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Abstract
Network structure is often considered one of the most important features of a network,and various models exist to generate graphs having one of the most studied types ofstructures, such as blocks/communities or spatial structures. In this article, we introducea framework for the generation of random graphs with a controlled size —number ofnodes, edges— and a customizable structure, beyond blocks and spatial ones, basedon node-pair rank and a tunable probability function allowing to control the amount ofrandomness.We introduce a structure zoo—a collection of original network structures—and conduct experiments on the small-world properties of networks generated by thosestructures. Finally, we introduce an implementation as a Python library named Structify-net.
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1. Introduction
The structure of networks has long been one of the most studied research questions in net-work science. In this article, we introduce a method to generate networks of a chosen size, or-ganized according to a structure that can be expressed as an arbitrary ranking function for nodepairs. This process thus allows the generation of classic structures such as communities, blocks,and spatial organizations, but also more exotic ones. We subsequently show an application ofthis framework to study network properties, by extending the classic small-world experimentby (Watts and Strogatz, 1998). A python library (Cazabet, 2023) allowing reproduction of theresults and generating networks with custom structures is also introduced.

Context
Generating networks of a chosen size and respecting some constraints is a key topic in net-work science. It is used in various tasks, for instance, to study network properties (Wang and Chen, 2003), as null models (e.g., Durak et al., 2013), to study the impact on diffusion processes (e.g., Ódor et al., 2021), as benchmarks (e.g., Lancichinetti et al., 2008), etc. In this article, we focus more particularly on a class of random graph models, in which the probability of observing
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edges between each pair of nodes is independent of the probability of observing edges betweenother pairs. This class of models is commonly used to generate various structures, from the ho-mogeneous Erdős–Rényi (ER) generator, to configurationmodels preserving node degrees, blockstructures (Abbe, 2017), spatial structures (Cazabet et al., 2017;Waxman, 1988), etc. See section7 for an overview of related works.The originality of our work is to propose a generic framework to generate many differentnetwork structures while allowing to set:
• The number of nodes n;
• The number of edges m (equivalently, the density);
• A parameter ϵ ∈ [0, 1] controlling the strength of the structure bias, i.e., the network isfully determined by the structure definition when ϵ = 0, and increase in randomness with

ϵ, becoming an ER network for ϵ = 1.
The main advantage of our proposition compared with existing frameworks such as SBMor latent space models is 1) the simplicity for the user to design their own structure logic, byproviding their own ranking function (see Section 2), 2) to control the strenght of the structurebias using a single numerical parameter. Structify-Net is not intended to be used in parameterinference tasks, but only for the generation of null models, referencemodels, and random graphswith controlled properties in general.

1.1. Motivational examples
Generating multiple random networks with common properties, either fixed beforehand orpreserved from an observed network, is needed in most domains of network science. In thissection, we list three motivational examples of usages of such models, for which Structify-netprovides a simple practical solution. These examples are in no way exhaustive since randomnetworks are used in many other contexts in network science.

Reference model. When one is interested in studying a network property, such as the transitivityor the homophily of a node attribute, one usually needs a random graph model as a reference.The simplest one of them is the Erdős–Rényi (ER) random graph model, in which only the nodesand the expected number of edges are preserved; but in most cases, one would like to comparewith other reference models. For instance, when studying the transitivity, one might wonderif the observed transitivity of a network is significantly higher than the transitivity of a similargraph having a spatial structure, a block structure, or a strong degree of heterogeneity, etc. Toexplore those hypotheses, one needs a generative model to generate random networks havingthe same number of nodes and edges as the observed network, but with a particular structure.
Benchmark for network tasks. A generative model can also be used as a benchmark to test algo-rithms for complex network tasks developed for capturing fundamental patterns of networksand their functions. A common task where synthetic networks are used to evaluate the perfor-mances of an algorithm is community detection, namely the task of identifying —in its generalintuition— well-connected and/or well-separated groups of nodes within a network (Fortunatoand Hric, 2016). Generators with planted communities are used to estimate the agreement be-tween their ground-truth structure and the communities captured by an algorithm, as for in-stance the LFR benchmark (Lancichinetti et al., 2008). To test the robustness of a wide varietyof algorithms defined for different purposes, one needs generators able to model a wide rangeof planted structures capturing the properties one intends an algorithm to handle. These proper-ties can range from density to homophily, plus any preferred combination of structural propertiesleading to clique-, grid-, and star-based structures, among others (Yamaguchi et al., 2020).
Influence of structure on dynamical processes. Dynamical processes on networks, such as diffusionor synchronization, have been studied for a long time. Typical examples would be the diffusionof pandemics or polarization on social media. The structure and properties of the network arewell-known to have various effects on these processes. For instance, diffusion speed dependson degree heterogeneity (Barthélemy et al., 2004), community structure (Peng et al., 2020) andclustering (Zhuang et al., 2017), etc. In order to experiment with which factors might control
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the speed and scale of a particular diffusion process, one should compare such processes with random networks that 1) are comparable in terms of size, i.e., number of nodes and edges, and2) differ in their structure.

Figure 1 – Generating networks using the Structify-Net approach. A rank function de-fines an ordering between node pairs. A probability function is used to assign an edgeprobability to each node pair based on their rank in the ordering. This gives a Randomgraph model, that can be used to generate graph instances. Note how the same Rankfunction R1 can give 2 Random Graph Models using different Probability functions P1andP2, how the same Probability functionP1 is used for two different Rank functionsR1and R2, and how multiple graphs can be generated from a single Random Graph Model.

2. Method
Structify-Net principle is to create probabilistic random graph generators in two steps:
(1) A rank function R sets an order among the node pairs, frommost likely to appear to lesslikely to appear;(2) A probability function P assigns to each pair of nodes a probability to be connected byan edge, based on its rank.

