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We design in this work a discrete de Rham complex on manifolds. This complex, written in the framework of exterior calculus, is applicable on meshes on the manifold with generic elements, and has the same cohomology as the continuous de Rham complex. Notions of local (full and trimmed) polynomial spaces are developed, with compatibility requirements between polynomials on mesh entities of various dimensions. Explicit examples of polynomials spaces are presented. The discrete de Rham complex is then used to set up a scheme for the Maxwell equations on a 2D manifold without boundary, and we show that a natural discrete version of the constraint linking the electric field and the electric charge density is satisfied. Numerical examples are provided on the sphere and the torus, based on a bespoke analytical solution and mesh design on each manifold.

Introduction

The goal of this paper is to design a discrete version of the de Rham complex on manifolds, which can be built on meshes made of generic elements and has the same cohomology as the continuous de Rham complex. This complex can be used to design schemes for partial differential equations (PDEs) which inherit some important stability properties from the continuous models (such as energy bounds or constraint preservation).

Let Ω be an -dimensional compact Riemannian manifold. In the exterior calculus framework, the continuous de Rham complex on Ω is

• • • Λ (Ω) Λ +1 (Ω) • • • , d d d ( 1 
)
where d is the exterior derivative and Λ (Ω) is the space of 2 -integrable -forms whose exterior derivative is also 2 -integrable. For Ω = R with = 2, 3, through vector proxies this complex is equivalent to the usual grad-rot complex (in 2D) or grad-curl-div complex (in 3D). The complex property, which reads d • d = 0, has important consequences for PDE models based on these operators, such as the preservation of the divergence constraint in Maxwell equations or the stability of magnetostatics problems [START_REF] Di Pietro | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra[END_REF]Section 2]. Designing discrete versions of this complex is essential to ensure that the resulting scheme also satisfy these properties.

Several approaches have been employed to achieve such a discretisation. One of the most successful one is the Finite Element Exterior Calculus (FEEC), which provides a generic framework for designing and analysing discrete complexes [START_REF] Arnold | Finite Element Exterior Calculus[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]. Its design based on explicit locally polynomial and globally conforming functions however makes it only applicable to certain meshes -mostly made of triangles/tetrahedra or quadrangles/hexahedra. We also note the broader framework of Generalised Finite Element Systems [START_REF] Christiansen | Generalized finite element systems for smooth differential forms and Stokes' problem[END_REF], but whose analysis tools are currently limited to algebraic properties of the discrete complexes, and does not provide explicit means to construct fully computable complexes on generic meshes.

A recent new trend is that of polytopal methods, that is, numerical methods that are applicable on meshes made of generic polygons/polyhedra (polytopes), and have an arbitrary degree of accuracy. The Virtual Element Method (VEM) [START_REF] Beirão Da Veiga | A family of three-dimensional virtual elements with applications to magnetostatics[END_REF][START_REF] Beirão Da Veiga | div) and (curl)-conforming VEM[END_REF] and Discrete De Rham (DDR) [START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF][START_REF] Di Pietro | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra[END_REF] are two main examples of approaches to building polytopal discrete complexes. Such complexes have benefits over FEEC ones: the flexibility of polytopal meshes leads to seamless local mesh refinement (to better capture, e.g., stiff solutions or complex geometries), and their high-level approach (which does not require globally conforming basis functions) may lead to leaner constructions using systematic processes in their design, such as static condensation and serendipity; see [START_REF] Da Veiga | Stability and interpolation properties of serendipity nodal virtual elements[END_REF][START_REF] Botti | A serendipity fully discrete div-div complex on polygonal meshes[END_REF][START_REF] Dassi | Hybridization of the virtual element method for linear elasticity problems[END_REF][START_REF] Di Pietro | A DDR method for the Reissner-Mindlin plate bending problem on polygonal meshes[END_REF][START_REF] Di Pietro | Homological-and analytical-preserving serendipity framework for polytopal complexes, with application to the DDR method[END_REF] for examples of the efficiency of discrete polytopal complexes.

The question of stability of discretisations of PDEs also applies to models set on manifolds, and leads to the natural question of designing discrete version of the de Rham complex on such spaces. In the finite element setting, most studies have been done on embedded manifolds -typically, a surface in R 3 . An initial (extrinsic) approach is to approximate the surface by a piecewise linear surface, on which a triangulations and finite element spaces can be easily constructed, and to numerically approximate the PDE on that approximated surface, see, e.g., [START_REF] Demlow | Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces[END_REF][START_REF] Demlow | An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces[END_REF] and [START_REF] Arnold | Finite Element Exterior Calculus[END_REF] for FEEC (see also [START_REF] Frittelli | The bulk-surface virtual element method for reactiondiffusion PDEs: analysis and applications[END_REF] for VEM). The drawback of this simple -although completely computable -approach is its practical limitation to low-order methods because the error committed by approximating the surface limits the accuracy of the resulting scheme (unless we have an explicit knowledge -which is rare -of the distance function in a tubular neighbourhood of the manifold). To mitigate this issue, a second (intrinsic) approach was developed which consists in defining triangulations and finite element spaces directly on the manifold, and to therefore discretise the PDE without the geometrical error created by approximating the manifold, see [START_REF] Bachini | Intrinsic finite element method for advection-diffusionreaction equations on surfaces[END_REF] and reference therein. The challenge is then to define a notion of piecewise polynomial functions on the triangulation of the manifold. One option to tackle this challenge is through the usage of an explicit piecewise linear manifold, on which finite element triangulations and spaces can be trivially defined (the notion of polynomials being obvious), and to transport these triangulations and spaces onto the physical manifold. In [START_REF] Bachini | Intrinsic finite element method for advection-diffusionreaction equations on surfaces[END_REF], it is required that this approximate manifold be defined on a close neighbourhood of the surface, such that each point of this neighbourhood has a unique orthogonal projection on the manifold; this is actually not a requirement, as the mere existence of an homeomorphism between the physical and piecewise linear manifolds is sufficient to transport all finite element spaces ( 1 -conforming, but also H(curl)or H(div)-conforming) through pull-back [START_REF] Licht | Smoothed projections over manifolds in finite element exterior calculus[END_REF]. Another, strongly related, approach to construct intrinsic triangulation and finite element spaces is to assume the existence of a global explicit system of coordinates on the manifold; this system can then be used to represent the mesh and local polynomial spaces (and amounts to the above-mentioned homeomorphism and pull-back approach). This, however, has some limitations on the type of manifold that can be considered (a sphere, e.g., cannot be covered by a single chart). The reference [START_REF] Bachini | Arbitrary-order intrinsic virtual element method for elliptic equations on surfaces[END_REF] describes this approach in the context of VEM, and highlights that the usage of a single chart on a sphere generates a loss of accuracy on the sphere due to the singularity of this chart at a point (it is numerically shown that using two charts can mitigate this issue, but the design of the method does not account for the usage of multiple charts).

In all cases, the existence of a global object to represent the manifold (piecewise linear manifold approximating and/or homeomorphic to the physical manifold) can be established, but the explicit description of this object remains elusive except in special cases, which mainly restricts global approaches to theoretical analysis (or requires to construct computable spaces that introduce an additional geometrical error, the control of which requiring additional properties on the global object -e.g., that the homeomorphism is close to an isometry); see the discussion in [START_REF] Licht | Smoothed projections over manifolds in finite element exterior calculus[END_REF], which designs and analyses a FEEC on manifolds.

The reason for the need of a global approach mostly lies in the requirement for finite element spaces to be subspaces of the continuous spaces (conforming approximation). This is also visible in the abstract construction of [START_REF] Licht | Smoothed projections over manifolds in finite element exterior calculus[END_REF] where, although the design of the polynomial spaces is done locally through pullbacks, the continuity requirements of the smooth triangulation ultimately makes it noncomputable (except for trivial case); practical usage then require the introduction of an approximation of the manifold.

Polytopal methods do not have such a requirement. Instead, their discrete spaces can be interpreted as spaces of vectors of polynomial functions on mesh entities of various dimensions (elements, but also faces, edges, vertices); these polynomial functions are completely unrelated with each other: for example, polynomials on the faces do not have to be the traces of polynomials in the elements, see [START_REF] Beirão Da Veiga | Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes[END_REF][START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF] for both DDR and VEM. As a consequence, the restrictions -even on flat spaces -imposed on the geometry of the mesh elements by finite element methods are lifted, and there is no issue in gluing local constructions to form a global space (no global property on the space need to be imposed). The trade-off is that notions of polynomials on faces and edges must be available. This is not in itself an issue even on manifolds, as local coordinates can be used for this, but when considering complexes, some compatibility conditions are necessary; in particular, traces on faces of polynomials in elements must be polynomial on faces (which imposes a compatibility of the local coordinates used to define polynomials). Moreover, trimmed local polynomial spaces play an important role in discrete complexes [START_REF] Arnold | Finite Element Exterior Calculus[END_REF][START_REF] Beirão Da Veiga | A family of three-dimensional virtual elements with applications to magnetostatics[END_REF][START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF]; when going to polytopal complexes on manifolds, such notions of spaces must therefore also be defined, which asks questions on intrinsic Koszul operators in local coordinates and their compatibility conditions related to traces (traces of trimmed polynomial spaces should remain trimmed polynomial spaces of the same degree).

