physical insight and semi-quantitative results without relying on 
heavy and overly detailed finite element calculations. This methodology resonates with 
the philosophy espoused by Paul Dirac in 1929, as documented in the Proceedings of the 
Royal Society of London [1]: 

“The underlying physical laws necessary for the mathematical theory of a large part of 
physics and the whole of chemistry are thus completely known, and the difficulty is only 
that the exact application of these laws leads to equations much too complicated to be 
soluble. It therefore becomes desirable that approximate practical methods of applying 
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quantum mechanics should be developed, which can lead to an explanation of the main 
features of complex atomic systems without too much computation”. 
In the ultrafast laser–matter interaction process, the energy from the laser pulse that 

has an extremely short pulse duration (10−11–10−14 s) is partially injected into a small focal 
volume of transparent dielectric solids. This intense laser pulse with high irradiance (>1013 

Wcm−2) in the focal region stimulates a series of complex dynamic processes, such as mul-
tiphoton ionization, tunneling ionization, inverse bremsstrahlung absorption, and ava-
lanche ionization within an ultrashort time scale [2]. Such interactions lead to high-density 
electron excitations in condensed matter, creating plasma with high temperatures and 
pressures. This plasma expands rapidly in the focal zone, resulting in structural modifi-
cations as energy relaxes through phonon–electron interactions [3,4]. 

In the low repetition rate regime, thermal accumulation is usually negligible in the 
processing. The temperature decreases to the initial degree before the next pulse arrives. 
The non-linear nature of the optical absorption can confine the formed modifications to 
the focal volume. These advantages minimize the thermal collateral damage and heat-
affected zone [5]. Thus, ultrafast laser direct writing (ULDW) is suggested as a general 
technique to induce highly localized modifications and optical structures within/near the 
focus in a wide range of transparent solids [6–11]. In this regime, denoted as non-thermal 
ULDW, the repetition rate (RR) is usually a few kilohertz, and the fabrication efficiency is 
also limited by the low pulse RR. 

In contrast, when the pulse repetition rate of the ultrafast laser increases, the interval 
between successive laser pulses is less than the time needed for the absorbed energy to 
diffuse out of the focal volume and this induces an obvious localized heat accumulation 
effect [11–18]. In this case, for a given pulse energy, the temperature increases continu-
ously in the focal zone before stabilizing. The final diffusion of the heat into the surround-
ing material may lead to a material melting beyond the focal volume over a longer time 
scale. In this regime, denoted as thermal ULDW, the melted modified region is much 
larger than the focus size. Paralleling to the wide applications of non-thermal ULDW, the 
localized thermal accumulation has been demonstrated to be important in the ULDW for 
inducing various phenomena and structures in the transparent solids and improving the 
performance of the fabricated devices. For example, the thermal accumulation can lead to 
a higher symmetry of the waveguide cross-section, reducing the propagation loss and en-
hancing the fabrication efficiency [12,15,16]. Thermal accumulation in the ULDW can also 
induce unique phenomena, such as elemental redistribution and local crystallization, 
which are nearly not achievable in the non-thermal ULDW [11,19–23]. In the thermal 
ULDW regime, the temperature distribution can work as a driving force to redistribute 
the elements or reorganize the structures in the thermal melted region. The thermal accu-
mulation effect has also been reported to be critical for the formation of periodic 
nanogratings in some glass systems [24]. Moreover, the thermal accumulation induces a 
high temperature that can produce thermally excited free electrons, which seeds the ava-
lanche ionization and significantly enhance absorptivity [25]. As a result, more energy can 
be absorbed, and this further increases thermal accumulation. Until now, thermal accu-
mulation has been established to be an important assistor in many cases to help ULDW to 
achieve various applications in fundamental science and technological manufacturing 
[14–16,21,25,26]. Clarifying the principle of thermal ULDW and reviewing its current 
stage in the applications are highly urgent and significant for guiding future work 
[11,15,16]. 

For this aspect of the work, Lax et al. in 1977 [27] published the first paper that de-
scribed the 3D spatial distribution of the temperature rise induced by the Beer–Lambert 
absorption of a static Gaussian CW laser beam in cylindrical geometry. Then, Sanders in 
1984 [28] described an extension of these calculations for scanning beams and provided 
analytic expressions. In 1991, Haba et al. [29] described the calculation of a 3D spatial dis-
tribution for the Beer–Lambert absorption of a scanning Gaussian pulsed laser in cylin-
drical geometry. However, even if the expression was quite complete but numerically 



Micromachines 2024, 15, 196 3 of 35 
 

 

solvable, there was no extended discussion on the laser/material parameters. Then, Eaton 
et al. [15] in 2005 and Zhang et al. [30] in 2007 performed finite difference calculations, for 
simple pulsed and CW Gaussian beams in spherical geometry, preventing easy material 
analysis. In 2007, Sakakura et al. [18] solved the Fourier equation in the frame of cylindri-
cal geometry for energy delivered by a Gaussian pulsed fs laser (pulse duration 220 fs, RR 
3 Hz, pulse energy < 1 µJ). With such a weak RR, the calculation can be restricted to one 
pulse as the experimental measurement (a lens effect) was smaller than 1 ms. However, it 
is not a special case and for material treatment, a large number of pulses are required. 
That is why Miyamoto et al. [31] in the same year, deduced analytical expressions for 
scanning uniform pulsed laser energy deposition in a parallelepiped volume of width 2 
w corresponding to the scanning CW beam diameter at 1/e and length corresponding to 
the absorption length (1/α). These calculations were used also by Beresna et al. [32] and 
applied to a particular case, i.e., borosilicate. In 2011, Miyamoto et al. [25] considered a 
cylindrical source with its full width dependent on z in order to account for the conver-
gence of the beam or the non-linear properties including the self-focusing. In 2012, 
Shimizu et al. [33] used a static cylindrical Gaussian beam and Gaussian energy deposition 
in depth for multi-pulsed laser energy deposition but solved the problem numerically. 
Lastly, in 2019 and 2020, Rahaman et al. [34,35] proposed an analytical solution using Du-
hamel’s theorem and Hankel’s transform method, for a transient, two-dimensional ther-
mal model. We summarized the above research in Table 1 below, to compare with our 
work. 

Table 1. State of the art of the thermal simulation of laser–matter interactions. 

Laser Type Mode Geometry Source Shape Solving Method Refs. 

CW static cylindrical 
Gaussian(r) 
Beer–Lambert(z) analytical Lax [27] 

pulsed scanning three axes 
Gaussian(x,y) 
Beer–Lambert(z) analytical Sanders [28] 

pulsed scanning three axes 
Gaussian(x,y) 
Beer–Lambert(z) analytical Haba [29] 

pulsed static spherical Gaussian(r) finite difference 
Eaton [15] or Zhang 
[30] 

pulsed quasi-static cylindrical 
Gaussian(r) 
Beer–Lambert(z) analytical one pulse Sakakura[18] 

CW scanning three axes uniform deposition in 
parallelepiped volume analytical Miyamoto [31] 

pulsed static cylindrical Gaussian(r,z) analytical Miyamoto[25] 

pulsed static cylindrical Gaussian(r) 
Gaussian(z) 

numerical Shimizu [33] 

pulsed scanning cylindrical Gaussian(r) 
surface absorption 

analytical Rahaman [34,35] 

pulsed quasi-static spherical Gaussian(r) analytical this work 

In short, the drawback in the available literature is that the authors did not provide 
simple expressions that allow the reader to easily understand how each parameter of la-
sers and materials influences the evolution of the temperature distribution, and to control 
the thermal effect in transparent materials with non-linear optical absorption for which 
the effect is mainly in volume for a focused beam. However, beyond this step that corre-
sponds to the absorption of a small part of the pulse energy, the absorption becomes linear 
[36]. This is the reason why we present the analytical approach or link the properties of 
the materials to the shape of the temperature distribution and use it for explaining the 
phenomena such as: 
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- The appearance of several regions in the heat-affected volume including change of 
the structure of a glass, crystallization, phase separation, thermal erasure while writ-
ing providing that energy endo or exo is negligible in front of the laser one; 

- The variations in the shape of the interaction volume according to the laser parame-
ters like a change of laser track width, change of laser track morphology. 
For this purpose, we restricted ourselves assuming that the physical properties of the 

material are independent of the temperature, but this does not prevent the possibility of 
physical deductions. We used the simplest solution of the Fourier equation in spherical 
geometry, i.e., a Gaussian shape along the perpendicular and longitudinal direction of the 
beam propagation direction. This applies not only to the sample surface but also to mul-
tiphoton absorption by stating the coordinate origin at the geometrical or effective focus. 
Since the typical application of this model is the thermal accumulation of a high focused 
beam in a material with non-linear absorption. Namely, the cylindrical symmetry and the 
Beer–Lambert law along z cannot be considered. We have also considered that the pulse 
duration (smaller than a few ns) is much smaller than the diffusion time so that the initial 
temperature distribution is defined by the shape of the absorbed energy source. This is 
applicable in most cases to femtosecond and nanosecond lasers as the diffusion time is 
usually of the order of a fraction of µs in inorganic glasses and a few µs in organic mate-
rials. In addition, material phase change and non-linear optical effects are not considered 
in this model except for the presence of coefficient A (see below). 

This study was motivated by seeing nowadays that, as the means of simulation are 
easily accessible, the physical sense is hidden or even lost, which prevents the correct 
management of the laser parameters according to targeted property modifications. 

2. Starting Formulation 
From a theoretical point of view, the heat deposited at a point by the laser diffuses 

into the material by following Fourier’s law �⃗� = −�̿�∇⃗𝑇 where �⃗� is the heat flow (energy 
per unit area and time). Fourier considers it to be linearly dependent on the temperature 
gradient. κ is the thermal conductivity, in general, a tensor of order 2 which relates the 
gradient vector of 𝑇 to the flux. Its dimension is energy (J/m2·s·K). For isotropic materials, 
such as glasses, one will suppose that this tensor is reduced to a scalar. To calculate (in 
principle) the evolution and distribution of 𝑇, we start with the law of the conservation of 
energy, + ∇⃗ ∙ �⃗� = source terms − sink terms. The source term is the laser energy den-

sity deposited per unit of time (i.e., absorbed laser power), written symbolically as . 
Its spatial shape defines the symmetry of the problem. For the sake of simplicity for 
demonstrating physical conclusions, we have assumed spherical symmetry. This means 
that we do not take into account some changes of focal volume with incident pulse energy 
due to Kerr self-focusing and electron plasma defocusing. We assume that there were no 
heat annihilation terms (for example, endothermic chemical transformation), sink terms = 0.  Using the definition of specific heat, = 𝜌 ∙ 𝐶 ∙  , 𝜌  and 𝐶   are the 
density and specific heat capacity, respectively. ∇⃗ ∙ �⃗� = ∇⃗ ∙ −𝜅∇⃗𝑇 = −𝐷 ∙ Δ𝑇, with dif-
fusivity 𝐷 = ∙   , Δ  is the Laplace operator written in spherical symmetry, Δ = ∇ =+ . Considering a beam moving not too fast, convection can be neglected (i.e., the 
time derivative of the spatial coordinate),  is thus written as . Therefore, we obtain 
the following equation: 𝜕𝑇(𝑟, 𝑡)𝜕𝑡 − 𝐷 ∙ Δ𝑇(𝑟, 𝑡) = 1𝜌𝐶 𝛿𝜌𝛿𝑡  (1)

Since the pulse duration is much less than the diffusion time (w2/Dth with w is the 
beam waist radius at 1/e), the latter is at the scale of 10−7 s and 10−6 s, the diffusion process 
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can be considered therefore to be well separated from the deposition process. During the 
pulse, a deposition of energy density takes place, but the diffusion does not begin, so 𝐷 ·Δ𝑇 = 0, and Equation (1) becomes: 𝜕𝑇(𝑟, 𝑡)𝜕𝑡 = 1𝜌𝐶 𝛿𝜌𝛿𝑡  (2)

Assuming a Gaussian shape of (𝑟, 𝑡) = . ∙ 𝑒𝑥𝑝 ∙ 𝑓(𝑡) , where 𝑤  is the 

beam waist radius (at 1/e), 𝑓(𝑡) is the pulse shape (integral of 𝑓(𝑡) on the pulse time = 1), 𝐸   is the energy of the pulse, 𝐴  represents the absorbed fraction of the pulse energy. 
Therefore, 𝑇(𝑟, 0) − 𝑇 = 𝑑𝑡 = 𝑇 ∙ 𝑒𝑥𝑝   with: 

𝑇 = 𝐴 ∙ 𝐸𝜋 𝜌𝐶 𝑤  (3)

After pulse energy deposition, diffusion begins to operate, and Equation (1) becomes: 

𝜕𝑇(𝑟, 𝑡)𝜕𝑡 − 𝐷 ∙ Δ𝑇(𝑟, 𝑡) = 0  (4)

Using the initial and boundary conditions on solutions of Equations (2) and (4), we 
obtain: 

𝑇(𝑟, 𝑡) = 𝑇 ∙ 𝑤(𝑤 + 4𝐷 ∙ 𝑡) ∙ 𝑒𝑥𝑝 − 𝑟𝑤 + 4𝐷 ∙ 𝑡 + 𝑇  (5)

Equation (5) describes a single-pulse-induced temperature distribution over time. 𝑇  is the maximum temperature induced by a laser pulse at the focus center. 𝑇  is the 
ambient temperature, which will be omitted for ease of calculation. The temperature 
should thus be understood as the temperature increment above the initial sample temper-
ature. 