P allows to control the expected number of edges m̂. The function P is independent from thegraph structure represented by R ; and reciprocally R is independent from the expected numberof edges m̂ or the function P .
2.1. Rank function

The principle of Structify-Net generator is to describe a network structure by an edge-pairranking function. More formally, we define R(u, v) = r the function assigning a value r to each
undirected node pair, such as r ∈ [1, n∗(n−1)

2 ] corresponds to the rank of the node pair (u, v), and
r(u, v) < r(u2, v2) means that it is more likely to observe an edge between the pair (u, v) thanbetween the pair (u2, v2). This function can be expressed directly in that form, or be triviallyderived from a function R ′ assigning a cost to each node pair, coupled with a sorting function,
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ranking pairs by increasing or decreasing values of R ′(u, v). In practice, in that case, we also addan infinitesimal random value ι to each cost, in order to avoid ties.An intuitive example of such a cost function is for the spatial structure: given a positionvectorWu for each node u (provided to mimic real data, or generated in fully synthetic networkgeneration), the tendency to observe edges can be a function of the distance, e.g., R ′(u, v) =
||Wu,Wv ||. By sorting node pairs by increasing distance, we obtain a spatial structure such thatthe closer the nodes, the higher their tendency to be connected.Section 3 describes in more detail various types of network structures that can be repre-sented this way.
2.2. Probability Function

To go from a ranking of node pairs to a random network generator, we use a rank probabilityfunction assigning a probability to each rank, i.e., P(r) ∈ [0, 1]. The only constraint to this func-tion is that it must be non-increasing, so that a node pair of lower rank is at least as likely to beconnected by an edge than a node pair of higher rank.The probability function controls the expected number of edges:
m̂ =

L∑

r

P(r)

with L = n(n−1)
2

Endpoint 2

Endpoint 1

Control point

(a) Bézier interpolation of the number of edges en-countered at a given rank (b) The corresponding probability function, i.e., prob-ability of observing an edge at a given rank
Figure 2 – Example of probability functions for various values of ϵ. In this example, weset m = 128, n = 512

Bézier Interpolated Probability Function. We propose a family of probability functions controlledby 1) the target expected number of edgesm, 2) a parameter ϵ, which controls how strongly is therandom graph driven by the planted structure. The family is defined as follows: at one extreme(ϵ = 1), the probability of observing an edge is independent of the rank, i.e., P(r) = m/L, as inan ER random graph. Conversely, at the other extreme ϵ = 0, the m edges connect the m pairsof nodes of lower rank:
P(r) =

{
0 if r ≤ m

1 otherwise
To interpolate between the two, we use a rational Bézier parametric curve, as illustrated in Fig. 2.The Bézier curve is defined by two endpoints, corresponding to the two points shared by bothcumulative distributions: the points (0,0) and (L,m). The control point of the curve is (m,m). Aweight b allows controlling how close the curve is to each of the two extremes. If b = 0, the
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curve corresponds to ϵ = 0, and ϵ(limb→∞) = 1. For convenience, we thus rescale the givenparameter ϵ into b as follows:
b =

log(0.5)

log(1 − ϵ)

By convention, if ϵ = 0, b = bmax and if ϵ = 1,b = 0, with bmax a large integer constant.The function giving the probability of observing an edge between node pairs given their rankis defined by the derivative of the parametric Bézier curve (See Fig. 2).The choice of the Bézier parametric curve arises as a natural solution to the problem asintroduced in Fig. 2a: the curve for ϵ = 0 and ϵ = 1 are independent of the interpolation method,the chosen family function should thus propose a smooth interpolation between the two. TheBézier curve answers this problem in a convenient way, although other functions could be used.

Figure 3 – The Structure Zoo. Matrix of node-pairs ranks for networks with 128 nodes.Darker colors correspond to lower ranks. For Disconnected cliques, we set m = 128 ∗ 8.When involving spatial or clique positions, nodes are ordered according to this value.

3. Structure Zoo
To illustrate the expression power of the Structify-Net rank generation approach, we proposea collection of structures, available in the Python library under the name of Structure Zoo. Thiscollection contains both classic structures widely found in the literature, together with originalones. Fig. 3 introduces matrix representations of the node-pair ranks of all structures in the zoo.The structures in the Zoo are only to be taken as examples, chosen arbitrarily among a few well-known structure types, and a few original ones. Themain interest of Structify-Net is for the usersto be able to specify their own structure with their own rank functions. The Zoo only representsa set of toy examples.
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3.1. Spatial structure
Spatial structures are commonly found in the literature. Several versions of random graphsspatial models exist, for instance, the Waxman Graph (Waxman, 1988). More complex versionsexist such as the Gravity model (Cazabet et al., 2017). A simple spatial structure can be easilyimplemented as a Rank model by using a cost Function,

R ′(u, v) = d(Wu,Wv )

with d(u, v) a notion of distance, such as Euclidean or Haversine distance. W is a matrix suchas Wi is a vector representing the position of the node in a d dimensional space. Positions cancome from observed data, or be generated. In Fig. 3, we attributed to nodes random positionsin a 1-dimensional space.
3.2. Assortative block structure

Community structure is one of the best-known types of organization of networks. A simpleway to implement such a structure as a random graph generator is to use the stochastic BlockModel (SBM), with a constraint of having an assortative structure, i.e., edges are more likely tobe present between nodes affiliated to the same community than to nodes affiliated to differentones. A simple way to implement this as a rank model is using the following cost function:
R ′(u, v) =

{
0, if Bu = Bv

1, otherwise
With B the block affiliation vector, such as Bi identifies the block to which node i is affiliatedwith. Of course, many variants are possible, for instance, to take into account the size of block-s/communities.
3.3. Overlapping Assortative Block structure

A variant of the block structure allowing nodes to have multiple affiliations. There are nu-merous ways to model this situation. In the example provided here, we keep the same thresholdcost function as for the non-overlapping case, extending it to multiple affiliations, i.e., we usethe following cost function:
R ′(u, v) =

{
0, if (Bu ∩ Bv ) ̸= ∅
1, otherwise

with Bu the set of blocks to which node u belongs. In Fig. 3, each node belongs to exactly twocommunities and the affiliations are chosen such as each community has half of its nodes sharedwith another community c1 and the other half shared with another community c2.
3.4. Block Structure: Disconnected Cliques

Communities are often understood as sets of nodes that are strongly connected to eachother and more weakly connected to the rest of the graph. A special case of extreme communitystructure can be set up by having only cliques, without links between them — disconnectedcliques. Keeping the same threshold cost function as for assortative blocks, we can find thevalue for community sizes such as obtaining the densest possible disconnected subgraphs for
ϵ = 0, for a fixed m. Given the average degree k̂ = m

2n , we want cliques to be of size nc⌈k̂⌉.Because n is not necessarily a multiple of nc , we set the number of communities to ⌊ n
nc

⌋, andgroup the remaining nodes in an additional community. The already defined assortative blockstructure is then applied as usual with those blocks.
3.5. Nested structure

Nested network structures are well-known in some fields, such as ecology and economics(Alves et al., 2019; Mariani et al., 2019). A nested structure is a type of hierarchical structure,
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in which the properties/links of each entity are subsets of the properties/links of entities at ahigher hierarchical level. We implement this as follows:
R ′(u, v) = u + v

Where u, v are consecutive node indices in [1,n], and u < v

3.6. Star structure
Hubs are known to play an important role in many real networks. The hub-and-spoke struc-ture is frequent both in human-designed infrastructure and in natural systems, forming patternsalso known as stars. One way to obtain such a structure is by using the following rank function:

R ′(u, v) = u × n + v

Where u, v are consecutive node indices in [1,n], and u < v .As seen in Fig. 3, this rank function ranks first all the pairs of nodes including the node of ID0, then all the pairs of nodes containing node ID 1 and another node with a larger ID, and so onand so forth. The structure therefore tends to create stars with nodes of low IDs in the center.
3.7. Core Periphery

Core periphery structure is another well-known type of organization for complex systems.This organization is often modeled using blocks, one block being the dense core, another block,internally sparse, representing the periphery, and the density between the two blocks is set atan intermediate value. To illustrate the flexibility of the Rank approach, we propose a soft-corealternative, the coreness dissolving progressively into a periphery. To do so, we consider nodesembedded into a latent space, as for the spatial structure —random 1d positions in our example.The node-pair rank score is computed as the inverse of the product of 3 distances: the distancesfrom both nodes to the center, and the distance between the two nodes. As a consequence,when two nodes belong to the center, they are very likely to be connected; two nodes far fromthe center are unlikely to be connected unless they are extremely close to each other.
R ′(u, v) = d(Wu,Wv )d(Wu, 0)d(Wv , 0)

with 0 the vector corresponding to the center of the space, i.e., the core of the generated net-work.Note that this is only an example of a rank function implementing a soft core, and one couldimagine many variations of it.
3.8. Perlin noise

Perline noise (Perlin, 2002) is a type of gradient noise frequently used in computer graphicsto create images with a realistic feel, such as textures and landscapes. We use it to generatean adjacency matrix, from the upper triangle of a 2d image of size (in pixels) n × n. The R ′ costfunction is the black intensity of the pixel. In practice, Perlin noise tends to create continuousshapes of lower and higher values, with smooth transitions between the two (see Fig. 3) for anexample. Such a structure can be interpreted as a fuzzy version of a non-assortative SBM; withstronger relations between some groups of nodes and some other groups of nodes. Perlin noisehas a parameter, called octaves, allowing the addition of smaller-scale structures on top of eachother.
3.9. Fractal structures

To better illustrate the expression power of the Structify-Net structure definition, we proposethree variations of what we call fractal structures. The principle is to embed the nodes into acomplete binary tree and to compute the rank scores based on distances on that binary tree.The purpose is to introduce heterogeneity among nodes, which can be used to create specificstructures.
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(a) Fractal Root tree embedding
1 2 3 4 5 6

(b) Fractal Leaves tree embedding
Figure 4 – Two methods to create fractal structures by embedding nodes into completebinary trees. In the example, we embed 6 nodes. In the simpler case, the probabilityof observing a graph in the resulting graph is proportional to the distance between thenodes in the tree.

Fractal leaves. In the fractal leaves structure, we create a complete binary tree such that thenumber of leaves is n (Fig. 4).We embed nodes of the network on the leaves and use the distancebetween them in the graph as the cost function. This creates (see 3) a sort of Matryoshka doll,hierarchical block structure, in which—considering that edge probability decreases with distancewithout reaching zero— small dense blocks are contained into larger, sparser blocks, recursively.
Fractal root. In the fractal root structure, we embed nodes of the graph in a complete binarytree of size n, and define the cost function as the distance between nodes in the embedding tree(Fig. 4), R ′(u, v) = dT (u, v), with dT the geodesic —shortest path— distance between the nodesin the embedding tree. This structure has similarities with the previous one, but introduces aparticular role for some of the nodes: the root and nodes close to the role now occupy a central,pivotal role, since they are on the shortest paths between nodes on their rights and on their lefts.The network has both a hierarchy of blocks and a sort of central core composed of the nodesclose to the root of the tree.
Fractal hierarchy. The fractal principle and custom rank function can be used to create randomnetworks with particular properties of interest. For instance, it has been pointed out in a seminalarticle (Ravasz and Barabási, 2003) that most real networks have a negative correlation betweennodes’ individual clustering coefficient and their degrees, while most network models do not re-produce this correlation. In the original article, a network model called the "hierarchical networkmodel" has been introduced to generate networks with these properties. To reproduce the so-called hirarchical property —note that many other notions of hierarchical networks exist and thatthis is only the one introduced in (Ravasz and Barabási, 2003)— networks must have 1) hetero-geneous degrees, 2) a high average clustering coefficient, and 3) a controlled relation betweendegrees and clustering coefficient. In the original article, such networks were created through aniterative deterministic algorithm, replacing graph parts with predefined subgraphs until reachingthe target size. Instead, we propose here a rank-score approach, embedding nodes in a completetree as in the fractal root embedding. However, we propose to use a ternary tree instead of abinary one, to increase local clustering. We then choose a score function such as: 1) leaves tendto have high clustering and low degree, and 2) root and other nodes in the higher levels tend tohave high degrees and low clustering coefficients. The principle is thus to have a high probabilityof observing edges 1) between groups of nodes at the bottom of the tree if they have close com-mon ancestors and 2) between nodes at the top of the tree and nodes at the bottom of the tree.The purpose of this example is to show that, by designing an appropriate rank function, one canobtain random graph generators such that the generated graphs have a property of interest.The rank-score is thus defined as follows:

R ′(u, v) =

{
D(Tu,Tv ), if ANCESTOR(Tu,Tv )
S(Tu,Tv ), otherwise

With Tu , the position of node u in the embedding tree, ANCESTOR a function such as
ANCESTOR(u, v) = TRUE if u is an ancestor of v in the embedding tree. Functions D and
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S are scores capturing respectively a Descendent and Sibling similarity. We use:
D(u, v) = min(h(Tu), h(Tv )) + h(T ) − (max(h(Tu), h(Tv ))

with h(T ) the global height of the tree and h(u) the height of node u, such as h(u) = 0 if u is aleaf, and h(u) = h(T ) if u is the root of the tree. This function ranks first pairs of nodes that arefar away in terms of tree levels, with a value of 0 between the root and the leaves.
S(u, v) =

{
(d(Tu,Tv ) − 2) + h(Tu), if h(Tu) == h(Tv )

d(Tu,Tv ) + h(T ), otherwise
with d(u, v) the shortest path distance in the tree.
3.10. Discussion on the structure zoo

Structures introduced in this structure zoo are only a few examples of the infinite numberof possibilities for structures that can be defined by cost functions. We stress that once such acost function has been chosen, we are able to generate graphs following them, with a chosennumber of nodes and edges.The structures we introduced allow the generation of synthetic networks without prior data,but one can perfectly define a cost function defined on node attributes, e.g., take a real networkin which nodes are located in space, belong to known groups, and have other characteristicattributes, and define a structure by using a cost function taking all these attributes into account.Fig. 3 proposes a representation as matrices of all these structures on a network of 128 nodesand 1048 edges.
4. Application: Swall World Structures

One of the most famous properties of network structure is the so-called small world property.Introduced in (Watts and Strogatz, 1998), it characterizes a network as being a small world if ithas both 1) a high clustering coefficient — significantly larger than in an ER random graph, 2) ashort average distance—of the sameorder ofmagnitude as in an ER randomgraph. This property,considered ubiquitous in real networks, has been reproduced in (Watts and Strogatz, 1998) byprogressively adding randomness to a regular network, built such as the n nodes are orderedin a circle, and each node is connected to its k̂/2 neighbors in both directions. The small worldproperty emerges because, when we rewire edges at random, the average distance decreasesfaster than the clustering coefficient — both being large in the regular network and low in theER random graph.We conduct an experiment to observe how other structures behave when submitted to asimilar experiment, i.e., starting with an archetypal structure, and adding noise progressively.