At this point, it is worthwhile to note other approaches to solving partial differential equations on manifolds that have been developed, primarily by the General Relativity community. The oldest approach is the Regge calculus [START_REF] Gentle | Regge Calculus: A Unique Tool for Numerical Relativity[END_REF][START_REF] Regge | General relativity without coordinates[END_REF][START_REF] Williams | Regge calculus: a brief review and bibliography[END_REF], which is a lattice based method for numerically solving the Einstein equations. Related to the Regge calculus is the smooth lattice method developed in [START_REF] Brewin | Riemann normal coordinates, smooth lattices and numerical relativity[END_REF]. This method offer significant improvements over the Regge calculus and has been used to solve the Einstein equations on spacetime manifolds with compact spacial slices [START_REF] Brewin | A numerical study of the Regge calculus and smooth lattice methods on a Kasner cosmology[END_REF][START_REF] Brewin | Evolutions of Gowdy, Brill, and Teukolsky initial data on a smooth lattice[END_REF]. In a different direction, an approach to solving partial differential equations, in particular the Einstein equations, on spacetime manifolds that is based on local discrete coordinate patches was developed in [START_REF] Schnetter | A multi-block infrastructure for threedimensional time-dependent numerical relativity[END_REF]. More recently, the authors of the articles [START_REF] Lindblom | Building three-dimensional differentiable manifolds numerically[END_REF][START_REF] Lindblom | Solving partial differential equations numerically on manifolds with arbitrary spatial topologies[END_REF][START_REF] Zhang | Simple numerical solutions to the Einstein constraints on various three-manifolds[END_REF] developed a multi-cube decomposition method for solving partial differential on compact manifolds and employed this method to construct numerical solutions of the Einstein constraint equations on various compact three-manifolds. Finally, we mention the article [START_REF] Frauendiener | Discrete differential forms in general relativity[END_REF], which is most relevant to our results, where a discrete exterior calculus is employed to design a numerical scheme for solving the Einstein equations. This approach has been used to find solutions to the Einstein equations on spacetimes with compact spatial slices in [START_REF] Richter | Discrete Differential Forms for $(1+1)$-Dimensional Cosmological Space-Times[END_REF]. All these methods, however, are limited to meshes with elements having a specific shape (tetrahedral or cubic).

In this work, we tackle the question of designing a discrete complex on generic (not necessarily embedded) manifolds, that supports meshes having generic element shapes. We define suitable notions of local (complete and trimmed) polynomial spaces on a generic mesh of Ω, tackling the issue of compat-ibility of traces of polynomials. Like the abstract setting of [START_REF] Licht | Smoothed projections over manifolds in finite element exterior calculus[END_REF], our construction relies on mappings between subsets of R and the manifold. However, our compatibility requirement between the mappings is much milder. This added flexibility enables the construction of computable mappings. Our construction works even when several charts are used to represent the manifold, and does not require a global homeomorphism between the manifold and a piecewise linear manifold; it is also purely local, and we provide practical spaces on various polygonal elements. We then use these local polynomial spaces to design, following the construction in [START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF], a discrete version of the de Rham complex of differential forms on the manifold. Some key properties this complex are stated, including the isomorphism of its cohomology with that of the de Rham complex. We then derive a 2+1 formulation of the Maxwell equations on 2D manifolds, and use the DDR complex to design a scheme for these equations; the preservation of constraint follows from the properties of the discrete complex. We numerically illustrate the behaviour of the scheme on manufactured solutions on the sphere and the torus, designing for this suitable meshes (based on two charts of each manifold) on which local polynomial spaces with compatibility conditions can be constructed.

The paper is organised as follows. In Section 2, we introduce the setting required to define the DDR complex on a manifold; in particular, we define a notion of polynomial spaces on a mesh of the manifold, in such a way that restrictions of polynomials on lower-dimensional mesh entities are also polynomials on these mesh entities. We construct trimmed polynomial spaces, that are then used in Section 3 to build the discrete spaces and operators of the discrete de Rham complex of differential forms on the manifold, following the design in [START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF]. We state the main properties (consistency, commutation, isomorphism of cohomologies) of this DDR complex. Section 4 then tackles an application of this construction: the electromagnetism equations on a manifold. Starting from the Maxwell equations written on a 3D Lorentzian manifold, we perform the 2+1 splitting to obtain a model written in time-and-space formulation in the language of differential forms. We then build a scheme for this model, use the properties of the DDR complex to show that this scheme preserves a discrete version of the constraint on the electric field, establish an energy estimate, and finally perform numerical tests on the 2-dimensional sphere and torus. Two appendices conclude the paper: Appendix A details a practical construction of polynomial spaces on a manifold mesh made of elements of various shapes, and Appendix B recalls important tensor calculus constructions used in the derivation of the electromagnetism equations.

Setting

Mesh

We let M ℎ be a mesh made of a collection of submanifolds of dimensions = 0, . . . , that partition Ω. For such a , the set Δ (M ℎ ) collects all the submanifolds in M ℎ of dimension , which we also call -cells, or cells when the dimension is not useful; "elements" refer to -cells. We assume the following properties (the first two explicitly re-state that M ℎ partitions Ω):

• The submanifolds cover Ω:

∈ [0, ] ∈Δ ( M ℎ )
= Ω.

• The submanifolds are pairwise disjoint:

∀ , ∈ M ℎ , ≠ =⇒ ∩ = ∅.
• Boundaries of the submanifolds are submanifolds:

∀ ∈ [1, ], ∈ Δ (M ℎ ), ∈ [0, -1], ∈ Δ (M ℎ ), ∩ ≠ ∅ =⇒ ⊂ .
The last property allows us to define the collection of cells on the boundary of :

Δ ( ) := { ∈ Δ (M ℎ ) : ⊂ }.
Algebraic properties of the discrete de Rham complex designed in Section 3 do not require any mesh regularity assumptions. However, analytical properties (such as the consistency of the complex, see Section 3.3) do depend on the regularity of the mesh, a concept that we introduce now. In what follows, the notation stands for ≤ with a constant which does not depend on the parameter ℎ, the dimension ≤ , on the subcell ∈ Δ (M ℎ ) or on the forms considered on . The notation ≈ stands for and . We say that a (flat) polytopal mesh ℎ (as defined in [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Definition 1.4]) is equivalent to M ℎ if:

• Their same-dimensional cells can be put in bijection: ∀0 ≤ ≤ , there is a bijection Φ :

Δ (M ℎ ) → Δ ( ℎ ).
• They are topologically equivalent:

∀1 ≤ ≤ , ∀ ∈ Δ (M ℎ ), Φ -1 (Δ -1 ( )) = Δ -1 (Φ ( )).
• Their geometry are equivalent:

∀1 ≤ ≤ , ∀ ∈ Δ (M ℎ ), there is a diffeomorphism : → Φ ( ) satisfying: ∇ ∞ ≈ det(∇ ) 1 ∞ ≈ det(∇ -1 ) -1 ∞ ≈ ∇ -1 -1 ∞ . (2) 
• The geometry is regular on boundaries:

∀1 ≤ ≤ , ∀ ∈ Δ (M ℎ ), ∀ ∈ Δ -1 ( ), ∇ ∞ ≈ ∇ ∞ . (3) Above, ∇ ∞ denotes the ∞ ( ) norm of max | |. Note that imposing, for example, that ∇ ∞ is comparable to det(∇ ) 1 ∞
amounts to enforcing a level of "isotropy" to , and ( 2) is therefore an assumption on the shape regularity of . Definition 1 (Regular mesh sequence). We say that a mesh sequence (M ℎ ) ℎ is regular if there exists an equivalent polytopal mesh sequence ( ℎ ) ℎ which is regular in the sense of [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Definition 1.9].

We define the characteristic size of a -cell as ℎ :

= | | 1 . Noticing that ℎ ≈ ∇ -1 ∞ ℎ Φ ( ) , (4) 
we can translate the geometric bounds on regularity polytopal mesh sequences into our setting. We recall the main properties

• The size of neighbouring cells is comparable:

∀1 ≤ ≤ , ∀ ∈ Δ (M ℎ ), ∀ ∈ Δ -1 ( ), ℎ ≈ ℎ .
• The number of sub-cells in an cell boundary is bounded:

∀1 ≤ ≤ , ∀ ∈ Δ (M ℎ ), |Δ -1 ( )| 1.