It is important to note that when utilizing the spherical model, the deposited energy 
volume will consistently yield a higher temperature than reality, as the size along z is 
usually larger than the waist radius. Given our primary concern lies in assessing the tem-
perature’s dependence on various parameters, it is possible to adjust the actual calculated 
value, which is notably affected by the absorption fraction 𝐴, to align it more closely with 
reality. 

In the case of the absorption of N pulses, we easily obtain the evolution of the distri-
bution considering the linearity of the differential equation and making up the sum of the 
solution for one impulsion but shifted in time 𝜏 = 1/𝑅𝑅, where RR is the pulse repetition 
rate: 

𝑇(𝑟, 𝑡) = 𝑇 ∙ 𝑤(𝑤 + 4𝐷 ∙ 𝑡) / ∙ 𝑒𝑥𝑝 − 𝑟𝑤 + 4𝐷 𝑡 − 𝑛 ∙ 𝜏 ( · )  (6)

With 𝜏 = 𝑤 /4𝐷 , 𝑟 = , Equation (6) reads: 
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𝑇(𝑟 , 𝑡) = 𝑇 ∙ 11 + 𝑡 − 𝑛 ∙ 𝜏𝜏 / ∙ 𝑒𝑥𝑝 − 𝑟1 + 𝑡 − 𝑛 ∙ 𝜏𝜏  (7)

We note that the variables involved in Equation (7) are the ratio between the period 
of the pulses 𝜏  and the diffusion times 𝜏 , while the other laser and material parameters 
are involved in the amplitude 𝑇 . Therefore, we introduce the parameter 𝑅 : 

𝑅 = 𝜏𝜏  (8)

Therefore, Equation (7) becomes: 

𝑇(𝑟 , 𝑡)𝑇 = 11 + 𝑡𝜏 − 𝑛 ∙ 𝑅 .
  

𝑒𝑥𝑝 − (𝑟 )1 + 𝑡𝜏 − 𝑛 ∙ 𝑅  (9)

where 𝑁 is the number of pulses defined from the time 𝑡. 
The objective now is to compute the value of the temperature 𝑇 according to the co-

ordinate 𝑟  when N ≫ 1/𝑅 . We will show how the temperature changes with the num-
ber of pulses according to heat accumulation (hence 𝑅 ), i.e., when T at the end of the 
period cumulates with the increase induced by the absorption of the next pulse. We will 
also describe the properties of the temperature on average in the pulse repetition period. 
We will also show that a steady state can be reached and give the practical number of 
pulses for that. 

3. Final Temperatures at Steady State 
At first, we separate the temperature problem into two cases: (1) at the center, i.e., 𝑟 = 0; (2) for general cases when 𝑟 ≠ 0 including case (1). Again, for the sake of sim-

plicity, 𝑇  will be usually omitted. Therefore, the subsequent temperatures will virtually 
include 𝑇 . 

3.1. At the Center 
At the center, 𝑟 = 0, and thus, from Equation (9): 

𝑇(0, 𝑡) = 1

1 + 𝑡𝜏 − 𝑛 ∙ 𝑅 3
2

1

0
1    (10)

Calling 𝑁 = . The temperature evolutions over the generalized pulse number Nt 

for several 𝑅  are shown in Figure 1. 
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Figure 1. Plot of the relative temperature (Equation (10)) at the center rw = 0 according to the gener-
alized pulse number 𝑁 =  with 𝑅 = 0.2, 2, 20 until several pulse numbers (a) 10, (b) 20, and (c) 

100. 

From Figure 1 we observe that: 
- 𝑇(0, 𝑁 ) oscillates between a minimum (𝑇 ) and a maximum (𝑇 ) in each period 

between two pulses; 
- The oscillation amplitude (𝑇 ) seems to be the same, whatever 𝑅 ; 
- 𝑇 seems to reach a steady state as 𝑁  becomes large (already seen in various papers 

[29,31,32]); 
- The number of pulses to reach this ‘steady state’ appears very small for a large 𝑅  

but larger for small 𝑅  values. For a larger 𝑅 , the temporal overlapping of temper-
ature increase contributions from consecutive pulses is weaker, whereas it increases 
(heat accumulation) when 𝑅  is smaller. 

3.1.1. The Oscillation Amplitude Tosc 
We observe the oscillations of temperature on time in Figure 1 on each period. Just 

after the pulse energy deposition, the temperature experiences a sudden increase and then 
a slow decrease until the next pulse arrival. It is important to know the amplitude of the 
temperature oscillations (𝑇 ) because when 𝑇  is large, at the beginning of a period, 
temperature may be high enough for transformation but in a short time, and at the end of 
the period during a long time duration, the temperature can be low, maybe achieving 
another transformation. The middle part could therefore often be the most active part. 
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The Limit of the Temperature Oscillation Amplitude after an Infinite Number of Pulses 
The question here is: how do the oscillations evolve in time according to the pulse 

number 𝑁 for a given diffusion time? If the period is large (𝑅  large), we expect inde-
pendent pulses and thus the amplitude will be 𝑇 . However, when the pulse period is 
small (𝑅  small), can we imagine a smaller oscillation? The next calculation provides an-
swers. 

For that purpose, we compare the difference between the maximum T and minimum 
T of the Nth pulse, Tmax(0,N) − Tmin(0,N) = T(0, tN) − T(0, tN+1 − ε), where ε is an arbitrary 
small quantity for ensuring that the number of pulses in the expression (11) is the same. 
Tmax is defined just after the deposition of the Nth pulse, so at the beginning of the pulse, 
tN = (N − 1)τp. Tmin is at the end of the pulse period, just before the (N + 1)th pulse arrival. 
Using Equation (10), we have: 

𝑇 (0, 𝑁) = 𝑇 0, 𝑡 = 𝑡  = (𝑁 − 1)𝜏 = 1

1 + (𝑁 − 1 − 𝑛) ∙ 𝑅  3
2

1

0= 1

1 + 𝑛′ ∙ 𝑅  3
2

1

′ 0

 (11)

Tmin will be at t = N∙τp − ε, thus not containing the temperature contribution induced 
by the (N + 1)th pulse, so: 

𝑇 (0, 𝑁) = 𝑇 0, 𝑡 = 𝑡 − 𝜀 = 𝑁 ∙ 𝜏 − 𝜀 = 11 + (𝑁 − 𝑛) ∙ 𝑅= 11 + 𝑛 ∙ 𝑅   (12)

Therefore, 𝑇 (0, 𝑁) = 𝑇 (0, 𝑁) − 𝑇 (0, 𝑁) = 1 − 11 + 𝑁 ∙ 𝑅  (13)

and 𝑇 (0, ∞) = lim→ 𝑇 (0, 𝑁) = 1  (14)

When 𝑁 ≫ 1/𝑅 , 𝑇  tends to 1. This means T00 in the absolute scale. 𝑇  according 
to the pulse number is shown in Figure 2. It reaches a maximum value 1, i.e., 𝑇 , when 𝑁 ≫ 1/𝑅 . At the beginning of the irradiation, 𝑇  starts with a value smaller than 𝑇 , 
where a smaller 𝑅  leads to a smaller oscillation at the beginning. When the pulse number 
N increases until some value, 𝑇  reaches 𝑇 . When 𝑅  is large, e.g., 10, the amplitude 
is equal to 𝑇  whatever 𝑁, as pulse contributions are separated (no overlapping). With 
the expression of 𝑇  (Equation (3)), which is proportional to pulse energy (Ep), the tem-
perature oscillation range can be determined. 
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Figure 2. Temperature oscillation 𝑇 (0, 𝑁)/𝑇  (here quoted Tosc(N,Rτ) dependence according to 
pulse number and for three values of Rτ = 0.1, 1, and 10). 

The Effective Number of Pulses for Reaching the Limit of Tosc(𝑁 ) 

When will the temperature in the material reach a stable oscillation? In practice, we 
can calculate a real number of pulses (𝑁 ) to closely reach the oscillation limit. (In nota-
tion, 𝑁 , where sso means steady state of oscillation, 0 means the situation when rw = 0). 

Consider when 𝑇 (0, 𝑁  ) = (1 − 𝜀) ∙ 𝑇 (0, ∞) , the limit is practically reached, 
where ε is a small quantity, i.e., a few % (based on the actual situation). Thus, it is: |𝑇 (0, ∞) − 𝑇 (0, 𝑁 )|𝑇 (0, ∞) < 𝜀  (15)

Then, we have: 

𝑁 = 1𝑅 1𝜀 − 1  (16)

The plot of 𝑁  is shown in Figure 3, note that the actual number of pulses is the 
integer part above 1 (as ε should be smaller, bounded by 𝜀 = ). Some specific pa-

rameters are given below for visualizing this value. With ε = 3%, when 𝑅 = 1 (conceiva-
ble combinations of material parameters and laser RR), 𝑁 = 9.36. So, after 10 pulses, 
the amplitude of the oscillating temperature reaches 0.97 T00. When 𝑅  is large, e.g., 𝑅 =10, 𝑁 = 0.94, so only one pulse rules the oscillation amplitude, and we can understand 
that pulse contributions are separated. When 𝑅  is smaller, 𝑁  increases rapidly, e.g., 𝑅 = 0.1 , i.e., 1/𝑅 = 10 , 𝑁 = 94 . Beyond 𝑁   pulses, the oscillation amplitude be-
comes almost constant. According to the pulse period, we can know the time to reach the 
constant oscillation amplitude. By comparing with pulse number N = 1 (blue dashed line 
in Figure 3), we can deduce in what condition (𝑅  larger than which value) the tempera-
ture oscillation is constant since the first pulse. 
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Figure 3. Number of pulses to reach the oscillation amplitude limit 𝑁  according to 𝑅  from 0.1 
to 100, with ε = 3%. For 1/Rτ > 0.1, weak heat conduction, large RR, and vice versa. 

To conclude on this point, Equations (13) and (14) provides that the temperature os-
cillation amplitude is T00 after Nsso pulses and at an oscillatory steady state. Equation (16) 
provides the effective number of pulses for reaching it. It takes more time when 𝑅  is very 
small (slow heat diffusion or high pulse RR) but the requested time remains quite small. 
In particular, the temperature oscillation amplitude is only relevant to certain laser pa-
rameters of a single pulse and material parameters of the energy-to-temperature conver-
sion relationship, independent of RR and diffusion parameters. 

Tmin and Tmax 
We demonstrate in Appendix B that the temperature induced by laser pulses will not 

increase indefinitely but converge to a finite value. This defines a steady state that corre-
sponds to the equilibrium between the energy supplied by the laser and the energy dif-
fusing out of the irradiated voxel. 