(a) The proposed rank matrix. It hassimilarity with, e.g., the spatial onein Fig. 3
(b) The small-world profile. As expected, the short path index increases sig-nificantly while the clustering coefficient remains close to the original valuewhen increasing randomness

Figure 5 – Replicating the Watts-Strogatz experiment

10 Remy Cazabet et al.

Peer Community Journal, Vol. 3 (2023), article e103 https://doi.org/10.24072/pcjournal.335

https://doi.org/10.24072/pcjournal.335


4.1. Reproducing the Watts-Strogatz experiment
Watts-Strogatz rankmodel. Tomimic the original small-world experiment, we define a rank-basedstructure using a cost function, parameterized by the number of nodes n and the desired averagenode degree k .

R ′ =

{
0, if (v − u) mod (n − k/2) < k/2

1, otherwise
with u, v node indices taken from [0, .., n − 1]. The corresponding rank matrix is shown if Fig. 5a
Scoring functions. In the original article, clustering coefficients and average distances were ex-pressed as a fraction of the value obtained for the regular structure. We cannot reuse this ap-proach for multiple structures, having different starting values. Instead, for the clustering, wedirectly use the average clustering coefficient score, CC (g) ∈ [0, 1].For the average distance, we propose a scaled value defined as:

δ̂(G ) =




0, if |G(G)|

n ≤ 0.9
1

1+max(0,d̂(G(G))−2)
, otherwise

with G(G ) the largest connected component of graph G , and d̂(G ) the average shortest pathdistance between nodes of graph G .The property of this score is that δ̂ ∈ [0, 1], with δ̂ = 1 if every node can reach any other nodein two hops or less (e.g., a full star structure), and δ̂ decreases quickly as the average distance d̂increases.
Watts-Strogatz experiment replication. We use our setting to replicate an experiment similar innature to the one in the original article. We used the same parameters, i.e., n = 1000, k = 10.We progressively add randomness, from a deterministic network to an ER random graph byvarying parameter ϵ of the probability function. Fig 5b shows results coherent with the originalarticle: after adding some randomness, the short path index has increased significantly, whilethe clustering coefficient still remains close to its value for the deterministic network.
4.2. Small-World profiles for other structures

We can apply the same process to the other structures defined in our structure zoo, with thesame number of nodes and edges. In Fig. 6, we observe a wide variety of behaviors.
• Fractal-hierarchy and maximal-star structures display a super-small-world behavior, hav-ing both short paths and high clustering coefficients. This can be easily understood: theirhierarchical nature creates a giant hub maximizing reachability. Fractal-hierarchy is de-signed such as most nodes of low degree have a high clustering coefficient, due to alocal structure. On the contrary, in maximal stars, most nodes are connected only to afew hubs, but since those hubs are connected to each other, they also have a high clus-tering coefficient.
• Nested, overlapping communities, and Perlin noise seems, on the contrary, to be anti-small-world, with both a low clustering coefficient and long paths. Again, this is due todifferent factors. For instance, the nestedness and Perlin noise concentrate somany edgeprobability between a small subset of nodes, that many nodes are disconnected, leadingto the absence of a giant component —thus to an infinite average distance. The overlap-ping community, instead, is created in a way that makes it look like the original Watts-Strogatz circular structure, as can be observed in Fig. 3. Its low clustering coefficientcomes from 1)many nodes not having a degree of at least 2, or 2)structures being toolarge compared to the number of edges, so that the probability of forming triangles islow.
• Other structures tend to follow a pattern roughly similar to the original article, with moreor less pronounced profiles. In some cases, the short distance score remains at zero untilreaching a certain amount of noise, due to the absence of a giant component.
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Figure 6 – Small-World profiles of networks generated by generators of the structurezoo. Blue is clustering, orange is the short path index (lower values correspond to longerpaths). We observe super-small-world, e.g., fractal-hierarchy, anti-small-world, e.g., nest-edness, profiles similar to the Watts-Strogatz network, e.g., spatial or blocks assortative.

5. Working With Node Attributes
In the previous section, we have seen an experiment in random networks without meta-data/attributes, i.e., with interchangeable nodes. However, as mentioned in the model definition,it is possible to use any node information in the rank function. In this section, we provide twosimple motivational examples.Let’s imagine working with a dataset such as a global air transport network. Nodes corre-spond to airports and are identified by their name, location, and country. Edges might corre-spond to having at least one direct flight between two airports. To study a property of such anetwork, for instance, its clustering, average shortest path, or properties of a virus diffusion onthat network, onewould usually compare that property with its value in networks generated by areference null model, such as ER or Configurationmodel. Another possibility offered by Structify-net is to use the node attributes. For instance, we can consider only the airport positions, andrank node pairs according to the distance between them in the dataset, which corresponds tousing the Spatial structure defined in the Zoo, using metadata instead of random positions. Alter-natively, we could use the country information as metadata to the Assortative Block Structure ofthe Zoo. Of course, it could be possible to use already-existing methods such as block modelsor spatial models to do the same. Structify-Net simply offers a convenient way to do it, for anymodel, just by providing the appropriate function.But it is of course possible to go far beyond simple blocks or latent space, and to propose acustom ranking function based on the case study. For instance, one can use machine learning todesign a ranking function retaining complex properties from an observed graph. In the airportexample, we could use a classification algorithm such as logistic regression or a decision treeto learn how likely it is to observe an edge between two nodes given their properties. Fromthe observed network, we would extract a set of training examples {distance, sameCountry ∈

{0, 1}, edge ∈ {0, 1}}, and train a classifier, which can then assign a class probability to each node-pair. This probability would not however be usable directly to create null models preserving thenumber of edges. Instead, we can use this probability as a rank function, and generate randomgraphs with a chosen number of edges using Structify-Net. The structure produced will preserve
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some of the properties related to attributes of the original graph —probably, a higher tendencyof airports to be connected if they are located in the same country and if they are close in space.
6. Python library

An important aspect of such a generator is to allow other researchers to use it for their ownneeds, whether it be to generate networks according to a structure described in the structurezoo, or to define their own. We thus release with this paper a pip installable python library(Cazabet, 2023), together with its documentation (https://structify-net.readthedocs.io/
en/latest/). For convenience, the library is compatible with Networkx (Hagberg et al., 2008).Obtaining a rank model corresponding to one of those defined in the zoo, such as the nestedstructure, is as simple as calling it:

1 import s t r u c t i f y _ n e t . zoo as zoo
2 n=128
3 rank_model = zoo . sor t_nestedness ( n )

Generating a network as a Networkx object from it is straightforward:
1 import s t r u c t i f y _ n e t . zoo as zoo
2 n=128
3 m=512
4 generator = zoo . sor t_nestedness ( n ) . get_generator ( eps i l on =0.5 ,m=m)
5 g_generated = generator . generate ( )

One can also define a custom structure by providing a rank-score function:
1 import s t r u c t i f y _ n e t as stn
2 n=128
3 m=512
4
5 def R_nestedness ( u , v , _ ) :
6 re turn u+v
7 rank_nested = stn . Rank_model ( n , R_nestedness )
8 g = rank_nested . generate_graph ( eps i l on =0.1 ,m=m)

The library allows easy plotting of the rank-scorematrices and node-pair probability matrices,and more generally reproduces all the content of the current article.
7. Related Works

Many works can be found in the literature on the generation of random graphs. A completesurvey is beyond the scope of this paper; we will nevertheless briefly introduce in this sectionthe most common random graph models and existing software for random graph generation.We canmake a distinction between generativemodels that are designed formodel parameterinference, and those that are not. Models designed for inference are usually controlled by alimited number of parameters, and have some appropriate statistical properties allowing to inferparameter values to match a specific observed graph or series of graphs(e.g., SBM or latent-space models). On the contrary, generative-only models are designed to generate graphs withsome specific properties in order to use them in downstream tasks (e.g., LFR orWaxman graphs).Structify-Net, although defined as an edge-independent random graph model, rather belongs tothe second category, since it is not designed for parameter inference.
7.1. Common Random Network Models

The simplest way to generate random graphs is certainly the Erdos-Renyi (ER) random graphmodel, that we already introduced. ER random graphs are fully homogeneous and do not haveany particular structure; but a controlled expected size. Configuration models, in particular theChung-Lu version, allow the generation of graphs of controlled size without mesoscopic organi-zation but preserving the nodes’ degrees.
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Block structures. Stochastic Block Models (SBM) define random graph models with block struc-tures. In their simpler form, they are defined by two sets of attributes: a vector defining the blockto which each node belongs, and a matrix defining the number of edges between each pair ofblocks. They exist in various flavors, the canonical version being edge-independent (Snijdersand Nowicki, 1997), while microcanonical versions (Tiago P Peixoto, 2017) are not. These mod-els also exist with or without node degree preservation. The literature on SBM mostly focuseson inference, but SBM can naturally be used to generate random networks, either by choosingmodel parameters or by using those obtained after inference. A popular way to set manually theparameters for custom structure generation is to fix a number of blocks and a number of nodesin each block, then to choose an internal edge probability pin and an external probability pout .Usually, pin > pout , thus defining assortative blocks. Arbitrary block structures, with differentblock sizes or non-assortative structures can be defined by setting the parameters accordingly.Multiple variants of block models exist, such as overlapping SBM (Latouche et al., 2009) orhierarchical ones (Schaub et al., 2023). Blockmodels can also be used to generate core-peripherystructures, typically by setting one core block and one or several peripheral blocks. This structurehowever cannot generate other types of possible core-periphery structures, such as a continu-ous change between core and periphery.A popular random graph generator with community structure is the LFR Benchmark (Lan-cichinetti et al., 2008). Not designed for inference, it allows the generation of networks withrealistic properties with a limited number of parameters, thus in a more convenient way thanwith manually initialized SBM. A more recent variant solving some of the problems of LFR is theABCD random graph generator (Kamiński et al., 2021).
Latent space structure. Various models exist to generate random graphs in which nodes are em-bedded into a space, the probability of observing an edge depending on the distance betweenthem. Among popular examples, we can cite Random Geometric Graphs (RGG; Dall and Chris-tensen, 2002), in which nodes are connected if their distance is below a parameter, andWaxmanGraphs (Waxman, 1988), in which edge probability decreases exponentially with the distance.The gravity model (Wojahn, 2001) is an alternative in which the probability of observing an edgedepends both on nodes’ degrees and on a deterrence function controlling the influence of dis-tance on edge probability. The parameters, in particular the deterrence function, can also beinferred to fit a given observed network (Cazabet et al., 2017). Latent spaces are not limitedto geographical space, and models have been proposed for the inference of social spaces, forinstance (Hoff et al., 2002).Amodel related both to SBM and to spatial models is the RandomDot Product Graph (RDPG)model (Young and Scheinerman, 2007). Nodes are characterized by a vector defining their posi-tions in a latent space, and the probability of observing an edge between nodes is given as thedot product between their vectors.Some authors consider instead that networks are better represented in hyperbolic space,leading to the proposition of Hyperbolic random graph generators (Aldecoa et al., 2015).
Homophily. Other generators model edge probabilities depending on the nodes’ attributes. Theyallow to analyze the interplay between similarities in structure (e.g., common friends in social net-works) and similarities in node attributes (Asikainen et al., 2020), or to investigate mechanismsof non-structural closures such as the formation of links between nodes having similar attributesthat do not share common neighbors, as a base of node homophily (Murase et al., 2019).
Generic random graph models. A difference between models introduced until then in this sectionand Structify-Net is the restriction to a single type of network structure. Since Structify-Netaccepts any node-pair ranking function as input, it allows the generation of block, spatial, butalso other types of structures such as core-periphery, nestedness, etc.Another family of highly expressive random graph models is the Exponential Random GraphModel family (ERGM; Lusher et al., 2013). ERGMs define the probability of observing a givengraph G as P(G ) = exp(Θ·X (G))