Discrete polynomial spaces

To build a DDR complex on M ℎ , we need a notion of "local exterior calculus polynomial space" on the submanifolds in M ℎ . This is not an easy concept to define as these spaces must satisfy a range of compatibility properties with the exterior derivative, the trace, etc. In this section, we define the key axioms that these spaces must satisfy, and infer further notions such as trimmed polynomial spaces.

The construction below mimics well-known properties of polynomial spaces, exterior derivative and Koszul operator on flat spaces; we however have to check carefully that the key minimal properties we require (the complex properties and Assumption 2) are indeed sufficient to deduce, in particular, the decomposition of polynomial spaces which justify the definition of trimmed spaces. Let 0 ≤ ≤ and ∈ Δ (M ℎ ). We consider spaces (P Λ ( )) ∈Z,ℓ ∈Z such that P Λ ( ) ⊂ 1 Λ ( ), and that form a complex for the exterior derivative d in the following way:

• • • P Λ ( ) P -1 Λ +1 ( ) • • • . d d d (5) 
We assume the existence of a graded map (removing the index when no confusion can arise), playing the role of a Koszul operator in our setting, such that the following "reverse" sequence forms a complex

• • • P Λ ( ) P +1 Λ -1 ( ) • • • . (6) 
Assumption 2. We assume the following properties:

(A1) There is a graded decomposition of P Λ ( )

:= ≤ H Λ ( ) such that, on each H Λ ( ), d + d acts as an homothetie: ∀ , , ∃ , ∈ R such that (d + d) = , for all ∈ H Λ ( ).
For < 0, H Λ ( ) = {0} and we fix , = + ,0 , with + ,0 = 0 if + < 0.

(A2)

The eigenvalues of d + d identify the polynomial degree: for all > 0 and 0 ≤ ≤ and all , ≥ 0, , = , =⇒ = . Moreover, if ≥ 0 then , = 0 if and only if ( , ) = (0, 0).

(A3) dH Λ ( ) ≠ {0} when > 0 and < .

Lemma 3. For all 0 ≤ ≤ , ∈ Z, the eigenvalues are related by the relation , = + ,0 . Moreover

dH +1 Λ ( ) ⊂ H Λ +1 ( ) and H Λ +1 ( ) ⊂ H +1 Λ ( )
Proof. The case < 0 being obvious by the choice in (A1), we only need to consider ≥ 0. Let us first consider the case = 0 and let us prove by induction on ∈ N that dH +1 Λ 0 ( ) ⊂ H Λ 1 ( ) and

,1 = +1,0 . Let us consider = 0. Using (A1) we have dH 1 Λ 0 ( ) ⊂ dP 1 Λ 0 ( ) ⊂ P 0 Λ 1 ( ) = H 0 Λ 1 ( ),
which proves the first property for the base case. For the second property, by (A3), there is

∈ H 1 Λ 0 ( ) such that d ≠ 0. Moreover d = 1,0 -d . Thus we have (d + d)d = d d = 1,0 d -$ $ $ $ dd d ,
and d is an eigenvector of d + d associated with the eigenvalue 1,0 . We note that d ∈ dH 1 Λ 0 ( ) ⊂ H 0 Λ 1 ( ). Therefore, 0,1 = 1,0 and the case = 0 is proved. Let now ≥ 1 and assume that, for all 0 ≤ < , dH +1 Λ 0 ( ) ⊂ H Λ 1 ( ) and ,1 = +1,0 . We need to prove that ,1 = +1,0 . Let ∈ H +1 Λ 0 ( ). If d = 0 then clearly d ∈ H Λ 1 ( ). Otherwise, using the same arguments as for = 0 we note that (d + d)d = +1,0 d , and

d ∈ P Λ 1 ( ) = ≤ H Λ 1 ( ).
Since d is an eigenvector of d + d (as it is not equal to 0), by (A2) it belongs to an H Λ 1 ( ) for some such that ,1 = +1,0 . By induction hypothesis, if < we have ,1 = +1,0 ≠ +1,0 , see (A2). Hence, = and ,1 = +1,0 . In passing, we have also proved that d ∈ H Λ 1 ( ), so that dH +1 Λ 0 ( ) ⊂ H Λ 1 ( ), and the induction is therefore complete.

Another induction on concludes the proof that , = + ,0 for all , .

The fact that maps eigenspaces into eigenspaces also follows from (A1) and similar arguments. The details are left to the reader.

Lemma 4.

The following mappings are one-to-one:

d : H Λ ( ) → dH +1 Λ -1 ( ) ⊂ H Λ ( ) : dH Λ ( ) → H -1 Λ +1 ⊂ H Λ ( ) .
Proof. We only need to prove that d is injective on H Λ ( ), the other case being similar. The case = 0 is trivial since

H Λ 0 ( ) = P Λ 0 ( ) ⊂ P +1 Λ -1 ( ) ⊂ 1 Λ -1 ( ) = {0}. (7) 
We therefore assume that ≥ 1 and take ∈ H Λ ( ) such that d = 0. We can write = for some ∈ H Λ ( ). By (A1), we have (d + d) = , . As d = d = 0, we infer d = , and , = d = 0. By (A2), , ≠ 0 (since ( , ) ≠ (0, 0)), and thus = = 0.

To conclude the proof, we note that the property d H Λ ( ) ⊂ dH +1 Λ -1 ( ) follows from Lemma 3 if ≥ 1, and from (7) if = 0. Lemma 5. The following direct decompositions hold, for all ≥ 0:

P Λ 0 ( ) := P 0 Λ 0 ( ) ⊕ P -1 Λ +1 ( ) P Λ ( ) := dP +1 Λ -1 ( ) ⊕ P -1 Λ +1 ( ) if ≥ 1
Proof. We first prove that

H Λ ( ) = dH +1 Λ -1 ( ) ⊕ H -1 Λ +1 ( ) if ( , ) ≠ (0, 0). ( 8 
)
For ∈ H Λ ( ), the assumption (A1) yields

(d + d) = , with , ≠ 0 since ( , ) ≠ (0, 0). Hence, = d( -1 , ) + ( -1 , d ). Noticing that ∈ H +1 Λ -1 ( ), d ∈ H -1 Λ +1 ( ), dH +1 Λ -1 ( ) ⊂ H Λ ( ) and H -1 Λ +1 ( ) ⊂ H Λ ( ) by Lemma 3, this proves that H Λ ( ) = dH +1 Λ -1 ( ) + H -1 Λ +1 ( ). It remains to prove that this sum is direct. If ∈ dH -1 Λ +1 ( ) ∩ H +1 Λ -1 ( ) then there exists ∈ H -1 Λ +1 ( ) and ∈ H +1 Λ -1 ( ) such that = = d , then d = dd = 0.
Lemma 4 then implies = = 0 which concludes the proof of [START_REF] Beirão Da Veiga | Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes[END_REF].

We now turn to the result in the lemma. If ≠ 0, we can take the direct sums of (8) to get

P Λ ( ) = ≤ H Λ ( ) = ≤ dH +1 Λ -1 ( ) ⊕ H -1 Λ +1 ( ) = d ≤ H +1 Λ -1 ( ) ⊕ ≤ H -1 Λ +1 ( ) = dP +1 Λ -1 ( ) ⊕ P -1 Λ +1 ( ).
If = 0, we simply write

P Λ 0 ( ) = H 0 Λ 0 ( ) ⊕ 1≤ ≤ H Λ 0 ( ) = P 0 Λ 0 ( ) ⊕ 1≤ ≤ H Λ 0 ( )
and apply [START_REF] Beirão Da Veiga | Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes[END_REF] with ∈ [1, ] and = 0, noting that dH +1 Λ -1 ( ) = {0}. Definition 6. The trimmed polynomial spaces are defined as: for all ≥ 0, P -Λ 0 ( ) := P Λ 0 ( )

P -Λ ( ) := dP Λ -1 ( ) ⊕ P -1 Λ +1 ( ) if ≥ 1.
Remark 7. It follows directly from the direct decomposition of Lemma 5 that, for all , , ∈ Z, ∈ Δ (M ℎ ), P Λ ( ) ⊂ P - +1 Λ ( ) ⊂ P +1 Λ ( ).

Assumption 8. We assume that traces of trimmed polynomials are trimmed polynomials, that is: for all ∈ Δ (M ℎ ) and ∈ [0, ],

tr P -Λ ( ) ⊂ P -Λ ( ) ∀ ∈ Δ ( ).
We show in Appendix A that local polynomial spaces satisfying Assumptions 2 and 8 can be designed and explicitly constructed if we suppose that Assumption 9 below holds. This assumption relates local charts of submanifolds and their boundaries.