The Limit of Tmax and Tmin 
Tmin: The analytical expression of the minimum temperature is transformed from the 

sum expression Equation (12), with details found in Appendix C. Therefore, we obtain: 

𝑇 (0, 𝑁 ) ≈ 12(1 + 𝑅 ) + 12(1 + 𝑁 ∙ 𝑅 ) + 2𝑅 11 + 𝑅 − 11 + 𝑁 ∙ 𝑅  (17)

This expression shows the increase of 𝑇  according to 𝑁 and 𝑅 . It is plotted in 
Figure 4. 
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Figure 4. Tmin/T00 at rw = 0 according to N increasing from 1 to 10,000 when Rτ = 0.2, 1, and 5. 

The final limit of 𝑇 , i.e., when 𝑁 ≫ 1/𝑅  is given below: 𝑇 (0, ∞) = 12(1 + 𝑅 ) + 2𝑅 11 + 𝑅 ≈ 2𝑅 11 + 𝑅  (18)

The same method has been applied to obtain the 𝑇  limit, and the detail can be 
also found in Appendix C. We have thus: 𝑇 (0, 𝑁) ≈ 1 + 12 1 + 𝑅 / + 12 1 + (𝑁 − 1)𝑅 / + 2𝑅 11 + 𝑅 − 11 + (𝑁 − 1)𝑅 (19)

When 𝑁 ≫ 1/𝑅 , the 𝑇  limit is: 𝑇 (0, ∞) = 1 + 12(1 + 𝑅 ) + 2𝑅 11 + 𝑅 ≈ 1 + 2𝑅 11 + 𝑅  (20)

From these expressions, we see that the difference between 𝑇 (0, ∞)  and 𝑇 (0, ∞)  is 1, which is consistent with the oscillation amplitude limitation (Equation 
(14)). 

When 𝑅  reaches 0 (e.g., by increasing pulse RR or with the material of small thermal 
conductivity), Equations (18) and (20) are approximately proportional to . Reintroduc-
ing here exceptionally 𝑇  (Equation (3)), we obtain: 

𝑇 (0, ∞)~𝑇 (0, ∞)~𝑇 . 2𝑅 = 2𝐴𝐸𝜋 𝜌𝐶 𝑤 𝑅 = 2𝐴𝐸 𝜏𝜋 𝜌𝐶 𝑤 𝜏 = 2𝐴𝐸 𝑓𝜋 𝐷 𝜌𝐶 𝑤 =  2𝐴𝑃𝜋 𝜅𝑤 (21)

with 𝑃 being the average power. 
We note that the temperature is now dependent on the incident laser power as is the 

case for CW lasers, and inversely dependent on the thermal conductivity (κ), whereas T00 
was dependent on the incident pulse energy (Ep), not on the thermal diffusivity but just 
on the heat capacity of the material. This is due to large time-overlapping of the pulse 
contribution when 𝑅  reaches 0. 

Therefore, increasing the pulse RR with constant Ep leads to a faster temperature in-
crease but NOT with constant average power. The same maximal temperature can be 
achieved with or without heat accumulation. However, Tmin, which is negligible in front 
of Tmax for large 𝑅  values, increases until it almost equals Tmax for small 𝑅  values (large 
RR). 
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The Effective Number of Pulses for Reaching the Limit of Tmin and Tmax (𝑁 , 𝑁 ) 
Nssmin: The effective number of pulses to reach the steady state Nss is defined to have 

temperature reaching 𝑇  or 𝑇 . As the same definition as for Nsso, the first approxi-
mation of Nssmin is obtained by solving the following assertion, | ( , ) ( , )|( , ) < 𝜀, with 

ε being a small quantity. Posing 𝑋 = ∙  , it reads − 𝑋 + 𝜀 · 𝑇 (0, ∞) > 0. This 

cubic equation has three roots, where the physical one is 𝑋 < ∙ ( , ) . Therefore, 

𝑁 > 1𝑅 2𝑅 ∙ 𝜀 ∙ 𝑇 (0, ∞) − 1  (22)

Nssmax: With the same method, we obtain: 

𝑁 > 1𝑅 2𝑅 ∙ 𝜀 ∙ 𝑇 (0, ∞) − 1  (23)

The Nss for reaching closely the steady state (with ε departure). Tosc(0,∞), Tmin(0,∞), 
and Tmax(0,∞) are plotted in Figure 5 according to 𝑅  (with 𝜀 = 3%). 

 
Figure 5. The effective number to reach the limit of Tosc, Tmin, and Tmax according to 𝑅  from 0.1 to 
100 for ε = 0.03. The boundary point is at Rτ = 15.7. 

From Figure 5, we can see that with 1/𝑅  increasing, the effective pulse numbers for 
reaching the steady state increases whether for Tosc, Tmin, or Tmax. For practical use, it is 
better to define one Nss for calculation. When 𝑅  is large, since the value of Tmin is almost 0 
(no pulse superimposition), it is therefore not meaningful to take it into consideration. For 
Nsso and Nssmax, the value converges to 0 when 𝑅  is large because it can be considered to 
be already at steady state when the pulses are separated. As observed, the green dash is 
always higher than the red line when N > 1, and the oscillation reaches the steady state 
faster than Tmax. Therefore, 𝑁  is the suitable and practical number of pulses needed 
for reaching the steady state. Some examples for the Nssmax value are shown in Table 2 (with 
ε = 0.03 for organic materials and ε = 0.06 for inorganic materials): 
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Table 2. Pulse number needed (Nss) for reaching the steady state in materials, using Equation (23). 

 SiO2 LNS STS Glycine Zeonex Sucrose Nifedipine 𝜏  (µs) 0.28 0.235 0.04 0.28 0.42 4.9 1.63 
RR(kHz) 200 200 200 200 200 200 200 𝑅  18 21 125 18 12 1 3 
Nssmax 1 1 1 1 3 641 80 

We observe that for the inorganic material examples in the table, with RR = 200 kHz, 
there is no heat accumulation, pulse contributions are separated, there is no transient time, 
and the time variation of T is from one pulse contribution. However, for the organic ma-
terial examples, except for glycine crystal, with same RR, the laser induces heat accumu-
lation. Therefore, not only can we deduce from the known laser and material parameters 
whether or not there will be heat accumulation, but we can also easily backtrack on how 
to choose a laser RR that avoids or guarantees heat accumulation in a particular material. 

We can thus define the boundary between the two domains by Nssmax(Rτ,ε) = 1 as 
shown in Figure 5 by the blue point. When the effective pulse number is equal to 1, the 
pulse contribution is separated, so it is considered that there is no heat accumulation. This 
is the heat accumulation definition we propose with a new perspective. Rτ varies with the 
level of sensitivity of the targeted transformation, for ε = 0.03, Rτ = 15.7, for ε = 0.06, Rτ = 7, 
for instance. 

From Nssmax together with the laser pulse RR, we know the time needed to reach the 
steady state. Accordingly, the time for reaching the steady state 𝑡  is (considering the ef-
fective number to reach the Tmax limit): 

𝑡 = 𝑁 𝜏 = 𝜏 2𝑅 · 𝜀 · 𝑇 (0, ∞) − 1  (24)

Figure 6 show the plots versus = ··   according to three different diffusion 
times: 0.28 µs (silica, glycine), 1.63 µs for nifedipine, and 4.9 µs for sucrose. 

 
Figure 6. The time in µs to reach the steady state according to 1/𝑅  value for glycine or silica (red), 
nifedipine (blue dash), and sucrose (green). The value of the second parameter in tss corresponds to 
τd in Table 2. 

For small enough values of 𝑅 , the time reaches the value 𝜏 /𝜀 , i.e., 1111𝜏  for ε = 
3%. Note that for inorganic glass and glycine crystal cited above with 𝜏  = 0.28 µs, this 
time is smaller than 1 ms (red profile). However, for sucrose and nifedipine, this time is 
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5.5 ms and 1.8 ms, respectively. In any case, the important fact is the independency of the 
transient time with Rτ for small values (see for Rτ < 1) and thus it is bounded to quite a 
small value. 

For large enough values of 𝑅 , this time is limited by the period 𝜏  that increases 
with Rτ. 

3.2. Time Behavior out of the Center (𝑟 = 𝑟/𝑤 ≠ 0) 
When (r  ≠ 0, we come back to the expression Equation (10): 

𝑇(𝑟 , 𝑡) = 11 + ( 𝑡𝜏 − 𝑛) · 𝑅 / .  ( / ) 𝑒𝑥𝑝 − (𝑟 )1 + 𝑡𝜏 − 𝑛 · 𝑅  

Figure 7 shows the temperature evolution based on the above expression over time 
at two relative distances 𝑟  = 1 (Figure 7a,b) and 𝑟  = 2 (Figure 7c,d). 

 
Figure 7. Plot of the relative temperature (T/T00) with 𝑅  = 0.2, 2, 20 at (a,b) r = w from (a) pulse 1 to 
pulse 20 and (b) pulse 100 to pulse 120 (c,d) r = 2w from (c) pulse 1 to pulse 20 and (d) pulse 100 to 
pulse 120. Inserts (b,d) zoom of pulse 106–108 of Rτ = 2 and 20 at r = w and r = 2 w, respectively. 

We observe the following differences according to radius rw = 0, 1, 2: 
- The amplitude of oscillation is less than 1 (in the unit of T00) for increasing radius; 
- The maximum temperature during a period is still at the beginning of the pulse dep-

osition for 𝑟  = 1 with these three 𝑅𝜏, while at 𝑟  = 2 the maximum temperature is 
no more at the beginning. That is because there is time for heat to diffuse from the 
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center to 𝑟 . This renders the following calculation of Tmax for increasing radius to be 
more complex. 

3.2.1. Tosc, Tmin, and Tmax 
The Limit of Tmax and Tmin (when 𝑁 ≫ 1/𝑅 ) 

To calculate the oscillation amplitude Trosc, it is the same as the case of rw = 0. In gen-
eral, we compare the difference between the maximum T and minimum T in the Nth pulse 
period. Tmin is still considered at the end of the Nth one, i.e., when 𝑡 = 𝑁 ∙ 𝜏  before the 
absorption of the (N + 1)th pulse, so: 

𝑇 (𝑟 , 𝑁) = 11 + (𝑁 − 𝑛) ∙ 𝑅 𝑒𝑥𝑝 − (𝑟 )1 + (𝑁 − 𝑛) ∙ 𝑅  (25)

However, since Tmax in some situations can be in the middle of the pulse period, we 
set 𝑥 , 0 ≤ 𝑥 ≤ 1 to define the place where the Tmax is. Therefore, Tmax is at the time 𝑡 =(𝑁 − 1 + 𝑥 )𝜏 : 

𝑇 (𝑟 , 𝑁) = 11 + (𝑁 − 1 + 𝑥 − 𝑛) · 𝑅 𝑒𝑥𝑝 − (𝑟 )1 + (𝑁 − 1 + 𝑥 − 𝑛) · 𝑅  (26)

This expression is also a general expression to describe both Tmax and Tmin, while Tmin 
appears at the end of the period, i.e., 𝑥  = 1, as well as the case when rw = 0, Tmax appears 
at the beginning of the period with 𝑥  = 0. 

The position of the maximum 𝑥   is solved as a function of 𝑅  , 𝑟  , and N. When 
considering the steady state, when 𝑁 ≫ 1/𝑅 , 𝑥  is shown below, and the results of the 
cumbersome calculation details can be found in Appendix D: 

𝑥 = 𝑅 9𝑅 + 32(𝑟 ) − 3𝑅 − 88𝑅  (27)

Based on Equation (27), when considering different values of 𝑟  and 𝑅 , the thermal 
calculation can be divided into two situations (see Appendix D): 

Situation 1: 𝑥 = 0, when, rw < +  whatever 𝑅  or 𝑅  small enough (less than 

.  when 𝑟 > 1.5). 

Situation 2: 𝑥 ≠ 0, i.e., rw > + , in this situation the maximum temperature is in 

the middle of the period, and the expressions of Tmax and Tosc should contain 𝑥 . 
(1) For situation 1, when xm = 0, the limit of Tosc is described as: 

𝑇 (𝑟 , 𝑁) = 𝑇 (𝑟 , 𝑁) − 𝑇 (𝑟 , 𝑁) = 𝑒𝑥𝑝 −(𝑟 ) − 𝑒𝑥𝑝 − (𝑟 )1 + 𝑁. 𝑅(1 + 𝑁 · 𝑅 ) ≫ /⎯⎯⎯⎯ 𝑒𝑥𝑝 −(𝑟 ) (28)

The amplitude of the temperature oscillations reaches 𝑇 ∙ 𝑒𝑥𝑝 −(𝑟 )   whatever 𝑅 . It is consistent with our observations in Figure 7, e.g., the amplitudes are 0.368 𝑇  
and 0.018 𝑇  at 𝑟 = 1 and 𝑟 = 2, respectively. 