c(Θ) , withΘ a vector of network parameters, X (G ) network character-
istics, including for instance the number of triangles or node properties, and c(Θ) a normalizing
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constant ensuring that the sum of P(G ) for all G is equal to 1. ERGMs are mostly used in thecontext of model inference, and allow in theory to model non-independent edges, e.g., takinginto account a triangle closure propension. However, due to the computational complexity, thisapproach is limited to small graphs.Finally, an approach sharing some similarities with our framework is the graphon (Glasscock,2015), contraction of graph function, first introduced in (Lovász, 2006). A graphon can be defined(Orbanz and Roy, 2014) as a bivariate function W : [0, 1]2 → [0, 1]. That function returns anedge probability for each pair of nodes, based on a node latent variable. Graphons were firstintroduced mostly as theoretical objects, in the context of sequences of large, dense graphs.More recently, works have focused on the inference of this nonparametric model, as smooth-graphons (Sischka and Kauermann, 2022a) or combinedwith an SBM approach (Orbanz and Roy,2014; Sischka and Kauermann, 2022b). While graphons share the principle of using a functionto characterize the network structure with our approaches, they are part of a very differentliterature. Graphons aremore generic, somuch so that SBM, spatial, and nearly all latent-variable-based statistical models can be considered a special case of graphons. The literature on the topicfocuses on inference problems, and notions such as node-pair ranking or randomness parametersare not present.
The Structify-net framework is aimed to play a different role compared with all methodsintroduced in this section. ERGM and Graphons are families of models, designed for model in-ference rather than network generation. They are so general that they do not offer much helpto define a particular structure, and are used in general in a restricted context, for instance withblock-approximations for graphons, or imposed number of triangles for ERGMs. SBM, gravitymodels and configuration models are on the contrary more specific than structify-net, focus-ing on a single type of network structure. Furthermore, they are often used in the context ofmodel inference. On the contrary, other models such as LFR benchmark or Waxman graphs aredesigned, as Structify-Net, to generate networks with controlled properties, but they also focuson one specific type of structure. Our contribution thus occupies an original position in the sci-entific landscape on random graphs: it is designed for the generation of random graphs and notthe inference task, it is more flexible than LFR or SBM, and offers a more convenient way togenerate graphs of controlled properties compared with ERGM or Graphons.

7.2. Software
Several easy-to-use libraries propose to generate networks with blocks, following the Sto-chastic Block Model approach. Among the most popular, we can cite networkx (Hagberg et al.,2008) and iGraph (Csardi, Nepusz, et al., 2006), which include an SBM generation function allow-ing to define blocks of arbitrary sizes, arbitrary probabilities of observing edges between them,and then generate a graph accordingly. More advanced functions are proposed in the graph-tool(Tiago P. Peixoto, 2014) library, allowing to generatemicrocanonical, degree-preserving versions,and several other variants of block structures.The same libraries offer, under the name of geometric models, some possibilities for spatiallyconstrained network structures. Most of these methods, however, do not allow setting the num-ber of edges, since they instead require setting a threshold below which edges exist, or usingan a priori function (Waxman random graph). Only the k-nearest neighbors method allows oneto choose the number of edges among multiples of the number of nodes, but it is a determinis-tic generator. These libraries also contain other types of network generators with non-randomstructures, such as lattices, or networks defined by a process such as the forest-fire model.Another notable network generator is the LFR benchmark, which is implemented in net-workx in a simplified version, or available as a standalone code to have access to all its set-tings. Software to work with graphons is much more scarce; we found an R library implementinggraphon inference and graphon random graph generation (https://cran.r-project.org/web/

packages/graphon/index.html); a recent python code exists also, although not in the formof a documented library (https://github.com/BenjaminSischka/GraphonPy). These libraries
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however have nothing to see, in terms of usage of capabilities, with Structify-Net. They are de-signed for completely different purposes. The reference library for working with ERGM is theR package ergm(Hunter et al., 2008), focusing on model inference. (https://gvegayon.github.
io/appliedsnar/the-ergm-package.html).

8. Discussion
This article introduced a new method to generate random networks with a customizablenetwork structure, and a target number of nodes and edges, while controlling the amount ofrandomness. To the best of our knowledge, this is the first random network generator allowing todo so. We think that having such a generator opens doors to new research directions in networkscience, for studying the properties of networks with some particular structures —as we havedone in the experimental section, or as a reference model for observed graphs, to name a few.Moreover, one of the main strengths of the generator is its ability to control situations wherea process/rule of the structural organization (expressed by a pair-node rank) can be mixed with"unknown" random processes (expressed by ϵ); thus, among the observed edges, some of themstrictly follow the structural constraints imposed by the rank, and some of them can go beyondthe explanation of such constraints. The possibility to analyze thismix—between edges driven bythe organization and randomness— is quite important, especially given that network behaviorslike small-worldness or homophily can be better explained when randomness is added to a ruleof connection (Talaga and Nowak, 2020).Regarding the analysis of such network behaviors, another strength of the generator is thepossibility to exploit the properties of nodes when defining a rank, thus including elements rep-resenting, in principle, physical position, political opinions on a spectrum, gender, or even degree.We focused here on the distance between vectors of nodes’ positions in a d dimensional spacefor building a spatial structure (cf. "Structure Zoo", 2.1). We also focused on the affiliation tothe same group for building an assortative block structure (cf. "Structure Zoo", 2.2). Similaritiesbetween such structures lead us to acknowledge the significance of incorporating node meta-data/attributes to generalize a wide variety of network behaviors. We focused here on analyzingthe small-world property, but the same can be applied to other behaviors. In principle, behaviorslike homophily (McPherson et al., 2001), could be described just as a particular case of either aspatial organization (if attributes are numerical) or of an assortative block structure (if attributesare categorical).

8.1. Limits and future work
The main limit of the current work is scalability: node-pair ranks and probability matricesare dense matrices, which can be memory-demanding for large graphs. The generation processalso requires an independent random draw for each node-pair. These limits could be overcomein future work. Another limit is that network structures in which probabilities of observing anedge between a pair of nodes are not independent of adjacent ones —for instance, to generaterandom networks of a specific size and a specific clustering coefficient— cannot be expressed bya rank-structure. Another limit compared with some other random graph models such as SBM orRDPG is the absence of an efficient inferential solution. In particular, without any constraint onthe node-pair order, an inferential approach would always find a trivial uninformative solutionin which all connected node-pairs are ranked first. Note however that, since it is possible tocompute the probability to obtain a given graph for a set of parameters, it could be possible intheory to use maximal-likelihood inference on a subset of the models, e.g., by fixing the amountof randomness ϵ, and constraining the domain of acceptable rank functions.In future work, we plan to compare the properties of real-world networks with those of thesynthetic ones generated from structures such as those of the zoo. Having such a variety ofpossible structures, we expect to be able to characterize real networks, by observing similaritiesand differences with the synthetic ones, e.g., a real network might have a clustering coefficientand an average distance compatible with the Watts-Strogatz network, but differ in degree het-erogeneity and robustness, while another synthetic network might have more similar properties
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in all those aspects. In particular, we will investigate the role of randomness, to test the originalidea of the Watts and Strogatz small-world definition, i.e., that randomness is at the source ofcomplex networks’ properties.
Acknowledgements

Preprint version 2 of this article has been peer-reviewed and recommended by Peer Com-munity In Network Science (https://doi.org/10.24072/pci.networksci.100114 Peel,2023)
Fundings

This work is supported by the European Union – Horizon 2020 Program under the scheme“INFRAIA-01- 2018-2019 – Integrating Activities for Advanced Communities”, Grant Agreementn.871042, “SoBigData++: European Integrated Infrastructure for Social Mining and Big Data An-alytics” (http://www.sobigdata.eu).This project was partly founded by BITUNAM grant ANR-18-CE23-0004.
Conflict of interest disclosure