For ∈ Δ (M ℎ ) and ∈ Δ -1 ( ), we denote the inclusion of into by ℑ , : → .

Assumption 9. For every 0 ≤ ≤ and ∈ Δ (M ℎ ), there is a 2 -diffeomorphism from a subset of R into . Let := ( ) -1 . We assume that, for all ∈ Δ -1 (M ℎ ), the transformation

T , := • ℑ , • from (a subset of) R -1 to R is affine.
3 Discrete de Rham complex

Construction

Given a polynomial degree ≥ 0, the discrete counterpart ,ℎ of the space Λ (Ω), 0 ≤ ≤ , is defined as

,ℎ := = ∈Δ ( M ℎ ) ★ -1 P -Λ -( ). (9) 
A generic ℎ ∈ ,ℎ is denoted by

ℎ = ( ) ∈Δ ( M ℎ ), ∈ [ , ] with ∈ ★ -1 P -Λ -( ) for all ∈ M ℎ . As commonly done in DDR constructions, we denote by = ( ) ∈Δ ( ), ∈ [ , ] the restriction of ℎ to ∈ Δ (M ℎ ).
The same convention (replacing an index ℎ with ) will also be used to denote restrictions of operators.

The interpolator ,ℎ : 0 Λ (Ω) → ,ℎ is defined by projecting the traces on the polynomial spaces: for all ∈ 0 Λ (Ω),

,ℎ := (★ -1 -, - , ★ tr ) ∈Δ ( M ℎ ), ∈ [ , ] (10) 
where -, - , : 2 Λ -( ) → P -Λ -( ) is the 2 -orthogonal projector on the trimmed space. The main difference with the flat case developed in [START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF] is that the Hodge star operator ★ is a general function, and does not preserve polynomials spaces. This leads us to consider a slightly different formulation, including ★ -1 in the definition (9) of the discrete space and adjusting accordingly the definitions of the interpolator above, and of the local discrete exterior derivative and discrete potential below.

Definition 10 (Local discrete exterior derivative and discrete potential). Let ∈ Δ (M ℎ ). The discrete exterior derivative d , :

, → ★ -1 P Λ --1 ( ) and discrete potential , :

, → ★ -1 P Λ -( ) are defined inductively on the dimension of as follows.

• If = :

, := ∈ ★ -1 P Λ 0 ( ). (11) 
• If ≥ + 1:

♦ ∀ ∈ P Λ --1 ( ), ∫ d , ∧ := (-1) +1 ∫ ∧ d + ∫ , ∧ tr , ( 12 
)
where we have denoted by , the piecewise function on obtained patching the functions

, for ∈ Δ -1 ( ). ♦ ∀ ∈ P Λ -( ), ∈ P -1 Λ -+1 ( ), (-1) +1 ∫ , ∧ (d + ) := ∫ d , ∧ - ∫ , ∧ tr 
+ (-1) +1 ∫ ∧ . (13) 
The global discrete differential is then obtained projecting the local discrete differential on the spaces forming the component of the global discrete space (9): d ,ℎ :

,ℎ → +1 ,ℎ is given by

d ,ℎ ℎ := (★ -1 -, --1 , ★ d , ) ∈Δ ( M ℎ ), ∈ [ +1, ] .
The discrete DDR sequence on M ℎ is then

• • • ,ℎ +1 ,ℎ • • • . d -1 ,ℎ d ,ℎ d +1 ,ℎ (14) 
To design numerical schemes based on this discrete complex, we need to define discrete 2 -like inner products.

Definition 11 (Discrete 2 -like inner product). For ℎ , ℎ ∈ ,ℎ , we define the discrete 2 -like inner product as

ℎ , ℎ := ∈Δ ( M ℎ ) ∫ ∧ ★ + -1 = ℎ - ∈Δ ( ) ∫ ( -tr , ) ∧ ★( -tr , ) . 

Algebraic properties

The following results can be proved mimicking the proofs in [START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF].

Lemma 12 (Link between discrete exterior derivatives on submanifolds). For all ≥ 2, ∈ Δ (M ℎ ), and

∈ , , it holds ∫ d , ∧ d = (-1) +1 ∫ d , ∧ tr , ∀ ∈ P - +1 Λ --2 ( ). Lemma 13 (Complex property). For all ≥ 1, ≥ , ∈ Δ (M ℎ ), ∈ , , it holds , d -1 , = d -1 , , (15) 
d , d -1 , = 0.
Lemma 14. For all ≥ 0, ∈ Δ (M ℎ ), and ∈ , , it holds

★ -1 -, - , ★ , =
Theorem 15 (Commutation property). For all ≥ 0, > , and ∈ Δ (M ℎ ), it holds

d , ( , ) = +1 , (d ) ∀ ∈ 1 Λ ( ). (16) 
Theorem 16 (Isomorphism of cohomologies). The DDR sequence ( 14) is a complex that has the same cohomology as the continuous de Rham complex (1).

Consistency

In the usual construction of DDR, the initial consistency result for potentials and discrete differential are written as exact polynomial consistency. However, on manifolds, the Hodge-star of polynomials are not necessarily polynomials; for this reason it does not seem possible to obtain an exact polynomial consistency of the reconstructed polynomial and exterior derivatives (see Remark 20 for more details). Instead, we directly establish here the consistency in terms of approximation properties on smooth differential forms (this is, in the usual construction, seen as a consequence of polynomial consistency, but we establish it here independently). We also use the shorthand to denote the 2 -norm of ∈ 2 Λ ( ). As the DDR construction relies on the decompositions in Definition 6, we must ensure that the direct sum does not degenerate as ℎ goes to zero. We present in Section A a construction of local polynomial spaces that satisfy the following assumption.

Assumption 17 (Local Poincaré inequality on Koszul complement, topological decomposition and discrete trace). We assume the following bounds on the discrete spaces: For all ≥ 0, ≥ and ∈ Δ (M ℎ ), we have

ℎ d , ∀ ∈ P -1 Λ ( ), (17) 
+ + , ∀ ∈ P -1 Λ +1 ( ), ∀ ∈ dP +1 Λ -1 ( ), (18) 
tr ℎ

-1 2 , ∀ ∈ P Λ ( ). (19) 
We assume that the discrete spaces have similar approximation properties as those of polynomials in Euclidean space (see [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Theorem 1.45]).

Assumption 18 (Approximation properties). For all for all 0 ≤ ≤ , ∈ Δ (M ℎ ) and ∈ [0, ]

★ -1 - , ★ - ℎ +1 | | +1 Λ ( ) ∀ ∈ +1 Λ ( ), (20) 
where - , is the 2 Λ -( )-projection on P Λ -( ).

To state the consistency result, we need a scaled norm that takes into account the regularity of differential forms and their traces on sub-dimensional cells. For ∈ N, we define the space

+1 Λ ( ; Δ) ≔ ∈ +1 Λ ( ) : tr ∈ +1 Λ ( ) ∀ ∈ Δ ( ) , ∀ ∈ [ , - 1] 
(note that the assumed regularity on ensures the existence of traces on ∈ Δ -1 ( ), and the assumed regularity of these traces in turn ensure the existence of traces on ∈ Δ -2 ( ), etc.), and endow it with the semi-norm

| | , ,Δ := = ℎ - 2 | tr | +1 Λ ( ) ∀ ∈ +1 Λ ( ; Δ). (21) 
Theorem 19 (Primal consistency). For all ≥ 0, ≥ , ∈ Δ (M ℎ ), it holds

, , - ℎ +1 | | , ,Δ ∀ ∈ +1 Λ ( ; Δ), (22) 
d , , -d ℎ +1 |d | , ,Δ ∀ ∈ 1 Λ ( ) s.t. d ∈ +1 Λ +1 ( ; Δ). ( 23 
)
Remark 20 (Polynomial consistency). Polynomial consistency is the property:

, ,

= for all ∈ P Λ ( ). As shown in [10, Section 3.5], the initial step for proving this property for the DDR complex on the Euclidean space consists in considering = and in writing ★ -1 - , ★ = ★ -1 ★ = ; the removal of the 2 -projector - , is justified since, when the metric is constant, ★ is a polynomial form of the same degree as . However, in the context of DDR on a manifold, ★ may no longer be polynomial of the same degree as since the ★ operator involves the coefficients of the (non-constant) metric. Hence, polynomial consistency for the DDR on a manifold does not seem readily accessible. This does not prevent the method, however, from having optimal consistency estimates on smooth forms, as demonstrated by Theorem 19.

Remark 21 (About the regularity requirement on ). The space +1 Λ ( ; Δ), with its assumed regularity of traces of functions on lower-dimensional cells, is the natural one to state the consistency estimates in Theorem 19. Classical spaces of differential forms can easily be embedded into +1 Λ ( ; Δ).