Therefore, for Tmin and Tmax, using the trapezoidal rule for approximation as for rw = 0, 
we have Tmin from Equation (25): 
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𝑇 (𝑟 , 𝑁) ≈ 12 𝑒𝑥𝑝 − (𝑟 )1 + 𝑅(1 + 𝑅 ) / + 𝑒𝑥𝑝 − (𝑟 )1 + 𝑁 ∙ 𝑅(1 + 𝑁 ∙ 𝑅 ) / + √𝜋𝑅 ∙ 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅 − 𝑒𝑟𝑓 𝑟1 + 𝑁 ∙ 𝑅  

𝑇 (𝑟 , 𝑁 ) ≫ /⎯⎯⎯⎯ 𝑇 (𝑟 , ∞) = 𝑒𝑥𝑝 − (𝑟 )1 + 𝑅2(1 + 𝑅 ) / + √𝜋𝑅 ∙ 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅  (29)

( )( ) /  is called part 1, and √. 𝑒𝑟𝑓  is called part 2 for further use. Tmax is 

Tmin + Tosc. 
(2) For situation 2, even if 𝑥  influences the Tmax and Tosc, its influence is bounded. 

When 𝑥 = 0 is used, we calculate the temperature at the beginning of the period and 
the maximum is thus larger (with a non-zero 𝑥 ). However, how much larger? In which 
situations should we care about it? From the analysis, the details are described in Appen-
dix D, we found that the difference appears only around 𝑟 = 1.6 to 4 when 𝑅  is large. 

Tmin is the same as situation 1. For Tmax, using the trapezoidal rule for approximation 
as for rw ≠ 0, we have Tmax from Equation (26): 

𝑇 (𝑟 , 𝑁, 𝑥 ) ≈ 𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 ∙ 𝑅1 + 𝑥 ∙ 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (1 + 𝑥 ) ∙ 𝑅2 1 + (1 + 𝑥 ) ∙ 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (𝑁 − 1 + 𝑥 ) ∙ 𝑅2 1 + (𝑁 − 1 + 𝑥 ) ∙ 𝑅+ √𝜋𝑅 ∙ 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) ∙ 𝑅 − 𝑒𝑟𝑓 𝑟1 + (𝑁 − 1 + 𝑥 ) ∙ 𝑅  

≫ /⎯⎯⎯⎯  𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 ∙ 𝑅1 + 𝑥 ∙ 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (1 + 𝑥 ) ∙ 𝑅2 1 + (1 + 𝑥 ) ∙ 𝑅 + √𝜋𝑅 . 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) ∙ 𝑅  (30)

 ( )∙∙ / ,  ( )( )∙( )∙ / , √. 𝑒𝑟𝑓 ( )∙  are called part 1, 2, and 3, re-

spectively. 
The general expression of Tosc (when N tends to infinity or larger than the effective 

number for reaching the steady state) is given as 𝑇  (Equation (30)) minus 𝑇  (Equa-
tion (29)), and it reads: 

𝑇 (𝑅 , 𝑟 ) = 𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 · 𝑅1 + 𝑥 · 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (1 + 𝑥 ) · 𝑅2 1 + (1 + 𝑥 ) · 𝑅 + √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) · 𝑅
− 𝑒𝑥𝑝 − (𝑟 )1 + 𝑅2(1 + 𝑅 ) − √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅

(31)

Part 1 in Equation (29) and part 2 in Equation (30) are smaller than the other parts by 
a factor 10, so they can be approximately omitted to simplify the expressions in practice. 
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𝑇 (𝑅 , 𝑟 ) ≈  𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 · 𝑅1 + 𝑥 · 𝑅 + √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) · 𝑅 − √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅 (32)

It is worth noticing (see Appendix D, Figure A4a,b) that when 𝑅  increases, Tosc ex-
hibits a small departure from the exact value at around rw = 2, attributed to the existence 
of a non-zero xm. This departure, if it is generally not negligible, is nevertheless bounded. 
It is calculated to be  . ( )   for a large 𝑅   (details are shown in Appendix D Figure 
A4c,d by plotting Tosc according to rw and 𝑅 ). Therefore, the range of Tosc is given by Equa-
tions (33) and (34): 

𝑇 (𝑅 , 𝑟 ) →  ⎯⎯ 𝑒𝑥𝑝 −(𝑟 )  (33)

𝑇 (𝑅 , 𝑟 ) →  ⎯⎯⎯ 12.44(𝑟 )  (34)

We note that the oscillation amplitude Tosc at situation 1 is 𝑒𝑥𝑝 −(𝑟 )  which is the 
minimum, while in situation 2, the amplitude is larger due to the influence of xm, with a 
maximum value of . ( )  at the place around rw = 2. By now, with these temperature 
expressions, we obtain the spatial distribution of the minimum and maximum tempera-
ture for a given 𝑅  at steady state, shown in Figure 8. The temperature is oscillating be-
tween these two temperature profiles, and note that at rw = 0, the difference is always 1 
regardless of 𝑅 . 

We have now all the information for plotting the T distribution with any Rτ value. 

 
Figure 8. Spatial distribution of Tmin (blue dash, by Equation (29)) and Tmax (red, by Equation (30) 
and Equation (27)) according to the relative radius rw when (a) 𝑅 = 0.1, (b) 𝑅 = 1, and (c) 𝑅 = 10. 

From Figure 8, we can see that when 𝑅  is small (large frequency or small diffusiv-
ity), Tmin and Tmax have no large relative difference compared to their average values be-
cause the oscillation amplitude is always limited to 𝑒𝑥𝑝 −(𝑟 )  whereas the Tmean am-
plitude is converging to 2/𝑅  (heat accumulation). This case is interesting if a rather stable 
temperature is requested. Then, pulse energy can be adjusted for compensating the pulse 
RR increase. It is also worth noting that, by decreasing 𝑅 , the shape of the curve con-
verges to the erf(rw) curve and decreases much slower than a Gaussian one. 

For large values of 𝑅  (small frequency or large diffusivity), the oscillations are rela-
tively large as the pulses are separated and thus Tmin appears to have small values. It is 
negligible (<3%) when 𝑅 > 16 or < 6% for 𝑅 > 7). This limits the domain of heat accu-
mulation. The calculation shows that the shape of Tmax is also converging with increasing 𝑅  to the shape of the beam energy distribution (Gaussian, here 𝑒𝑥𝑝 −(𝑟 ) ) independ-
ent of 𝑅  . This translates that the maximum is almost whatever the radius, at the 
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beginning of the period. This is not true exactly only around r = 2w where a few % depar-
ture from the Gaussian shape of Tmax is demonstrated. 

For 𝑅   intermediate values, the temperature oscillations are limited between Tmax 
and Tmin. This is shown with particular cases with a shoe box in [31] for 𝑅 = 2 and 20 or 
in [32] for 𝑅 = 20. 

However, in this paper, we regard that when rw > 2, the difference between Tmin and 
Tmax is vanishing. We see this in [37]. 

Therefore, we can deduce in particular, in whatever situation of rw and 𝑅 , the tem-
perature oscillations can be neglected and the use of an average temperature is applicable. 

Other application remarks: 
(1) In the intermediate cases around Rτ = 1, the center of the heat-affected zone experi-

ences large temperature oscillations whereas the periphery temperature is not oscil-
lating. This may induce differences in the modification structures along the radius. 
Specifically, the pedestal of the curve, borne by Tmin, increases in width with 𝑅  as 1.75 + 𝑅 ; 

(2) For smaller 𝑅  values, during the transient period (before Nss), the width of the tem-
perature distribution starts with the beam waist (Gaussian) and then increases until 
a size which is defined by 𝑅 . It does not increase indefinitely over time. The order 
of magnitude is one w per two orders of magnitude on 𝑅 , e.g., the trace width at 1 
MHz is twice the one at 10 kHz. 

The Effective Number of Pulses for Reaching the Temperature Limits 
Since 𝑥   is not negligible in very limited circumstances, the effective numbers of 

pulses for reaching the limit of Tosc, Tmin, and Tmax(Nrsso/ssmin/ssmax) are given in the situation 
when 𝑥 = 0. 

With the same definition as we calculated in 𝑟 = 0, with ε being a small quantity 

and 𝑋 = √ ⋅  , we have / / ( , ) / / ( , )/ / ( , ) < 𝜀 . Therefore, the 

Nrsso/ssmin/ssmax solutions are shown below: 

𝑁 > −3 ⋅ 𝑊 − 13 𝑒 ⋅ 𝑟 ⋅ 𝜀 − 2𝑟3 ⋅ 𝑅 ⋅ 𝑊 − 13 𝑒 ⋅ 𝑟 ⋅ 𝜀 = 1𝑅 − 2𝑟3 ⋅ 𝑊 − 13 𝑒 ⋅ 𝑟 ⋅ 𝜀 − 1  (35)

This expression does not have an analytic root without using the tabulated function 
W, i.e., the Lambert W function (defined as 𝜔𝑒 = 𝑧, 𝜔 = 𝑊(𝑧)). In practice, since 𝑋 ≪1, by approximation, it becomes: 

𝑁 > 1𝑅 1𝜀 ⋅ exp −(𝑟 ) − 1  (36)

For 𝑁  and 𝑁 , with the approximation of 𝑒𝑟𝑓(𝑋 ⋅ 𝑟 ) ≈ √ 𝑋 ⋅ 𝑟 , 

𝑁 > 1𝑅 2𝑅 ⋅ 𝜀 ⋅ 𝑇 (𝑟 , ∞) − 1  (37)

𝑁 > 1𝑅𝜏 2𝑅𝜏 ⋅ 𝜀 ⋅ 𝑇 (𝑟 , ∞) − 1  (38)

The behavior of 𝑁  according to 𝑅  for 𝑟  = 0 has already been shown in Figure 5, 
with an overall increase. We have plotted Nsso and Nssmax, according to 𝑟 , for 𝑅 = 10 as 
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an example, as shown in Figure 9a, and the plot of the related time for reaching the steady 
state (using Nssmax and with diffusion time 0.28 µs) in Figure 9b. 

 
Figure 9. (a–c) Effective number of Nssmax (red), Nssmin (blue dash), and Nsso (green) for reaching a 
steady state according to 𝑟  from 0 to 5 when (a)  𝑅 = 10; (b)  𝑅 = 1; (c) 𝑅 = 0.1. (d) The time 
(in µs) for reaching the steady state according to 𝑟  from 0 to 5 when 𝑅 = 0.1, 1, and 10. 

From Figure 9, we can see that as 𝑟  increases, it takes more pulses (three orders of 
magnitude more) and this corresponds to a longer time to reach the steady state. There-
fore, in reality, even though at the exact center of the beam, the temperature is stable, the 
periphery is still evolving. In particular, in the case of a moving beam, the maximum speed 
of scanning is limited by the change at the focus periphery increasing from zero. 

4. The Mean Temperature in the Period between Two Pulses 
For many transformations induced by laser irradiation (fictive temperature, crystal-

lization, erasure of previously induced structures, stress relaxation, and so on), the large 
temperatures occurring within a pulse period are so brief that the system has no time to 
significantly respond. On the contrary, for smaller temperatures occurring at the end of 
the period, the system may have time to respond if the temperatures are not too small 
(this is the case for overlapping pulse contribution, i.e., heat accumulation). Therefore, the 
system responds efficiently predominantly for intermediate temperatures in the main part 
of the period. On the other hand, when Rτ is small (large pulse RR versus diffusion time), 
temperature oscillations are relatively small whatever the radius, or for large radius val-
ues whatever Rτ values (see Figure 8), the temperature oscillation can be neglected. For 
these, the use of an average temperature is relevant. In any case, the average value can be 
a guide for following the temperature distribution in space and its evolution. Hence, this 
section is devoted to simple expressions of average temperature values in the function of 
material and laser parameters. 