The authors declare that they comply with the PCI rule of having no financial conflicts ofinterest in relation to the content of the article.
Data, script, code, and supplementary information availability

Scripts and codes are available online as a documented, pip-installable Python library.
• GitHub: https://github.com/Yquetzal/structify_net
• DOI: https://doi.org/10.5281/zenodo.7966895 (Cazabet, 2023)
• Documentation: https://structify-net.readthedocs.io/en/latest/

.
References

Abbe E (2017). Community Detection and Stochastic Block Models: Recent Developments. The Jour-nal ofMachine LearningResearch18, 6446–6531. https://doi.org/10.1561/9781680834772.Aldecoa R, Orsini C, Krioukov D (2015). Hyperbolic Graph Generator. Computer Physics Communi-cations 196, 492–496. https://doi.org/10.1016/j.cpc.2015.05.028.Alves LG, Mangioni G, Cingolani I, Rodrigues FA, Panzarasa P, Moreno Y (2019). The NestedStructural Organization of the Worldwide Trade Multi-Layer Network. Scientific reports 9, 1–14.
https://doi.org/10.1038/s41598-019-39340-w.Asikainen A, Iñiguez G, Ureña-Carrión J, Kaski K, Kivelä M (2020). Cumulative Effects of TriadicClosure and Homophily in Social Networks. Science Advances 6, eaax7310. https://doi.org/
10.1126/sciadv.aax7310.Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2004). Velocity and Hierarchical Spreadof Epidemic Outbreaks in Scale-Free Networks. Physical review letters 92, 178701. https://
doi.org/10.1103/physrevlett.92.178701.Cazabet R (2023). Structify-Net. https://github.com/Yquetzal/structify_net/ Cazabet R, Borgnat P, Jensen P (2017). Enhancing Space-Aware Community Detection Using DegreeConstrained Spatial Null Model. In: Complex Networks VIII: Proceedings of the 8th Conference onComplex Networks CompleNet 2017 8. Springer, pp. 47–55. https://doi.org/10.1007/978-
3-319-54241-6_4.Csardi G, Nepusz T, et al. (2006). The Igraph Software Package for Complex Network Research. In-terJournal, complex systems 1695, 1–9.Dall J, Christensen M (2002). Random Geometric Graphs. Physical review E 66, 016121. https:
//doi.org/10.1103/physreve.66.016121.

Remy Cazabet et al. 17

Peer Community Journal, Vol. 3 (2023), article e103 https://doi.org/10.24072/pcjournal.335

https://doi.org/10.24072/pci.networksci.100114
https://github.com/Yquetzal/structify_net
https://doi.org/10.5281/zenodo.7966895
https://structify-net.readthedocs.io/en/latest/
https://doi.org/10.1561/9781680834772
https://doi.org/10.1016/j.cpc.2015.05.028
https://doi.org/10.1038/s41598-019-39340-w
https://doi.org/10.1126/sciadv.aax7310
https://doi.org/10.1126/sciadv.aax7310
https://doi.org/10.1103/physrevlett.92.178701
https://doi.org/10.1103/physrevlett.92.178701
https://doi.org/10.1007/978-3-319-54241-6_4
https://doi.org/10.1007/978-3-319-54241-6_4
https://doi.org/10.1103/physreve.66.016121
https://doi.org/10.1103/physreve.66.016121
https://github.com/Yquetzal/structify_net/
https://doi.org/10.24072/pcjournal.335


Durak N, Kolda TG, Pinar A, Seshadhri C (2013). A Scalable Null Model for Directed Graphs Match-ing All DegreeDistributions: In, out, and Reciprocal. In: 2013 IEEE 2ndNetwork ScienceWorkshop(NSW). IEEE, pp. 23–30. https://doi.org/10.1109/nsw.2013.6609190.Fortunato S, Hric D (2016). Community Detection in Networks: A User Guide. Physics reports 659,1–44. https://doi.org/10.1016/j.physrep.2016.09.002.Glasscock D (2015). What Is... a Graphon. Notices of the AMS 62, 46–48. https://doi.org/10.
48550/arXiv.1611.00718.Hagberg A, Swart P, S Chult D (2008). Exploring Network Structure, Dynamics, and Function UsingNetworkX. Tech. rep. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).Hoff PD, Raftery AE, Handcock MS (2002). Latent Space Approaches to Social Network Analysis.Journal of the american Statistical association 97, 1090–1098. https://doi.org/10.1198/
016214502388618906.Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). Ergm: A Package to Fit,Simulate and Diagnose Exponential-Family Models for Networks. Journal of statistical software24, nihpa54860. https://doi.org/10.18637/jss.v024.i03.Kamiński B, Prałat P, Théberge F (2021).Artificial Benchmark for CommunityDetection (Abcd)—FastRandom Graph Model with Community Structure. Network Science 9, 153–178. https://doi.
org/10.1017/nws.2020.45.Lancichinetti A, Fortunato S, Radicchi F (2008). Benchmark Graphs for Testing Community Detec-tion Algorithms. Physical review E 78, 046110. https://doi.org/10.1103/physreve.78.
046110.Latouche P, Birmelé E, Ambroise C (2009). Overlapping Stochastic Block Models. arXiv preprintarXiv:0910.2098. https://doi.org/10.1214/14-ejs903. arXiv: 0910.2098.Lovász L (2006). The Rank of Connection Matrices and the Dimension of Graph Algebras. EuropeanJournal of Combinatorics 27, 962–970. https://doi.org/10.1016/j.ejc.2005.04.012.Lusher D, Koskinen J, Robins G (2013). Exponential Random Graph Models for Social Networks:Theory, Methods, and Applications. Cambridge University Press.Mariani MS, Ren ZM, Bascompte J, Tessone CJ (2019). Nestedness in Complex Networks: Obser-vation, Emergence, and Implications. Physics Reports 813, 1–90. https://doi.org/10.1016/
j.physrep.2019.04.001.McPherson M, Smith-Lovin L, Cook JM (2001). Birds of a Feather: Homophily in Social Networks.Annual review of sociology. https://doi.org/10.1146/annurev.soc.27.1.415.Murase Y, Jo HH, Török J, Kertész J, Kaski K (2019). Structural Transition in Social Networks: TheRole of Homophily. Scientific reports 9, 4310. https://doi.org/10.1038/s41598- 019-
40990-z.Ódor G, Czifra D, Komjáthy J, Lovász L, Karsai M (2021). Switchover Phenomenon Induced byEpidemic Seeding on Geometric Networks. Proceedings of the National Academy of Sciences 118,e2112607118. https://doi.org/10.1073/pnas.2112607118.Orbanz P, Roy DM (2014). Bayesian Models of Graphs, Arrays and Other Exchangeable RandomStructures. IEEE transactions on pattern analysis and machine intelligence 37, 437–461. https:
//doi.org/10.1109/tpami.2014.2334607.Peel L (2023). A Model Petting Zoo for Interacting with Network Structure. Peer Community in Net-work Science. https://doi.org/10.24072/pci.networksci.100114.Peixoto TP (2017). Nonparametric Bayesian Inference of the Microcanonical Stochastic Block Model.Physical Review E 95, 012317. https://doi.org/10.1103/physreve.95.012317.Peixoto TP (2014). The Graph-Tool Python Library. figshare. https://doi.org/10.6084/m9.
figshare.1164194. (Visited on 09/10/2014).Peng H, Nematzadeh A, Romero DM, Ferrara E (2020). Network Modularity Controls the Speed ofInformation Diffusion. Physical Review E 102, 052316. https://doi.org/10.1103/physreve.
102.052316.Perlin K (2002). ImprovingNoise. In: Proceedings of the 29th Annual Conference on Computer Graph-ics and Interactive Techniques, pp. 681–682. https://doi.org/10.1145/566570.566636.Ravasz E, Barabási AL (2003). Hierarchical Organization in Complex Networks. Physical review E 67,026112. https://doi.org/10.1103/physreve.67.026112.