For example, letting +1 Λ ( ) be the space of -forms that are continuous over along with all their derivatives up to order + 1, and considering the semi-norm

| | +1 Λ ( ) = max ∈N , | |= +1 ∞ Λ ( ) ,
we have +1 Λ ( ) ⊂ +1 Λ ( ; Δ) and

| | , ,Δ | | 1/2 | | +1 Λ ( ) ∀ ∈ +1 Λ ( ).
Likewise, repeated uses of the continuous trace inequality tr ℎ

-1 2 + ℎ 1 2 | | 1 Λ ( ) , ∀ ∈ 1 Λ ( ) , ∀ ∈ Δ (M ℎ ) , ∀ ∈ [ , ] show that +1+ -Λ ( ) ⊂ +1 Λ ( ; Δ) with | | , ,Δ - =0 ℎ | | +1+ Λ ( ) ∀ ∈ +1+ -Λ ( ).
Proof of Theorem 19. The proof if done by induction on . If = , then both discrete and continuous differential vanish, so ( 23) is trivially satisfied. The definition (11) of , combined with the assumed approximation property (20) of the 2 -projector on polynomial spaces readily gives [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF].

Let us now take ≥ + 1 and assume that the result holds for -1. Let ∈ Δ (M ℎ ). We first prove a weaker (sub-optimal) version of [START_REF] Di Pietro | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra[END_REF], from which we deduce [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF] which, finally, gives the optimal estimate (23) itself.

The definitions [START_REF] Brewin | A numerical study of the Regge calculus and smooth lattice methods on a Kasner cosmology[END_REF] of the discrete exterior derivative and (10) of the interpolator yield, for all ∈ P Λ --1 ( ),

∫ d , , ∧ = (-1) +1 ∫ ★ -1 -, - , ★ ∧ d + ∫ , , ∧ tr = (-1) +1 ∫ ∧ d + ∫ tr ∧ tr + ∫ ( , , -tr ) 
∧ tr = ∫ d ∧ + ∫ ( , ,
tr ) ∧ tr [START_REF] Frauendiener | Discrete differential forms in general relativity[END_REF] where, in the second equality, we have used the fact that d ∈ P -Λ -( ) together with the definition of the orthogonal projector -, - , to remove ★ -1 -, - , ★ (see [10, Lemma 1] for details), and we have used the Stokes formula in the conclusion. Subtracting

∫ d ∧ = ∫ ★ -1 --1 , ★ d ∧
(the equality following from the definition of --1

, and the fact that ∈ P Λ --1 ( )) to both sides of (24) and using a Cauchy-Schwartz inequality then gives

∫ (d , , -★ -1 --1 , ★ d ) ∧ ≤ , ,
tr tr

ℎ +1 | tr | , ,Δ tr ℎ | | , ,Δ , (25) 
where we have used the induction hypothesis ( 22) on all ∈ (the notation |•| , ,Δ stands for

∈Δ -1 ( ) |•| , ,Δ
) and the conclusion follows from the discrete trace inequality [START_REF] Di Pietro | A DDR method for the Reissner-Mindlin plate bending problem on polygonal meshes[END_REF] together with the definition (21) of the scaled norm, which gives

| tr | , ,Δ ℎ -1/2 | | , ,Δ . (26) 
With = d , , ---1
, ★d ∈ P Λ --1 ( ), the left-hand side of ( 25) is equal to d , ,

-

★ -1 --1 , ★ d 2 .
Simplifying, we therefore obtain

d , , -★ -1 --1 , ★ d ℎ | | , ,Δ .
Introducing ±d and using a triangle inequality together with the approximation property (20) (with d instead of and = -1 if ≥ 1; if = 0, we simply use the 2 ( )-boundedness of --1 , ), we infer the following sub-optimal version of ( 23):

d , , -d ℎ | | , ,Δ . (27) 
We can now prove [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]. For all ∈ P Λ -( ) and ∈ P -1 Λ -+1 ( ), we have from the definitions (13) of , and (10) of , ,

(-1) +1 ∫ , , ∧ (d + ) = ∫ d , , ∧ - ∫ , , ∧ tr + (-1) +1 ∫ ★ -1 -, - , ★ ∧ ∈ P -Λ -( ) = ∫ d ∧ - ∫ tr ∧ tr + (-1) +1 ∫ ∧ - ∫ ( , ,
tr

) ∧ tr + ∫ (d , , -d ) ∧ = (-1) +1 ∫ ∧ (d + ) - ∫ ( , ,
tr

) ∧ tr + ∫ (d , , -d ) ∧ ,
the conclusion following from the Stokes formula. A Cauchy-Schwartz inequality then gives

(-1) +1 ∫ ( , , -) ∧ (d + ) ≤ , , -tr tr + d , , -d ℎ +1 | tr | , ,Δ tr + ℎ | | , ,Δ ℎ | | , ,Δ , (28) 
where we have used [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF] for -1 (induction hypothesis) together with [START_REF] Gourgoulhon | 3+1 Formalism in General Relativity[END_REF] in the second inequality, and the discrete trace inequality [START_REF] Di Pietro | A DDR method for the Reissner-Mindlin plate bending problem on polygonal meshes[END_REF] together with [START_REF] Gentle | Regge Calculus: A Unique Tool for Numerical Relativity[END_REF] in the conclusion. By Lemma 5, we can take and such that d + = (-1) +1 (★ , ,

-- , ★ ), and ( 17) and ( 18) ensure that

ℎ d ℎ ★ , , -- , ★ = ℎ , , -★ -1 - , ★ . (29) 
The bound (28) then gives

, , -★ -1 - , ★ 2 = ∫ ( , , -) ∧ (d + ) + ∫ ( -★ -1 - , ★ ) ∧ (d + ) ℎ | | , ,Δ + -★ -1 - , ★ d + (29),( 20 
)
ℎ +1 | | , ,Δ , , -★ -1 - , ★
with the conclusion following from ( 29) and the approximation property (20) of - , with = . The bound [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF] follows then by invoking ( 20) with = and the triangle inequality

, , - ≤ , , -★ -1 - , ★ + ★ -1 - , ★ - .
Finally, [START_REF] Di Pietro | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra[END_REF] follows by applying ( 22) to d and + 1 instead of and , and by using the commutation property ( 16) and the link (15) (also with + 1 instead of ) between potential reconstruction and discrete exterior derivative.

Application

We present here a 2+1 model for Maxwell equations on a manifold written in the language of differential forms, and use the DDR complex to design a scheme for this model. We refer the reader to the notations recalled in Appendix B and used throughout this section.

Electromagnetism in 2 + 1 dimensions

Following [START_REF] Gourgoulhon | 3+1 Formalism in General Relativity[END_REF][START_REF] Gourgoulhon | Relativité restreinte. Des particules à l'astrophysique[END_REF], we foliate a 3-dimensional space-time manifold by level sets of a time function . Letting¹ = ⊗ denote a Lorentzian metric on , we perform a 2 + 1 decomposition on via

( ) := -2 + | | 2 ,
where = ⊗ is the induced metric on the = constant spatial surfaces, is the lapse, = is the shift, and we use ( ) to denote spatial coordinates on the spatial surfaces. We define a future pointing unit normal to the spatial surfaces by

:= (-d ) ♯ , ( 30 
)
and in the following, we distinguish geometric objects associated to the spatial surface with a tilde; for example, vol and ♯ are the volume form and ♯ operator associated with the spatial metric , respectively, on the spatial surfaces. Further, we introduce the vector field via

= + ♯ ,
¹Throughout this section, we use lower case Greek letters, e.g. , , to label space-time coordinate indices that run over 0, 1, 2 while lower case Latin letters, e.g. , , , will label spatial coordinate indices that run over 1, 2.

Proof. To establish the stated formula, we apply the Hodge star operator to each term of (34) individually. For the term involving , we have:

(★( ♭ ∧ )) (60),(62) = -det 2 = -det 2 ( - ) = -det = ♯ vol (65) = ♯ vol ,
while for the term involving , we have:

(★ vol) = -det 2 -det = - det 2 = - 1 2 = - 1 2 2! = - .
Adding the above two expression yields the desired formula.

In order to present Maxwell's equation in their simplest form, we will restrict our attention to foliations for which = 0. In the next lemma, we derive 2 + 1 decompositions for d and d ★ , which will be used below to perform a 2 + 1 decomposition of Maxwell's equations.