We define the averaging by 𝑇(𝑟, 𝑁) = 𝑇(𝑟, 𝑡)  𝑑𝑡, and this gives: 
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𝑇(𝑟, 𝑁) = 1𝜏 𝑇(𝑟, 𝑡)  
𝑑𝑡  (39)

N.B. due to software problem, the average temperature is sometimes quoted as 𝑇 
and sometimes Tmean. They have the same meaning. 

4.1. Temperature at the Center (𝑇(0, 𝑁)) 

𝑇(0, 𝑁) = 1𝜏 11 + 𝑡𝜏 − 𝑛 · 𝑅 𝑑𝑡  (40)

The two summations can be permuted as they do not operate on the same variables 
and are independent. We obtain: 

𝑇(0, 𝑁) = 1𝜏 11 + ( 𝑡𝜏 − 𝑛) ⋅ 𝑅 / 𝑑𝑡 = 1𝑅𝜏 ⎣⎢⎢⎢
⎡− 21 + ( 𝑡𝜏 − 𝑛) ⋅ 𝑅 / ⎦⎥⎥⎥

⎤ = 2𝑅 1 − 11 + 𝑁 ⋅ 𝑅  (41)

This result is obtained without approximation. Then, when 𝑁 ≫ 1/𝑅 : 𝑇(0, ∞) = lim≫ / 𝑇(0, 𝑁) = 2𝑅   (42)

We note that here, the steady state temperature at the center will reach: 2 ∙ 𝑇𝑅 = 2𝐴 ⋅ 𝑃𝜋 𝜅𝑤  (43)

It is the same expression as for 𝑇 (0, ∞) or 𝑇 (0, ∞) for small 𝑅  values. We can 
note in Figure 10 that 𝑇 (0, ∞) and 𝑇 (0, ∞) approach 𝑇(0, ∞) when 𝑅  is decreas-
ing. 𝑇 (0, ∞) goes to 1 and 𝑇 (0, ∞) goes to 0 when 𝑅  is large. From Figure 10, we 
can also find the heat accumulation bound already defined in Figure 5 (with ε = 0,03). It 
corresponds to 𝑇 (0, ∞) = 0,03 and 𝑅 = 12. On the other hand, when 𝑇 (0, ∞) de-
parts from 𝑇 (0, ∞) by less than approximately 10%, we can admit that the average T 
is applicable, i.e., for 𝑅  smaller than 0.17 (purple circle). In this case, we can apply the 
simple expression Equation (43). 
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Figure 10. The plots of 𝑇 (0, ∞) (red), 𝑇 (0, ∞) (blue dash), and 𝑇(0, ∞) (Tmean, green dash) ac-
cording to 1/𝑅 . The defined boundary points of heat accumulation and negligible oscillation in the 
system are marked by a blue circle and purple circle, respectively (for definitions, see text). 

The Effective Number of Pulses for Reaching the Limit 𝑇(0, ∞) (𝑁 ) 
With the same definition as above, the number of pulses to reach 𝑇(0, ∞) , i.e., | ( , ) ( , )|( , ) < 𝜀, 𝑁  is obtained: 

𝑁 > 1𝑅 1𝜀 − 1  (44)𝑁  are compared to 𝑁  and 𝑁  in Figure 11. The steady state of the mean 
temperature is reached as Tmax. 

 
Figure 11. The effective number of pulses to reach the limit of Tosc (red), Tmin (blue dash), Tmax (green 
dash), and Tmean (pink dash) according to Rτ from 0 to 5. 

Therefore, the time for reaching the steady state here is not Rτ dependent: 𝜏 − 1 ≈  = 1111𝜏  when 𝜀 = 0.03. It is the value of the maximum tss for reaching 
a steady state when 𝑅 → 0 (Figure 6). 

With these analytical expressions of temperature at the steady state at the center of 
the focus  (𝑇 , 𝑇 (0, ∞), 𝑇 (0, ∞), 𝑇(0, ∞)) , and the needed number of pulses 
(𝑁 , 𝑁 , 𝑁 ) , we have a clear view of how parameter 𝑅   influences the thermal 
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situation at the focus center. The problem is now to extend these results to any place out 
of the center. 

4.2. Temperature out of the Focus Center (𝑇(𝑟, 𝑁)) 

With the definition 𝑇(𝑟, 𝑁) = 𝑇(𝑟, 𝑡)  𝑑𝑡, we have the average tempera-

ture in a period as: 

𝑇(𝑟 , 𝑁) = 1𝜏 11 + 𝑡𝜏 − 𝑛 · 𝑅𝜏 · 𝑒𝑥𝑝 − (𝑟 )1 + 𝑡𝜏 − 𝑛 · 𝑅𝜏 · 𝑑𝑡 = √𝜋𝑅𝜏 ·  𝑟 · 𝑒𝑟𝑓(𝑟 ) − 𝑒𝑟𝑓 𝑟√1 + 𝑁 · 𝑅𝜏 ≫⎯⎯ √𝜋𝑅𝜏 ·  𝑟 𝑒𝑟𝑓(𝑟 ) 

𝑆𝑜 𝑇(𝑟 , ∞) = √𝜋𝑅𝜏 ·  𝑟 𝑒𝑟𝑓(𝑟 ) 
(45)

This limit when 𝑁 ≫ 1/𝑅𝜏 is shown in Figure 12 and compared to the Gaussian shape 
of Tmax when 𝑅  is large and when 𝑅  is small. When Tmax(r) is Gaussian for the first case, 
Tmax(r) has the same shape that Tmean has for the second case. As the 𝑒𝑟𝑓 function tends to 
1 (already for 𝑟 > 2), the function tends to be hyperbolic and thus decreases much slower 
than a Gaussian one (see Figure 12). The amplitude is . It is inversely proportional to 𝑅  whatever 𝑅  value. 

 
Figure 12. Plot of normalized 𝑇 (𝑟 , 𝑅 ) and 𝑇(𝑟 , 𝑅 ) at the steady state for 𝑅 = 0.1 and 100 
for Tmax and 1 for Tmean. 

Consistently with the previously calculated Tmax and Tmin, the Tmean curve width is 
equal to the beam Gaussian for large 𝑅  values and to the curve limit given in Equation 
45 and shown in Figure 8a which is wider. 

The Effective Number of Pulses for Reaching the Limit of Tmean (𝑁 ) 

The effective number of pulses 𝑁  with the approximation 𝑒𝑟𝑓(𝑋 · 𝑟 ) ≈ √ 𝑋 · 𝑟  

as 𝑋(𝑁, 𝑅𝜏) = √ ∙  < 1, is solved to be: 

𝑁 (𝑟 ) > 1𝑅 2𝑅 · 𝜀 · 𝑇(𝑟 , 𝑅 ) − 1 = 1𝑅 2 ∙ 𝑟𝜀 · √𝜋 · 𝑒𝑟𝑓(𝑟 ) − 1  (46)

From the expression above, we see that the periphery of the distribution is stabilized 
later than the center as we noticed already in the previous section. 
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5. Application Examples 
To demonstrate the practical significance of the aforementioned calculations, we are 

discussing below several problems where we can apply these equations to analyze the 
temperature effects. 

Laser-induced crystallization. It is known that for crystallizing a glass, it is necessary 
to control temperature and time in order to penetrate the crystallization domain [38]. A 
method for reaching it with a pulsed laser is described in [39]. It is shown that crystalliza-
tion with a single pulse is possible from the solid state if the beam scanning speed is suf-
ficiently low according to the nucleation time and crystallization growth rate. For a larger 
scanning speed, it is necessary to increase the pulse energy or the RR to reach the crystal-
lization domain. This is for the formation of nanocrystals that are orientable with laser 
polarization. The decrease in the speed leads to the growth of the nanocrystals. In turn, 
crystallization is still possible if the speed is increased but the pulse energy should be 
increased. In such a way, the temperature overcomes the melting one during a time long 
enough in the pulse period and the material is melted in such a way that crystallization 
does not progress more after each pulse. From the calculations in this paper, the best 
method appears to be a high RR with moderate pulse energy in order to maintain T (con-
trol of Tmax and Tmin) around the crystallization temperature. 

Erasure process during laser writing. In the case of pure silica, there is a first regime 
called type I for which the refractive index increases for pure silica glasses [40,41]. It is 
partly produced by a change in fictive temperature [42,43]. For that, the time for the tem-
perature to decrease until a given value of temperature has to be larger than the relaxation 
time of the glass. This time is roughly defined by the cooling time which is itself defined 
by the moving spatial curve for one pulse [44]. Pulse energy can be adjusted consequently. 

In the case of the materials in which type II transformation is achievable giving rise 
to a large birefringence based on self-organized nanograting (NG) and nanopores, there 
is a pulse-energy–RR–scanning-speed-related domain [45,46]. This domain is limited for 
large pulse energies depending on RR. In addition, for large RR values, the retardance 
decreases until it is no longer possible to write NGs. One of the hypotheses is the follow-
ing: NG is based on the existence of nanopores distributed in a self-organized NG [9]. 
Recent work [47] shows that the thermal stability of such an object is defined by the vis-
cosity that itself depends on T. Therefore, as T increases when pulse energy and RR are 
increased, they have to be limited to avoid an in-pulse erasure after creation during the 
pulse. 

Concurrent processes. In organic materials, according to pulse energy and RR for the 
same mean power, two different processes are observed whereas we could believe that 
modification is just dependent on mean power (i.e., dose) [48]. One is the destruction of 
the material at low RR and high Ep, while the other is the creation of luminophores at high 
RR and low Ep. We explain this by looking at the amplitude of the T oscillations; we can 
say that for the first case, the oscillations are large whereas for the other case, they are 
small. In the first case, the temperature is overcoming the decomposition temperature of 
the material but not in the second case. 

Size of the crystallized trace. In [49], we find a size of the heat-affected zone that is 
much larger for the glass called Silica-SrTiO3 than for Silica-LiNbO3 for comparable laser 
parameters. Rτ for the first is 84 and for the second is 11. The first remark is that there is 
almost no heat accumulation (separated pulse contribution to the temperature) especially 
for the STS glass. For this glass, it is even possible to use the formula for one contribution. 
Then, the size is defined by the lowest maximal temperature according to the radius 
(Equation (30)) at least larger than Tg. Note that due to the expected size of the trace, the 
use of Tmean is possible for intermediate 𝑅  values (Equation (45)). √𝜋𝑅𝜏 ·  𝑟 𝑒𝑟𝑓(𝑟 ) = 𝑇(𝑟 , ∞)  = 𝑇𝑇  
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Crown effect. In [49], we also find an example of a crystallized shell (the center is not 
crystallized). Similarly, as above, there is a highest maximal temperature that is equal to 
Tmelting. Above this temperature, the viscosity decreases strongly and other processes may 
appear (see [49]) to be blocking crystallization on cooling. 

Speed effect on the laser trace width. In glasses for mid IR [50], the energy threshold 
for the appearance of a sudden spatial broadening depends on the scanning speed, so we 
can deduce that it is not related to temperature as the writing speed is not involved in the 
thermal diffusion for a speed lower than a few m/s. 

There are also some remarks that we can deduce from the calculation: 
- If a process is actually independent of RR, it does not depend on temperature (see 

[46]); 
- The number of pulses received by the material locally depends on the scanning 

speed. As the number of pulses for reaching a steady state is different at the center 
than at the periphery, it is possible that the appearance of the trace on the edge de-
pends on the scanning speed during the transient stage; 

- However, the transient stage is not dependent on the pulse energy. 

6. Conclusions 
This study derives analytical expressions for the temperature distribution at the 

steady state induced by ultrafast multi-pulses within a spherical geometry, based on the 
laser and constant material parameters. These expressions depend only on two parame-
ters: the initial temperature at the center (denoted as T00) and a quantity Rτ, defined as the 
ratio of the pulse period τp to the diffusion time τd. We recall that temperature oscillates 
between Tmax and Tmin, eventually reaching a steady state, and we calculate the minimum 
number of pulses required to attain this state. For ease of use, a geometry with spherical 
symmetry was chosen for the energy deposition in order to lead to simple temperature 
expressions compiled in Table 3. The Table 4 is a further simplification usable in most of 
the cases. This approach also facilitates a clear and precise definition of the onset of heat 
accumulation. 