18 Remy Cazabet et al.

Peer Community Journal, Vol. 3 (2023), article e103 https://doi.org/10.24072/pcjournal.335

https://doi.org/10.1109/nsw.2013.6609190
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.48550/arXiv.1611.00718
https://doi.org/10.48550/arXiv.1611.00718
https://doi.org/10.1198/016214502388618906
https://doi.org/10.1198/016214502388618906
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.1017/nws.2020.45
https://doi.org/10.1017/nws.2020.45
https://doi.org/10.1103/physreve.78.046110
https://doi.org/10.1103/physreve.78.046110
https://doi.org/10.1214/14-ejs903
https://arxiv.org/abs/0910.2098
https://doi.org/10.1016/j.ejc.2005.04.012
https://doi.org/10.1016/j.physrep.2019.04.001
https://doi.org/10.1016/j.physrep.2019.04.001
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1038/s41598-019-40990-z
https://doi.org/10.1038/s41598-019-40990-z
https://doi.org/10.1073/pnas.2112607118
https://doi.org/10.1109/tpami.2014.2334607
https://doi.org/10.1109/tpami.2014.2334607
https://doi.org/10.24072/pci.networksci.100114
https://doi.org/10.1103/physreve.95.012317
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1103/physreve.102.052316
https://doi.org/10.1103/physreve.102.052316
https://doi.org/10.1145/566570.566636
https://doi.org/10.1103/physreve.67.026112
https://doi.org/10.24072/pcjournal.335


Schaub MT, Li J, Peel L (2023). Hierarchical Community Structure in Networks. Physical Review E107, 054305. https://doi.org/10.1103/physreve.107.054305.Sischka B, Kauermann G (2022a). EM-based Smooth Graphon Estimation Using MCMC and Spline-Based Approaches. Social Networks 68, 279–295. https://doi.org/10.1016/j.socnet.
2021.08.007.SischkaB, KauermannG (2022b). Stochastic Block SmoothGraphonModel. arXiv preprint arXiv:2203.13304.
https://doi.org/10.48550/arXiv.2203.13304. arXiv: 2203.13304.Snijders TA, Nowicki K (1997). Estimation and Prediction for Stochastic Blockmodels for Graphswith Latent Block Structure. Journal of classification 14, 75–100. https://doi.org/10.1007/
s003579900004.Talaga S, Nowak A (2020). Homophily as a Process Generating Social Networks: Insights from SocialDistance Attachment Model. Journal of Artificial Societies and Social Simulation 23, 6. https:
//doi.org/10.18564/jasss.4252.Wang XF, Chen G (2003). Complex Networks: Small-World, Scale-Free and Beyond. IEEE circuits andsystems magazine 3, 6–20. https://doi.org/10.1109/mcas.2003.1228503.Watts DJ, Strogatz SH (1998). Collective Dynamics of ‘Small-World’Networks. nature 393, 440–442. https://doi.org/10.1038/30918.Waxman BM (1988). Routing of Multipoint Connections. IEEE journal on selected areas in communi-cations 6, 1617–1622. https://doi.org/10.1109/49.12889.Wojahn OW (2001). Airline Network Structure and the Gravity Model. Transportation Research PartE: Logistics and Transportation Review 37, 267–279. https://doi.org/10.1016/s1366-
5545(00)00026-0.Yamaguchi H, Ogawa Y, Maekawa S, Sasaki Y, Onizuka M (2020). Controlling Internal Structureof Communities on Graph Generator. In: 2020 IEEE/ACM International Conference on Advancesin Social Networks Analysis and Mining (ASONAM). IEEE, pp. 937–940. https://doi.org/10.
1109/asonam49781.2020.9381439.Young SJ, Scheinerman ER (2007). RandomDot Product GraphModels for Social Networks. In: Inter-nationalWorkshop onAlgorithms andModels for theWeb-Graph. Springer, pp. 138–149. https:
//doi.org/10.1007/978-3-540-77004-6_11.Zhuang Y, Arenas A, Yağan O (2017). Clustering Determines the Dynamics of Complex Contagionsin Multiplex Networks. Physical Review E 95, 012312. https://doi.org/10.1103/physreve.
95.012312.

Remy Cazabet et al. 19

Peer Community Journal, Vol. 3 (2023), article e103 https://doi.org/10.24072/pcjournal.335

https://doi.org/10.1103/physreve.107.054305
https://doi.org/10.1016/j.socnet.2021.08.007
https://doi.org/10.1016/j.socnet.2021.08.007
https://doi.org/10.48550/arXiv.2203.13304
https://arxiv.org/abs/2203.13304
https://doi.org/10.1007/s003579900004
https://doi.org/10.1007/s003579900004
https://doi.org/10.18564/jasss.4252
https://doi.org/10.18564/jasss.4252
https://doi.org/10.1109/mcas.2003.1228503
https://doi.org/10.1038/30918
https://doi.org/10.1109/49.12889
https://doi.org/10.1016/s1366-5545%2800%2900026-0
https://doi.org/10.1016/s1366-5545%2800%2900026-0
https://doi.org/10.1109/asonam49781.2020.9381439
https://doi.org/10.1109/asonam49781.2020.9381439
https://doi.org/10.1007/978-3-540-77004-6_11
https://doi.org/10.1007/978-3-540-77004-6_11
https://doi.org/10.1103/physreve.95.012312
https://doi.org/10.1103/physreve.95.012312
https://doi.org/10.24072/pcjournal.335