Lemma 24. If = 0, then d = d ∧ d( ) + L ( vol) , (39) 
d ★ = d ★ + d ∧ L ( ★ ) -d( ) . ( 40 
)
Proof. We infer from (63) with = 0 that vol = vol. Replacing ♭ by its definition [START_REF] Licht | Smoothed projections over manifolds in finite element exterior calculus[END_REF] in [START_REF] Richter | Discrete Differential Forms for $(1+1)$-Dimensional Cosmological Space-Times[END_REF] gives

= -d ∧ + vol = -d ∧ + vol, (41) 
where in deriving the second equality, we used the fact that = + 0 d . Next, we apply the differential to each term in (41) to obtain:

d(-d ∧ ) = d ∧ d( ) = d ∧ d( ), d( vol) = d ∧ vol + $ $ $ $ $ d ∧ vol + d ∧ vol + $ $ $ $ d vol.
Since ( vol) = L ( vol), (39) follow from adding the above two expressions. Noting that

( ♯ vol) = det = det = ( ★ ) ,
where the indices are raised with the spatial metric , we can express (38) as ★ = ★ + d . Formula (40) is then readily obtained from applying the differential to this expression and employing the identity

d ★ = d ★ + ∧ L ( ★ ).
The last 2 + 1 decomposition that we will need is for the electric 3-current , which we will represent in terms the electric charge density := -( ), and electric current density := ( -♭ ).

Lemma 25. The electric 3-current appearing in (31b) is decomposed as follows

★ = vol -d ∧ ★ . ( 42 
)
Proof. From the formula (60) for the Hodge star operator, we have

(★ ) = -det = -det 0 12 -( 0 12 -0 12
) , while we infer from (64) and the definition of , recalling that we have set = 0 for simplicity, that

-det 0 = -det = det ,
and thusdet 0 12 = ( vol) . Moreover, we have

-det 12 = det = ( ♯ vol) ,
and hence det

( 0 12 -0 12 ) = (d ∧ ♯ vol) .
We also have

d ∧ ♯ vol = d ∧ ♯ vol + d ∧ vol = d ∧ ♯ vol,
where the last equality holds by (63) and the assumption = 0, which show that ♭ vol = vol = 0. We also observe from (64) with = , noticing that ( ) = ( ( ) -2 ) = ( ( ) -( )) = 0, that ♯ = ♯ , and consequently, that ♯ vol = ★ . Putting everything together, we deduce that ★ = vold ∧ ★ .

We denote the spatial codifferential on -forms by := (-1) ★ -1 d ★. We now use the 2 + 1 decompositions established above to derive a 2 + 1 formulation of Maxwell's equations.

Theorem 26. If = 0 then the Maxwell equations [START_REF] Lindblom | Building three-dimensional differentiable manifolds numerically[END_REF] are equivalent to the system

d( ) = -( vol), - = 0 , ( vol) = -1 0 + ★ -1 ( ★ ). (43) 
Proof. The result follows directly from (39), ( 40) and (42) by noticing that ★

-1 d ★ = -, since is a 1-form, and that ★ -1 d( ) = ★ -1 d( ★ vol ) = ( vol).
For the numerical tests, we will consider the case where the metric does not depend on the time coordinate, and where ≡ is constant. The system (43) then reduces to the more familiar form

d = - , (44a) 
- = 0 , (44b) 
= 0 + 1 2 , (44c) 
where := 1 vol and 0 :=

1 2 0
is the vacuum permeability. To simplify, we will also work in geometric units and take thus = 0 = 1.

We note that the following compatibility condition (from hereon assumed) on the source terms, following from the property 2 = 0:

= - = . (45) 
We assume that the manifold Ω has no boundary. Denoting by •, • the 2 -inner product on spatial -forms (for any ), recalling that is the adjoint of d for this inner product, and assuming that the constraint (44b) holds at time = 0, a weak formulation of (44) is: find

( , ) ∈ 1 ( [0, ]; Λ 1 (Ω)) × 1 ([0, ]; Λ 2 (Ω)) such that, for all ( 1 , 2 ) ∈ Λ 1 (Ω) × Λ 2 (Ω), d , 2 = - , 2 , (46a) 
,

d 1 = , 1 + , 1 . (46b) 
We note that the constraint (44b) has been dropped from this formulation as it can be recovered by selecting a generic (time-independent) 0 ∈ Λ 0 (Ω) and setting 1 = d 0 in (46b), to see that

, 0 = , d 0 = ,¨¨ d 2 0 -, d 0 = -, 0 = - , 0 ,
showing that + , 0 = 0 and thus, since we assumed that + = 0 at = 0, that + , 0 = 0 at all time.

Discrete scheme

We describe here a numerical scheme based on the discrete de Rham complex for the system (44). This scheme is of arbitrary order of accuracy, applicable to polygonal meshes on the chosen 2D manifold, and naturally preserves the constraint (44b) at the discrete level.

Recalling the definition of the discrete 2 -like inner product (Definition 11), the (semi-discrete) scheme is then built on the product space ℎ := 1 ,ℎ × 2 ,ℎ and reads: find ( ℎ , ℎ ) ∈ 1 ( [0, ]; ℎ ) such that for all ( 1 ℎ , 2 ℎ ) ∈ ℎ and all ∈ (0, ),

d 1 ,ℎ ℎ ( ), 2 ℎ = - ℎ ( ), 2 ℎ , (47a) ℎ ( ), d 1 ,ℎ 1 
ℎ = 1 ,ℎ ( ), 1 ℎ + ℎ ( ), 1 ℎ . (47b) 
We note that, in the context of the DDR complex, the discrete spatial exterior derivatives d ,ℎ are denoted without a tilde.

Owing to the properties of the DDR complex, this scheme preserves a discrete version of the constraint.

Proposition 27 (Discrete constraint preservation). Let ℎ ∈ 1 ( [0, ]; 0 ,ℎ ) be the discrete electric charge density defined by

ℎ ( ), 0 ℎ = -ℎ (0), d 0 ,ℎ 0 ℎ + ∫ 0 1 ,ℎ ( ), d 0 ,ℎ 0 ℎ ∀ ∈ [0, ] , ∀ 0 ℎ ∈ 0 ,ℎ . (48) 
If ( ℎ , ℎ ) is a solution to (47), then ℎ ( ), d 0 ,ℎ 0 ℎ = -ℎ ( ), 0 ℎ ∀ ∈ [0, ] , ∀ 0 ℎ ∈ 0 ,ℎ . (49) 
Remark 28 (On the discrete constraint preservation). By the Riesz representation theorem, (48) uniquely defines the discrete electric charge density ℎ ( ) ∈ 0 ,ℎ . This definition only depends on the data of the model: initial value of the electric field, and electric current density and, given the relation (45), provides a consistent discrete version of the continuous electric charge density.

Letting 1 ,ℎ be the adjoint of d 1 ,ℎ , the relation (49) can be recast as 1 ,ℎ ℎ ( ) =ℎ ( ), which is a coherent discrete version of the continuous constraint (44b) (recall that 0 = 1 here). Lemma 29 (Energy preservation). In the absence of a current density, the solution ( ℎ , ℎ ) of (47) satisfies

ℎ , ℎ + ℎ , ℎ = 0. ( 50 
)
Proof. The result readily follows evaluating (47a) and (47b) with 1 ℎ = ℎ and 2 ℎ = ℎ . Remark 30 (Discrete energy preservation). When using a time discretisation scheme preserving quadratic invariants, such as the Crank-Nicolson time stepping, a discrete version of (50) can be established and shows that the total energy of the system ℎ , ℎ + ℎ , ℎ remains constant in time. Dissipative time-stepping, such as the implicit Euler method, lead to a decrease of the total energy. In both cases, the preservation or decrease of energy establishes the stability and well-posedness of the scheme for this linear model.

Test case

We verify the scheme on a manufactured solution, using a Crank-Nicolson time-stepping for the time discretisation. We consider an unit sphere with an atlas consisting of the north and south stereographic projections, and endowed with the induced metric from R 3 . In each map, this induced metric is given by

= 1 0 0 1 , := 4 (1 + 2 + 2 ) 2 ,
where , are the coordinates in the map. Writing = d + d , we have

d = 1 ( - ) vol, - = 1 ( + ), ( vol) = d - d .
The solution in the north map is given by We have also verified the scheme on a flat torus, in order to compare our results with a case featuring a trivial metric. The reference solution is given in coordinates ( , ) ∈ [0, 1] 2 by

= ( 2 + 2 -1) cos( ) + 2 + 2 + 1 -2 sin( ) d ∧ d , = (2 -2 -2 ) sin( ) -2 cos( ) /4d + ( 2 + 2 -2) sin( ) + (3 2 + 2 -3) cos( ) /4d , = 0, = 3( 2 + 2 ) 2 /
= ( 2 + 2 -1) cos( ) -2 -2 -1 + 2 sin( ) d ∧ d , = (2 -2 -2 ) sin( ) + 2 cos( ) /4d + ( 2 + 2 -2) sin( ) -(3 2 + 2 -3) cos( ) /4d , = 0, = -3( 2 + 2 ) 2 /
= (2 + 2 ( , , ))d ∧ d , = 2 ( , 0.5, )d , = 0, = (2 -1)d ,
where 2 ( , , ) = ( , ) -( , 0.5) 2 is the euclidean distance on the torus.