Table 3. Analytical expressions of final temperature and the effective number for reaching steady 
state. *: condition of 𝑟 , 𝑅𝜏 (Equation (27), Figure A2). 

 rw = 0 
 𝑻(𝟎, 𝑵) 𝑻(𝟎, 𝑵 → ∞) 𝑵𝒔𝒔𝟎 (𝜺, 𝑹𝝉) 𝑻𝒐𝒔𝒄(𝟎, 𝑵) 1 − 𝑋  1 

1𝑅 1𝜀 /  − 1  𝑻𝒎𝒊𝒏(𝟎, 𝑵) 
12 𝑋1 + 𝑋 + 2𝑅 𝑋1 − 𝑋  

12 𝑋1 + 2𝑅 𝑋1 
1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  𝑻𝒎𝒂𝒙(𝟎, 𝑵) 1+𝑇 (N) 1+𝑇 (∞) 
1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  𝑻(𝟎, 𝑵) 

2𝑅 (1 − 𝑋) 
2𝑅  

1𝑅 1𝜀 − 1  

 rw ≠ 0 * 
 𝑻(𝒓, 𝑵) 𝑻(𝒓, 𝑵 → ∞) 𝑵𝒔𝒔𝐫 (𝜺, 𝑹𝝉) 𝑻𝒐𝒔𝒄(𝒓, 𝑵) 𝑒𝑥𝑝 −(𝑟 ) − 𝑋 𝑒𝑥𝑝 −(𝑋 · 𝑟 )  𝑒𝑥𝑝 −(𝑟 )  

1𝑅 1𝜀 · 𝑒𝑥𝑝 −(𝑟 ) / − 1  

𝑻𝒎𝒊𝒏(𝒓, 𝑵) 

12 𝑋1 𝑒𝑥𝑝 −(𝑋1 · 𝑟 )+ 𝑋 𝑒𝑥𝑝 −(𝑋 · 𝑟 )+ √𝜋𝑅 · 𝑟 𝑒𝑟𝑓(𝑋1· 𝑟 ) − 𝑒𝑟𝑓(𝑋 · 𝑟 )  

12 𝑋1 𝑒𝑥𝑝 −(𝑋1 · 𝑟 )+ √𝜋𝑅 · 𝑟 𝑒𝑟𝑓(𝑋1. 𝑟 ) 

1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  
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𝑻𝒎𝒂𝒙(𝒓, 𝑵) exp −(𝑟 ) + 𝑇 (N) exp −(𝑟 ) +𝑇 (∞) 
1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  

𝑻(𝐫, 𝑵) √𝜋𝑅 ·  𝑟 · 𝑒𝑟𝑓(𝑟 ) − 𝑒𝑟𝑓(𝑋 · 𝑟 )  
√𝜋𝑅 ·  𝑟 𝑒𝑟𝑓(𝑟 ) 

1𝑅 𝜏 2 · 𝑟𝜀√𝜋 · erf(𝑟 ) − 1  

Table 4. Practical approximated analytical expressions of final temperature and the effective number 
for reaching steady state. With 𝑋(𝑁, 𝑅𝜏) = ∙𝑅𝜏  and 𝑋1(𝑅𝜏) = 𝑅𝜏 . *: condition of 𝑟 , 𝑅𝜏 

(Equation (27), Figure A2). 

 rw = 0 rw ≠ 0 * 
 𝑻(𝟎, 𝑵 → ∞) 𝑵𝒔𝒔𝟎 (𝜺, 𝑹𝝉) 𝑻(𝒓, 𝑵 → ∞) 𝑵𝒔𝒔𝐫 (𝜺, 𝑹𝝉) 𝑻𝒐𝒔𝒄(𝒓, 𝑵) 1 

1𝑅 1𝜀 /  − 1  𝑒𝑥𝑝 −(𝑟 ) * 
1𝑅 1𝜀 · 𝑒𝑥𝑝 −(𝑟 ) / − 1  𝑻𝒎𝒊𝒏(𝒓, 𝑵) 

2𝑅 𝑋1 
1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  √𝜋𝑅 · 𝑟 𝑒𝑟𝑓(𝑋1. 𝑟 ) 

1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  𝑻𝒎𝒂𝒙(𝒓, 𝑵) 1+𝑇 (∞) 
1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  𝑒𝑥𝑝 −(𝑟 ) +𝑇 (∞) 

1𝑅 2𝑅 · 𝜀 · 𝑇 (∞) − 1  

𝑻(𝐫, 𝑵) 
2𝑅  

1𝑅 1𝜀 − 1  √𝜋𝑅 ·  𝑟 𝑒𝑟𝑓(𝑟 ) 
1𝑅 2 · 𝑟𝜀√𝜋 · 𝑒𝑟𝑓(𝑟 ) − 1  

We analyzed the distribution of the temperature oscillations relative to the radius 
from the center and the parameter Rτ. Oscillations are large at the center for large Rτ values 
but decrease strongly for a large radius 𝑟  > 2, i.e., for the periphery where the light in-
tensity decreases almost by a factor of 10. On the contrary, oscillations are minimal every-
where for small Rτ values (i.e., high frequency or low thermal diffusivity). In such condi-
tions, the average of the temperature from the last period can be used, yielding even sim-
pler expressions. Additionally, we found that the periphery of the focus reaches the steady 
state later than the center. By examining the pulse number required for the steady state 
according to the radius, we can better control transformations in these regions and under-
stand the variations from the center. 

This work aids in understanding how temperature variations influence different ex-
perimental observations, mentioned at the end. It can also be helpful to detect if tempera-
ture is acting on the processes of direct laser writing. 

Future work includes refining this approach by considering the asymmetry of fs fo-
cus, making differences between transversal radius and depth to deduce how the trace 
changes over time. Another interesting point is the T dependence of the physical–chemical 
parameters, but this cannot be investigated without finite element calculation. Our ap-
proach allows us to choose the most representative parameters for applying such a calcu-
lation. In addition, the asymmetry of the focal volume, along and perpendicular to the 
propagation axis, is a refinement of the present calculations that we could be interested in 
to include variations with the pulse energy (like Kerr focusing, plasma density defocusing, 
plasma mirror). 
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Appendix A 

Table A1. Glossary of laser and material parameters. 

Parameters Definitions Units 𝐴 Fraction of reflected light by the plasma none 𝛼 Light absorption µm−1 𝜀 A small quantity of computational needs none 𝜏  Period of the pulses µs 𝜏  Heat diffusion time 𝜏 =  µs 𝑹𝝉 𝜏 /𝜏  none 𝑤 Beam waist radius (at 1/e) µm 𝐷  Thermal diffusivity 𝐷 = ·  m2/s 𝜅 Thermal conductivity W/(m·K) 𝐸  Pulse energy J 𝑓 Pulse repetition rate MHz 𝜌 Density kg/m3 𝐶  Specific heat capacity J/(kg·K) 

Table A2. Thermal physico-chemical data of some materials and processing parameters. 

 𝝆 (kg/m3) 𝑪𝒑 (J/(kg·K)) 𝜿 (W/(m·K)) 𝑫𝑻 (m2/s) 𝝉𝑫 (µs) Melting Point (K) 
STS glass 3887 410 10.1 6.34 × 10−6 0.039 1585 
LNS glass 3830 650 2.65 1.06 × 10−6 0.235 1530 
SiO2(glass) 2200 703 1.38 8.92 × 10−7 0.28 1983 

Borosilicate (Schott D263) [40] 2510 820 0.96 4.66 × 10−7 0.534 1324 
Glycine 1160.7 1266 1.3 [51] 8.85 × 10−7 0.283 506 (decomp.) 
Zeonex 1010 1000 0.045 4.445 × 10−8 5.624 553 

Nifedipine 1300 1000 0.2 1.54 × 10−7 1.63 446 
Sucrose 1587 1243.1 0.1 5.07 × 10−8 4.93 458 (decomp.) 

Appendix B. The Existence of a Bound for Tmax and Tmin 
Does Tmax theoretically have a limitation? 
Since the temperature is the sum of the temperature contribution induced by each 

pulse, as shown in Equation (10), we need to know the convergence of this sum when the 
time or pulse number N increases to infinity. A condition necessary but not sufficient is 
that the increase between the Tmax just after N + 1 pulses and just after N pulses, i.e., tN = 
(N − 1) 𝜏  and tN + 1 = (N) 𝜏 , is tending to 0. It is: 

𝑇 (0, 𝑡 ) − 𝑇 (0, 𝑡 ) = 11 + (𝑁 − 𝑛) ∙ 𝑅  − 11 + (𝑁 − 1 − 𝑛) ∙ 𝑅  = 11 + 𝑁 ∙ 𝑅  (A1)

When 𝑅  is fixed, Equation (A1) goes to 0 when N tends to infinity. It is the same if 
we consider the difference of Tmin. 
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On the other hand, the sum expression of Equations (11) and (12) can be proved to 
be convergent by using the p-series test, since the p value in them (p = 3/2) is larger than 1 
[52]. 

Appendix C. Expression Approximation 
To calculate the limit of the temperature, we start with the evolution of the minimum 

temperature on each period as long as N increases to infinity (so, with Equation (12), the 
limit of Tmin (0, 𝑡 ) with N ≫ 1/𝑅 ). 

Here, we introduce the approximation derived from the trapezoidal rule for the cal-
culation of the integral, which is: 

𝑓(𝑛)  ≈ 𝑓(0) + 𝑓(𝑁 − 1)2 + 𝑓(𝑛)𝑑𝑛  (A2)

Here, 

𝑓(𝑛) = 11 + (𝑁 − 𝑛) · 𝑅  

with an error smaller than ( ) 𝑓′′(𝑛)n. 
Therefore, with this approximation, we obtain: 

𝑇 (0, 𝑁 ) ≈ 12(1 + 𝑅 ) + 12(1 + 𝑁 ∙ 𝑅 ) + 2𝑅 11 + 𝑅 − 11 + 𝑁 ∙ 𝑅  (A3)

When N goes to infinity, 𝑇 (0, 𝑁) goes to: 

𝑇 (0, ∞) = 12(1 + 𝑅 ) + 2𝑅 11 + 𝑅 ≈ 2𝑅 11 + 𝑅  (A4)

Tmax: The same method has been applied to obtain the Tmax limit but with the last term 
from the sum extracted out (due to the nature of the trapezoidal rule, there is a sharp 
increment in the temperature of the last pulse, which should not be averaged out): 

𝑓(𝑛) ≈ 𝑓(𝑁 − 1) + 𝑓(0) + 𝑓(𝑁 − 2)2 + 𝑓(𝑛)𝑑𝑛  (A5)

𝑓(𝑛) = 11 + (𝑁 − 1 − 𝑛) ∙ 𝑅  

We have thus: 

𝑇 (0, 𝑁) ≈ 1 + 12 1 + 𝑅 / + 12 1 + (𝑁 − 1)𝑅 / + 2𝑅 11 + 𝑅 − 11 + (𝑁 − 1)𝑅  (A6)

Tmax can also be obtained by the Tmin Equation (A4) + 𝑇  (Equation (13)), thus: 

𝑇 (0, 𝑁) = 1 + 12 1 + 𝑅 / − 12 1 + 𝑁 ∙ 𝑅 / + 2𝑅 11 + 𝑅 − 11 + 𝑁 ∙ 𝑅  (A7)
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Both Equation (A6) or Equation (A7), when 𝑁 tends to infinity: 

𝑇 (0, ∞) = 1 + 12(1 + 𝑅 ) + 2𝑅 11 + 𝑅 ≈ 1 + 2𝑅 11 + 𝑅  (A8)

The errors: For Tmin, the error is smaller than ( ) 𝑓′′(𝑛)  with 𝑓 (𝑛) =·( )· /   with 0 ≤ n ≤ N − 1 [53,54] and has to be compared with 𝑇 (0, ∞) =
/ + . The error is smaller than 1.1% for any value of 𝑅 , as shown in Figure 

A1a. 
For Tmax, we have an error smaller than ( )( ) 𝑓′′(𝑛) with 𝑓 (𝑛) = .( )· /  

with 0 ≤ n ≤ N − 2. The error has to be compared with ( , ) = 1 + / + . 

The error is smaller than 1.7% for any value of 𝑅 , as shown in Figure A1b. 

 
Figure A1. The error in using the trapezoidal rule for the approximation of computing. (a) Tmin and 
(b) Tmax versus 𝑅 . 

Appendix D. About Situation 2 in Section 3.2.1: When the Tmax is in the Middle of a 
Pulse Period 

To calculate the oscillation amplitude Trosc for r ≠ 0, same as the case of rw = 0, in gen-
eral, we compare the difference between the maximum T and minimum T of the Nth pulse 
period. Tmin is considered still at the end of the Nth pulse, i.e., when 𝑡 = 𝑁 ∙ 𝜏  without the 
(N + 1)th pulse, so: 

𝑇 (𝑟 , 𝑁) = 11 + (𝑁 − 𝑛) ∙ 𝑅 𝑒𝑥𝑝 − (𝑟 )1 + (𝑁 − 𝑛) ∙ 𝑅  (A9)

while Tmax in some situations can be in the middle of the pulse period, we thus set 𝑥 , 0 ≤𝑥 ≤ 1 to define the place where the Tmax is. Therefore, Tmax is at 𝑡 = (𝑁 − 1 + 𝑥 )𝜏 : 

𝑇 (𝑟 , 𝑁) = 11 + (𝑁 − 1 + 𝑥 − 𝑛) ∙ 𝑅 𝑒𝑥𝑝 − (𝑟 )1 + (𝑁 − 1 + 𝑥 − 𝑛) ∙ 𝑅 (A10)

This expression is the general expression to describe both Tmax and Tmin, while Tmin 
appearing at the end of the period means 𝑥  = 1, as well as the case when rw = 0, Tmax 

appears at the beginning of the period with 𝑥  = 0. 
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To find the place of the maximum in the period, we search for the root 𝑥  of the 
derivative of Equation (A10). We obtain the root 𝑥  as a function of 𝑅  and 𝑟  and N, 
but to know only the final situation, and also for mathematical solvability, 𝑥   is de-
scribed as Equation (A11) as 𝑁 ≫ 1/𝑅 . The 𝑥  values according to 𝑅 , 𝑟  are plotted in 
Figure A2. 

𝑥 = 𝑅 9𝑅 + 32(𝑟 ) − 3𝑅 − 88𝑅 (A11)

 
Figure A2. 2D map of the solution xm according to 𝑅  and the reduced radius (r/w). Lines corre-
spond to iso xm. 

In Figure A2, 𝑥 = 0 is located in the center of this map (at 𝑟 = 0), the boundary is 
between dark green and green, below it 𝑥  is negative and it should be considered to be 
0 (this is the maximum T location), i.e., the blue and purple area is also 𝑥 = 0. In this 
parameter region (𝑟 , 𝑅 ), the maximum of temperature is at the beginning of the period. 
From green to yellow then orange, the 𝑥  value increases to 0.5 then to 1, i.e., the maxi-
mum of temperature is in the middle of the period or even at the end. The boundary be-
tween yellow–green and orange is the boundary of 𝑥 = 1, thus with the parameters in 
the orange region and red region, 𝑥 = 1. When in the parameter region of (𝑟 , 𝑅 ), the 𝑥 > 1 is also considered to be 1. The thermal calculation can be divided into two situa-
tions: 

(1) 𝑥 = 0 , for rw < +   or 𝑅   small enough (less than .   when r > 1.5 ). In 

this situation, 𝑥  can be omitted from the expression. 

(2) 𝑥 ≠ 0, for rw > +  or 𝑅 > .  when r > 1.5, 𝑥  will be appearing in the 

temperature expressions. 
To further analyze the condition in situation 2 that 𝑥  can be set to 0, since 𝑥  only 

influences the value of Tmax and Tosc, we analyze Tmax by Equation (A10) with 𝑥  in it and 



Micromachines 2024, 15, 196 30 of 35 
 

 

the one without 𝑥 . Figure A3a,b displays the spatial distribution of Tmax with the 𝑥  of 
the value depending on rw (red) and the one with 𝑥 = 0 for whatever rw (blue dash). 

 
Figure A3. (a,b) Spatial distribution of Tmax with the exact expression (𝑥  is a function of 𝑅 , 𝑟 ) and 
simplified expression (𝑥 = 0). (a) 𝑅 = 1, (b) 𝑅 = 10. (c) The differences between the two expres-
sions of 𝑅 = 10 (red) and 1 (blue dash). (d) The differences between these two expressions accord-
ing to 𝑅 . 

We can see from Figure A3a that when 𝑅 = 1, the two expressions have no obvious 
differences, i.e., even when 𝑥 ≠ 0, the approximation by omitting 𝑥  in the expression 
is feasible. While when 𝑅 = 10  (Figure A3b), there are differences appearing around 𝑟 = 2. The difference distribution is emphasized in Figure A3c. From it, we can see the 
difference appears around 𝑟 = 1.6 to 4. The maximum of the difference is around 𝑟 =2. However, it can be not negligible if T00 is large. In addition, we observe that the differ-
ence around 2 becomes larger as 𝑅  increases from 1 to 10. Figure A3d shows the differ-
ence according to 𝑅  at 𝑟 = 2 and 3. From Figure A3d, the differences seem to have a 
limit which is less than 0.04. Therefore, using the expressions of situation 1 to approxi-
mately simulate situation 2, i.e., always xm = 0 is feasible practically, only to have a lower 
Tmax and smaller Tosc around 𝑟 = 2, the error will be less than 0.04 T00. 

Why is the largest difference at 𝑟 = 2? That is because when 𝑟  is small enough, xm 
is 0; while when 𝑟  is very large, the temperature is quickly decreasing, not mentionning 
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the case when 𝑅  is large. Therefore, 𝑟 = 2 is the middle value that is not small enough 
to cross the 𝑥 = 0 boundary, and not so far away to have a low temperature. 

For calculating the analytical expression of the amplitude of temperature, Tosc at r > 0, 
due to a non-zero 𝑥  value, the parts in the summation of Tmax at this point can no longer 
be eliminated with the parts of Tmin, except in situation 1. We give the analytical expression 
for situation 1 first, and the general expression will be presented after having given the 
expressions for Tmin and Tmax. 

When xm = 0, the limit of Tosc is described as: 

𝑇 (𝑟, 𝑁) = 𝑇 (𝑟, 𝑁) − 𝑇 (𝑟, 𝑁) = 𝑒𝑥𝑝 −(𝑟 ) − 𝑒𝑥𝑝 − (𝑟 )1 + 𝑁 · 𝑅(1 + 𝑁 · 𝑅 ) ≫ /⎯⎯⎯⎯ 𝑒𝑥𝑝 −(𝑟 ) (A12)

The amplitude of the oscillations appears to be 𝑇 · 𝑒𝑥𝑝 −(𝑟 ) . 
For Tmin and Tmax, using the trapezoidal rule for approximation as for rw ≠ 0, we have 

Tmin from Equation (A9): 

𝑇 (𝑟 , 𝑁) ≈ 12 𝑒𝑥𝑝 − (𝑟 )1 + 𝑅(1 + 𝑅 ) / + 𝑒𝑥𝑝 − (𝑟 )1 + 𝑁 ∙ 𝑅(1 + 𝑁 ∙ 𝑅 ) / + √𝜋𝑅 ∙ 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅 − 𝑒𝑟𝑓 𝑟1 + 𝑁 ∙ 𝑅 (A13)

≫ /⎯⎯⎯⎯  𝑒𝑥𝑝 − (𝑟 )1 + 𝑅2(1 + 𝑅 ) / + √𝜋𝑅 ∙ 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅 (A14)

We call 
( )( ) /  part 1, and √. 𝑒𝑟𝑓  part 2. 

Furthermore, Tmax from Equation (A10): 

𝑇 (𝑟 , 𝑁, 𝑥 ) ≈ 𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 ∙ 𝑅1 + 𝑥 ∙ 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (1 + 𝑥 ) ∙ 𝑅2 1 + (1 + 𝑥 ) ∙ 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (𝑁 − 1 + 𝑥 ) ∙ 𝑅2 1 + (𝑁 − 1 + 𝑥 ) ∙ 𝑅
+ √𝜋𝑅 ∙ 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) ∙ 𝑅 − 𝑒𝑟𝑓 𝑟1 + (𝑁 − 1 + 𝑥 ) ∙ 𝑅  

≫ /⎯⎯⎯⎯  𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 ∙ 𝑅1 + 𝑥 ∙ 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (1 + 𝑥 ) ∙ 𝑅2 1 + (1 + 𝑥 ) ∙ 𝑅 + √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) ∙ 𝑅 (A15)

 ( ).. / ,  ( )( ).( ). / , √. 𝑒𝑟𝑓 ( ).  are called part 1, 2, and 3, re-

spectively. 
The general expression of Tosc (when N tends to infinity or larger than the effective 

number) is given as Equations (A14) and (A15), and it reads: 
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𝑇 (𝑅 , 𝑟 ) = 𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 . 𝑅1 + 𝑥 · 𝑅 + 𝑒𝑥𝑝 − (𝑟 )1 + (1 + 𝑥 ) · 𝑅2 1 + (1 + 𝑥 ) · 𝑅 + √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) · 𝑅
− 𝑒𝑥𝑝 − (𝑟 )1 + 𝑅2(1 + 𝑅 ) − √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅

(A16)

Part 1 in Equation (A14) and part 2 in Equation (A15) (i.e., 
 ( )( )·( )· /   and ( )  ( ) / ) are smaller than the other parts by a factor of 10, so they can be approximately 

omitted to simplify the expressions in practice. Then, we obtain: 

𝑇 (𝑅 , 𝑟 ) ≈  𝑒𝑥𝑝 − (𝑟 )1 + 𝑥 · 𝑅1 + 𝑥 · 𝑅 + √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + (1 + 𝑥 ) ·. 𝑅 − √𝜋𝑅 · 𝑟 𝑒𝑟𝑓 𝑟1 + 𝑅 (A17)

The plots in Figure A4a are Tosc according to rw at 𝑅  = 0.1, 1, and 10, accompanied 
with exp −(𝑟 )  (the result of situation 1) for comparison, while the distribution differ-
ence between the exact and the approximation is shown in Figure A4b. It is the same as 
the difference for Tmax as in Figure A3c. It is also plotted according to 𝑅 , with rw = 2 and 
3, accompanied with 𝑒𝑥𝑝 −(2)  and 𝑒𝑥𝑝 −(3) . 

 
Figure A4. (a) Spatial distribution of Tosc with the real expression (𝑥  is a function of 𝑅 , 𝑟 ) when 𝑅 = 10, 1, and 0.1, and the reduced expression (𝑥 = 0) in the pink dash. (b) The differences be-
tween the two expressions according to rw. (c) Tosc with the real expression (𝑥   is a function of (𝑅 , 𝑟 ), and the reduced expression (𝑥 = 0) according to 𝑅  at 𝑟 = 1,2,3. (d) A zoom of 𝑅  from 
0 to 10. (e) Tosc distribution when 𝑅 = 1000 (red), comparing with Tosc in situation 1 (blue dash) 
and the maximum Tosc value when 𝑅 → ∞ according to 𝑟  (green). 

Similarly to Tmax, we note that from Figure A4a, when 𝑅  increases, attributed to the 
non-zero value of xm, compared to situation 1 (xm = 0), the oscillation amplitude has only 
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a small increase around rw = 2 which is sometimes not negligible. The 𝑅  dependence is 
shown in Figure A4c,d, and we note that in Figure A4c, the oscillation amplitude at rw = 2 
(green dash) and rw = 1 (cyan) increases when 𝑅  increases, until it reaches a limit. These 

limits are calculated to be   ( ) /   when 𝑅 → ∞  (from Equation (A11), 𝑥 . 𝑅→⎯⎯ (𝑟 ) − 1). Figure A4e shows this limit value according to rw around rw = 2. 
Therefore, the range of Tosc is given by Equations (A18) and (A19): 

𝑇 (𝑅 , 𝑟 )        →   ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 𝑒𝑥𝑝 −(𝑟 ) (A18)

𝑇 (𝑅 , 𝑟 ) →     ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 12.44(𝑟 ) (A19)

We note that the oscillation amplitude Tosc at situation 1 is 𝑒𝑥𝑝 −(𝑟 )  which is the 
minimum, while in situation 2, the amplitude is larger due to the influence of xm, with a 
maximum value of . ( )  at a place around 𝑟 = 2. Therefore, in practice and for accu-
racy, consistent with Figure A4e, when 𝑟 < 1.2 or 𝑅  is small, we can apply Equation 
(A18). Furthermore, when 𝑟 > 1.2 or 𝑅  is large, Equation (A19) can be applied for Tosc. 
Even though, by using situation 1 for all the situations, the error will be less than the limits 
shown in Figure A4c. 