Building the mesh

Meshing manifolds while preserving the requirements of A is not trivial, and to our knowledge, there is no available software producing the required data. Therefore, we had to build the meshes for the test cases manually. The meshing of the flat torus is a Cartesian grid on [0, 1) 2 using four charts to correctly match the boundary. The meshing of the sphere is more interesting, and is described in this section. We restrict the two charts of the atlas to the north and south hemispheres; these charts do not overlap on an open set, as their transition occurs on a closed 1-dimensional interface (the equator), but that is sufficient to build a mesh and the associated polynomial spaces for the entire sphere. Each chart maps an hemisphere into the unit disk of R 2 , and coincide on the equator (that they map onto the unit circle). We therefore only have to discretise this unit disk to get the mesh on the whole sphere. In order to correctly discretise to boundary circle, we chose to use one layer of curved cell, and then to map the inside of the disk using arbitrary flat cells.

We devised an automated mesh generation algorithm. Starting from a chosen radius , we cut the outer circle into 2 (1 -)/ segment, each of the same length Δ . Then, we used the construction A.2.2 with

1 ( ) = --Δ 2 2 1+(2 ) 2 1 1+(2 ) 2 , ∈ - 1 2 , 1 2 , where = cos( -ăΔ 2 ) sin( -ăΔ 2 
) , is the angle between 4 and the line = 0 in the plane, and

--Δ 2 the rotation of angle --Δ 2 .
The connected cell ensuring the transition between the curved boundary and flat interior is the cone given by the mapping 

( , ) = --Δ 2 2 +(1-) 1+(2 ) 2 +(1-) 1+(2 ) 2 , ∈ - 1 2 , 1 2 , ∈ [0, 1],
= cos( -Δ 2 ) , = 0.8 cos( -Δ 2 ) , = sin( -Δ 2 ) , = sin( -Δ 2 ) and = 2 + (2 ) 2 .
Then, we divide the interior with concentric circles of radius 1 -, for 1 ≤ ≤ 1/ , and connect the vertices of these circle to their nearest neighbor. The resulting mapping is given in Figure 1.

Results

We present here the results of the numerical tests. The scheme has been implemented in the Manicore C++ framework (see https://mlhanot.github.io/Manicore/), using linear algebra facilities from the Eigen3 library (see https://eigen.tuxfamily.org). Although the framework has been reimplemented from scratch, its design borrows from the HArDCore C++ framework implementing the DDR complexes on flat spaces (see https://github.com/jdroniou/HArDCore). From classical results on flat spaces, we expect to see a convergence in space of order + 1 for the 2 norm of and . In order to neglect the error originated from the time discretisation, we first used a time step of Δ = 10 -5 . Then we compared the results with ones obtained using a larger time step of Δ = 10 -3 and saw only a negligible difference (a relative difference of order 10 -6 ), showing that the error from the space discretisation fully dominate. Therefore, we conducted all the tests using this larger time step. The simulation are computed for 0 ≤ ≤ 2 , and the error is the 2 error over time and space

∫ 2 =0 ,ℎ -ℎ , ,ℎ -ℎ .
The error on and is given in Figure 2. We do not expect and have not noticed a convergence of the error on d , since the model (and thus the scheme) does not have any natural stability with respect to this quantity (the energy estimate is only on the 2 -norms of and ). Because the proposed exact solution is not smooth, we do no necessarily expect an optimal convergence rate of order + 1. On the sphere, we however note a rate of convergence of order 1 when = 0 and order 2 when ≥ 1. For the torus, the rates seem to stagnate at 1. However, in both cases, the error is reduced by almost an order of convergence when going from the lowest-order case to the case ≥ 1; such a phenomenon (improvement of the ratio cost/accuracy when using a slightly higher-order method, even when the solution is not smooth) has already been qualitatively observed in several other numerical schemes for different models [START_REF] Anderson | An arbitrary order scheme on generic meshes for miscible displacements in porous media[END_REF][START_REF] Lemaire | Structure preservation in high-order hybrid discretisations of advectiondiffusion equations: linear and nonlinear approaches[END_REF].

A Construction of local polynomial spaces on manifolds A.1 Generic procedure

The notion of polynomial depends on the choice of coordinates. In general, we cannot cover a manifold with a single chart. Therefore, if we wish to define polynomial spaces on a manifold, the definition need to be coherent with (some) change of coordinates. We only need our polynomial spaces to be locally defined on -cells, but we also need to ensure that restrictions of polynomials to the boundary of -cells are polynomials on ( -1)-cells (of the same or lower degree), for all = 1, . . . , .

In this appendix, we show that Assumption 9 is sufficient in principle to construct suitable local polynomial spaces, and we detail in Section A.2 how to practically construct such spaces in dimension = 2 and for various cell shapes.

In the following, we denote by P Λ (R ), the set of -forms with coefficients that are polynomial on R of degree at most , and H Λ (R ) the corresponding space of homogeneous polynomial forms of degree . We also define the identity vector field on R , that is, ( ) = , for all ∈ R . We will often take the pullback of these object with functions that are not surjective on R (which is not an issue). Definition 31. Under Assumption 9, we define the polynomial space on by:

H Λ ( ) := * H Λ (R ), (51) 
P Λ ( ) := ≤ H Λ ( ), (52) 
:= , with := ( ) * . (53) 
In particular, we also have P Λ ( ) = * P Λ (R ).

Let us check that this construction satisfies Assumption 2 and 8. Moreover, if we assume that the diffeomorphisms are regular, then this construction also satisfies Assumption 17.

Lemma 32. Assumption 2 holds.

= 0 = 1 = 2 = 3 = 4 
10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -0. where the second equality follows from the fact that ( 18) is valid on = R , see [START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF]Lemma 2]. Finally, we have to prove [START_REF] Di Pietro | A DDR method for the Reissner-Mindlin plate bending problem on polygonal meshes[END_REF], which is done in a similar way. For all = * ∈ P Λ ( ) and all ∈ , we have, using the discrete trace inequality in R , tr

≈ ∇ --1 2 ∞ tr ( ) ∇ --1 2 ∞ ℎ -1 2 ( ) ( ) (57) 
∇ --1 2 -1 2 ∞ ℎ -1 2 ( ) (4) 
.

A.2 Constructions in dimension = 2

In this section, we provide a few examples of construction that satisfy Assumption 9 for various topologies. They can be used where a curved boundary is required and combined with flat cells elsewhere. The idea is to apply a hierarchical construction of the spaces, starting from 1-cells (the edges) and defining the space on a face ∈ Δ 2 (M ℎ ) from those of Δ 1 ( ).

When a cell is flat in a chart, we can simply restrict this chart to get a suitable verifying Assumption 9. Therefore, our method is really a generalization of the polynomials on R , and we only need to create more exotic spaces on curved cells. While there is no fully generic way to construct , we give below some possible constructions in several cases.

In practice, we work in coordinates, and therefore start from a given chart 0 : → R 2 . When we mention the injection of an edge ∈ Δ 1 ( ), we are actually speaking about the composition 0 • ℑ , • . Likewise, we will not directly build maps from to R 2 , but rather some diffeomorphism between two subsets of R 2 . The actual map that verifies Assumption 9 is ( • 0 ) -1 .

A.2.1 Triangle with two curved edges

Let ∈ Δ 2 (M ℎ ) be a face with 3 edges. Assume that, in a given chart on , the injection of the edges are given by 1 ( ) = (ℎ 1 ( ), 1 ( ))

2 ( ) = (ℎ 2 ( ), 2 ( ))

3 ( ) = (0, ), where ∈ [0, 1] and ℎ , are 2 . See Figure 3 for an illustration (in which each corresponds to ).

Moreover assume that, for ∈ {1, 2}, ℎ (0) = 0, ℎ (1) = 1, and ℎ is strictly increasing, and that 

1 (0) = 0, 1 ( 
( -1 ( ))ℎ -1 2 ( ) + ( 2 ( ) -)ℎ -1 1 ( ) ( -1 ( )) (1 -ℎ -1 2 ( ))
is a 2 diffeomorphism, then it verifies Assumption 9.