References 
1. Dirac, P.A.M. Quantum mechanics of many-electron systems. Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Character 1929, 

123, 714–733. 
2. Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly 

focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784. 
3. Bäuerle, D. Laser Processing and Chemistry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. 
4. Seuthe, T.; Mermillod-Blondin, A.; Grehn, M.; Bonse, J.; Wondraczek, L.; Eberstein, M. Structural relaxation phenomena in 

silicate glasses modified by irradiation with femtosecond laser pulses. Sci. Rep. 2017, 7, 43815. 
5. Chichkov, B.N.; Momma, C.; Nolte, S.; Von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser 

ablation of solids. Appl. Phys. A 1996, 63, 109–115. 
6. Tan, D.; Sharafudeen, K.N.; Yue, Y.; Qiu, J. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals 

and applications. Prog. Mater. Sci. 2016, 76, 154–228. 
7. Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. 
8. Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–

1731. 
9. Shimotsuma, Y.; Kazansky, P.G.; Qiu, J.; Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. 

Phys. Rev. Lett. 2003, 91, 247405. 
10. Glezer, E.N.; Mazur, E. Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 1997, 71, 882–884. 
11. Fernandez, T.; Sakakura, M.; Eaton, S.; Sotillo, B.; Siegel, J.; Solis, J.; Shimotsuma, Y.; Miura, K. Bespoke photonic devices using 

ultrafast laser driven ion migration in glasses. Prog. Mater. Sci. 2018, 94, 68–113. 
12. Schaffer, C.B.; Brodeur, A.; García, J.F.; Mazur, E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule 

energy. Opt. Lett. 2001, 26, 93. 
13. Minoshima, K.; Kowalevicz, A.M.; Hartl, I.; Ippen, E.P.; Fujimoto, J.G. Photonic device fabrication in glass by use of nonlinear 

materials processing with a femtosecond laser oscillator. Opt. Lett. 2001, 26, 1516–1518. 
14. Schaffer, C.; García, J.; Mazur, E. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. 

Phys. A Mater. Sci. Process. 2003, 76, 351–354. 
15. Eaton, S.M.; Zhang, H.; Herman, P.R.; Yoshino, F.; Shah, L.; Bovatsek, J.; Arai, A.Y. Heat accumulation effects in femtosecond 

laser-written waveguides with variable repetition rate. Opt. Express 2005, 13, 4708–4716. 
16. Eaton, S.M.; Zhang, H.; Ng, M.L.; Li, J.; Chen, W.-J.; Ho, S.; Herman, P.R. Transition from thermal diffusion to heat accumulation 

in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 2008, 16, 9443–9458. 
17. Bérubé, J.-P.; Bernier, M.; Vallée, R. Femtosecond laser-induced refractive index modifications in fluoride glass. Opt. Mater. 

Express 2013, 3, 598–611. 



Micromachines 2024, 15, 196 34 of 35 
 

 

18. Sakakura, M.; Terazima, M.; Shimotsuma, Y.; Miura, K.; Hirao, K. Heating and rapid cooling of bulk glass after photoexcitation 
by a focused femtosecond laser pulse. Opt. Express 2007, 15, 16800–16807. 

19. Liu, Y.; Zhu, B.; Wang, L.; Qiu, J.; Dai, Y.; Ma, H. Femtosecond laser induced coordination transformation and migration of ions 
in sodium borate glasses. Appl. Phys. Lett. 2008, 92, 121113. 

20. Liu, Y.; Shimizu, M.; Zhu, B.; Dai, Y.; Qian, B.; Qiu, J.; Shimotsuma, Y.; Miura, K.; Hirao, K. Micromodification of element 
distribution in glass using femtosecond laser irradiation. Opt. Lett. 2009, 34, 136–138. 

21. Shimizu, M.; Sakakura, M.; Kanehira, S.; Nishi, M.; Shimotsuma, Y.; Hirao, K.; Miura, K. Formation mechanism of element 
distribution in glass under femtosecond laser irradiation. Opt. Lett. 2011, 36, 2161–2163. 

22. Zhu, B.; Dai, Y.; Ma, H.; Zhang, S.; Lin, G.; Qiu, J. Femtosecond laser induced space-selective precipitation of nonlinear optical 
crystals in rare-earth-doped glasses. Opt. Express 2007, 15, 6069–6074. 

23. Dai, Y.; Zhu, B.; Qiu, J.; Ma, H.; Lu, B.; Cao, S.; Yu, B. Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass 
with ultrashort pulse laser. Appl. Phys. Lett. 2007, 90, 181109. 

24. Zhang, B.; Tan, D.; Liu, X.; Tong, L.; Kazansky, P.G.; Qiu, J. Self‐organized periodic crystallization in unconventional glass 
created by an ultrafast laser for optical attenuation in the broadband near‐infrared region. Adv. Opt. Mater. 2019, 7, 1900593. 

25. Miyamoto, I.; Cvecek, K.; Schmidt, M. Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort 
laser pulses. Opt. Express 2011, 19, 10714–10727. 

26. Miyamoto, I.; Okamoto, Y.; Tanabe, R.; Ito, Y. Characterization of plasma in microwelding of glass using ultrashort laser pulse 
at high pulse repetition rates. Phys. Procedia 2014, 56, 973–982. 

27. Lax, M. Temperature rise induced by a laser beam. J. Appl. Phys. 1977, 48, 3919–3924. 
28. Sanders, D.J. Temperature distributions produced by scanning Gaussian laser beams. Appl. Opt. 1984, 23, 30–35. 
29. Haba, B.; Hussey, B.W.; Gupta, A. Temperature distribution during heating using a high repetition rate pulsed laser. J. Appl. 

Phys. 1991, 69, 2871–2876. 
30. Zhang, H.; Eaton, S.M.; Li, J.; Herman, P.R. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide 

writing in borosilicate glass. J. Phys. Conf. Ser. 2007, 59, 682–686. 
31. Miyamoto, I.; Horn, A.; Gottmann, J.; Wortmann, D.; Yoshino, F. Fusion Welding of Glass Using Femtosecond Laser Pulses with 

High-repetition Rates. J. Laser Micro Nanoeng. 2007, 2, 57–63. 
32. Beresna, M.; Gertus, T.; Tomašiūnas, R.; Misawa, H.; Juodkazis, S. Three-dimensional modeling of the heat-affected zone in 

laser machining applications. Laser Chem. 2008, 2008, 976205. 
33. Shimizu, M.; Sakakura, M.; Ohnishi, M.; Yamaji, M.; Shimotsuma, Y.; Hirao, K.; Miura, K. Three-dimensional temperature 

distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates. Opt. Express 2012, 
20, 934–940. 

34. Rahaman, A.; Kar, A.; Yu, X. Thermal effects of ultrafast laser interaction with polypropylene. Opt. Express 2019, 27, 5764–5783. 
35. Rahaman, A.; Du, X.; Zhou, B.; Cheng, H.; Kar, A.; Yu, X. Absorption and temperature distribution during ultrafast laser 

microcutting of polymeric materials. J. Laser Appl. 2020, 32, 022044. 
36. Lancry, M.; Groothoff, N.; Poumellec, B.; Guizard, S.; Fedorov, N.; Canning, J. Time-resolved plasma measurements in Ge-

doped silica exposed to infrared femtosecond laser. Phys. Rev. B 2011, 84, 245103. 
37. Miyamoto, I.; Horn, A.; Gottmann, J. Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser 

Pulses. J. Laser Micro Nanoeng. 2007, 2, 7–14. 
38. Neuville, D.R. From Glass to Crystal. Nucleation, Growth and Phase Separation: From Research to Applications; chemistry/materials; 

EDP Sciences: 2017; 640p. 
39. Muzi, E.; Cavillon, M.; Lancry, M.; Brisset, F.; Que, R.; Pugliese, D.; Janner, D.; Poumellec, B. Towards a Rationalization of 

Ultrafast Laser-Induced Crystallization in Lithium Niobium Borosilicate Glasses: The Key Role of The Scanning Speed. Crystals 
2021, 11, 290. 

40. Couairon, A.; Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A. Filamentation and damage in fused silica induced by tightly 
focused femtosecond laser pulses. Phys. Rev. B 2005, 71, 125435. 

41. Sudrie, L. Propagation Non-Linéaire des Impulsions Laser Femtosecondes Dans la Silice. Université de Paris Sud XI Orsay. 
2002. Available online: http://www.ensta.fr/ilm/Archives/Theses_pdf/L_Sudrie (access on 1 January 2012). 

42. Bressel, L.; de Ligny, D.; Sonneville, C.; Martinez, V.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Femtosecond laser induced density 
changes in GeO2 and SiO2 glasses: Fictive temperature effect [Invited]. Opt. Mater. Express 2011, 1, 605–613. 

43. Lancry, M.; Poumellec, B.; Chahid-Erraji, A.; Beresna, M.; Kazansky, P.G. Dependence of the femtosecond laser refractive index 
change thresholds on the chemical composition of doped-silica glasses. Opt. Mater. Express 2011, 1, 711–723. 

44. Guerfa-Tamezait, D. Modifications d’une Couche Mince sur un Substrat, Induites par L’irradiation Mono-Impulsionnelle UV 
ns. Ph.D. Thesis, Université Paris-Saclay, Bures-sur-Yvette, France, 2022. 

45. Yao, H.; Xie, Q.; Cavillon, M.; Neuville, D.R.; Pugliese, D.; Janner, D.; Dai, Y.; Poumellec, B.; Lancry, M. Volume nanogratings 
inscribed by ultrafast IR laser in alumino-borosilicate glasses. Opt. Express 2023, 31, 15449–15460. 

46. Xie, Q.; Cavillon, M.; Pugliese, D.; Janner, D.; Poumellec, B.; Lancry, M. On the Formation of Nanogratings in Commercial Oxide 
Glasses by Femtosecond Laser Direct Writing. Nanomaterials 2022, 12, 2986. 

47. Cavillon, M.; Wang, Y.; Poumellec, B.; Brisset, F.; Lancry, M. Erasure of nanopores in silicate glasses induced by femtosecond 
laser irradiation in the Type II regime. Appl. Phys. A 2020, 126, 876. 



Micromachines 2024, 15, 196 35 of 35 
 

 

48. Que, R.; Houel-Renault, L.; Temagoult, M.; Herrero, C.; Lancry, M.; Poumellec, B. Space-selective creation of photonics functions 
in a new organic material: Femtosecond laser direct writing in Zeonex glass of refractive index change and photoluminescence. 
Opt. Mater. 2022, 133, 112651. 

49. He, X.; Liu, Q.; Lancry, M.; Brisset, F.; Poumellec, B. Space-Selective Control of Functional Crystals by Femtosecond Laser: A 
Comparison between SrO-TiO2-SiO2 and Li2O-Nb2O5-SiO2 Glasses. Crystals 2020, 10, 979. 

50. Delullier, P.; Calvez, L.; Druart, G.; De La Barrière, F.; Humbert, C.; Poumellec, B.; Lancry, M. Photosensitivity of Infrared 
Glasses under Femtosecond Laser Direct Writing for mid-IR Applications. Appl. Sci. 2022, 12, 8813. 

51. Simmons, J.A. Thermal Conductivity of Glycine. Nature 1967, 216, 1302. 
52. Wang, X. Convergence-Divergence of p-Series. Coll. Math. J. 2002, 33, 314–316. 
53. Weideman, J.A.C. Numerical integration of periodic functions: A few examples. Am. Math. Mon. 2002, 109, 21–36. 
54. Atkinson, K.E. An Introduction to Numerical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