Proof. We need to check the compatibility with the injections. Notice that, by definition, (ℎ ( )) = ( ). For 1 , we have 

( 1 ( )) = (ℎ 1 ( ), 1 ( ))
( 1 ( ) -1 ( ))ℎ -1 2 (ℎ 1 ( )) + ( 2 (ℎ 1 ( )) -1 ( )) ( 1 ( ) -1 ( )) (1 -ℎ -1 2 (ℎ 1 ( )) = 1 2 (ℎ 1 ( )) -1 ( ) ( 2 (ℎ 1 ( )) -1 ( )) 0 = 0 .
For 2 , we have Finally, for 3 , noticing that ℎ -1 (0) = 0, we have 1 (0) = 0 and 2 (0) = 1 and thus

( 3 ( )) = (0, ) = 1 2 (0) -1 (0) ( -1 (0))ℎ -1 2 (0) + ( 2 (0) -)ℎ -1 1 (0) ( -1 (0)) (1 -ℎ -1 2 (0)) = 0 .

A.2.2 Cone section with a curved edge

Let ∈ Δ 2 (M ℎ ) be a face with 4 edges. Assume that, when expressed in polar coordinates ( , ) on the chart of , the injections of the edges are given by 1 ( ) = ( 1 ( ), ℎ( )), This situation is illustrated in Figure 5. Let Proof. Since is defined as the inverse of , we will exhibit some explicit affine functions R → R 2

Proof. Let 0 ℎ ∈ 0 ,ℎ and set 1 ℎ = d 0 ,ℎ 0 ℎ

 00 in (47b). Since d 1 ,ℎ d 0 ,ℎ = 0 by complex property of the DDR sequence, we obtain ℎ ( ), d 0 equality follows differentiating the definition (48) of ℎ with respect to . Since 0 ℎ does not depend on , this shows that the derivative of C( ) := ℎ ( ), d 0 ,ℎ 0 ℎ + ℎ ( ), 0 ℎ vanishes. Since C(0) = 0 by (48), we infer that C = 0 on [0, ], which proves (49).

( a )

 a Mesh used to discretise one chart with its orientation. (b) Embedding of the 1-skeleton of the mesh into R 3 . (c) Finer meshing of the disk. (d) Embedding of the finer mesh into R 3 .

Figure 1 :

 1 Figure 1: Visualization of the mesh

2

 2 

  Error on on the sphere. 10 -1.2 10 -1 10 -0.8 10 -0.6 10 -0.4 10 -Error on on the torus.

Figure 2 :

 2 Figure 2: Absolute error 2 integrated over time and space vs. mesh size.

1 )Lemma 36 . 1 2

 1361 = 0, 2 (0) = 1, and 2 (1) = 0. Let ( ) := (ℎ -1 ( )), ∈ {1, 2}. If the function ( , ) := ( ) -1 ( )

Figure 3 : 1 2

 31 Figure 3: with three edges, one of which being straight in a chosen chart.

( 2 ( 1 2

 21 )) = (ℎ 2 ( ), 2 ( )) = ( ) -1 (ℎ 2 ( )) ( 2 ( ) -1 (ℎ 2 ( ))) + ( 2 ( ) -2 ( ))ℎ -1 1 (ℎ 2 ( )) ( 2 ( ) -1 (ℎ 2 ( ))) (1 -) = 1 -.

2( , 1 ) = 1 2 = 4 A. 2 . 3

 112423 ( ) = ( + 1, 1 ), 3 ( ) = ( 3 ( ), ℎ( )), ( ). so that 1 ( , ) = ( , 0), 2 ( , ) = ( , 1), 3 ( , ) = (0, ) and 4 ( , ) = (1, ). Quadrilateral with four curved edges Let ∈ Δ 2 (M ℎ ) be a face with 4 edges. Assume that, in a given chart on , the injections of the edges are given by( ) = (ℎ ( ), ( )), ∈ {1, 2, 3, 4},where ∈ [0, 1]. Moreover assume that the functions ℎ , are 2 and that(ℎ 1 (0), 1 (0)) = (0, 0), (ℎ 1 (1), 1 (1)) = (1, 0), (ℎ 2 (0), 2 (0)) = (1, 0), (ℎ 2 (1), 2 (1)) = ( , ), (ℎ 3 (0), 3 (0)) = (0, 1), (ℎ 3 (1), 3(1)) = ( , ), (ℎ 4 (0), 4 (0)) = (0, 0), (ℎ 4 (1), 4 (1)) = (0, 1).

Figure 5 :

 5 Figure 5: with four curved edges.

  2(1 + cos( )) + ( 2 + 2 ) (3 + 5/4 cos( )) + 1/2cos( ) -(2 2 + 2 2 + 5/2) sin( ) d + -3( 2 + 2 ) 2 /2(1 + cos( )) + ( 2 + 2 ) (3 + 5/4 cos( )) + 1/2cos( ) + (10 4 + 12 2 2 + 15 2 + 2 4 + 5 2 -1)/4 sin( ) d and in the south map by

  + 12 2 2 + 15 2 + 2 4 + 5 2 -1)/4 sin( ) d .

		2(1 -cos( )) + ( 2 + 2 ) (3 -5/4 cos( )) + 1/2 + cos( )
	+	(2 2 + 2 2 + 5/2) sin( ) d
	+	3( 2 + 2 ) 2 /2(1 -cos( )) + ( 2 + 2 ) (3 -5/4 cos( )) + 1/2 + cos( )
	-(10 4
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and note that for any adapted coordinate system ( , ), i.e. which satisfies L = 0, the vector field will coincide with the coordinate vector field associated to the coordinate system ( , ).

Letting = 1 2 ∧ denote the electromagnetic field tensor, Maxwell's equations can be expressed in terms of as [START_REF] Gourgoulhon | Relativité restreinte. Des particules à l'astrophysique[END_REF]Section 18.2] 

where is the electric 3-current and 0 is the permittivity of the medium, supposed constant here. Following the usual convention in 3 + 1 dimension, we define the electric field and the magnetic field by

:= (★ ). [START_REF] Regge | General relativity without coordinates[END_REF] Notice that, in 2 + 1 dimensions, the magnetic field is a scalar field. Below, we will use to denote the restriction of to the spatial surfaces, that is, ( ) = * where is the inclusion map of the spatial surface = . If is expressed in terms of the adapted coordinate ( , ) as = 0 + , then = and = 0 + . In the following lemmas, we show how the electromagnetic field tensor and its Hodge dual can be recovered from the electric and magnetic fields.

Lemma 22. We can recover from and by the relation

Proof. Noting from (33) that =

det 2

, we can, with the help of (59), express vol as

(

Next, from the definition (32) of , we observe that = -= . This allows us to express the following terms which appear in the last line of [START_REF] Schnetter | A multi-block infrastructure for threedimensional time-dependent numerical relativity[END_REF] in terms of ∧ ♭ via the calculations:

where we have used (62) in the second equality in each line. Moreover, since 2 = -1 and antisymmetric, we have

Plugging [START_REF] Williams | Regge calculus: a brief review and bibliography[END_REF] and (37) into [START_REF] Schnetter | A multi-block infrastructure for threedimensional time-dependent numerical relativity[END_REF] gives vol = ∧ ♭ + .

Lemma 23. The Hodge star of is given by

Proof. We first prove that, for these polynomial spaces, ( 5) and ( 6) are well-defined complexes. Since the exterior derivative d commutes with pullbacks, (51) and Lemma 3 give, for any ( , ),

By taking the sum over ≤ on both sides and recalling (52), we infer that the spaces (P Λ ( )) ∈Z, ∈Z form a complex for d.

If is a diffeomorphism and a vector field, then it holds that

Applying this result to a generic * ∈ P Λ ( ), with ∈ P Λ (R ), and recalling the definition (53

This shows that the spaces (P Λ ( )) ∈Z, ∈Z form a complex for . Let us show that the graded decomposition P Λ ( ) = ≤ H Λ ( ) satisfies Assumption (A1). For any ∈ H Λ ( ), there is ∈ H Λ (R ) such that * = , and we have

where we have used (55) (with and d ) together with the commutation of pull-back and exterior derivative to write the second equality, and the fact that H Λ (R ) is the eigenspace associated with the eigenvalue , := + for d + d for the second equality. Hence, H Λ ( ) is an eigenspace of d + d for this eigenvalue , .

As we just saw, the eigenvalues ( , ) , are the same as the eigenvalues on the flat space R , for which we know that Assumption (A2) holds.

Finally, let ( , ) with > 0 and < . There is ∈ H Λ (R ) such that d ≠ 0. Moreover, it holds that d * = * d , and because is an isomorphism, * d ≠ 0. Thus, Assumption (A3) holds.

Lemma 33. For all ∈ Δ -1 ( ), it holds tr P Λ ( ) ⊂ P Λ ( ).

Proof. A polynomial form ∈ P Λ ( ) is written as = * for some ∈ P Λ (R ). Then, noting that

By assumption T , is affine, so D T , is constant. Therefore T * , is polynomial of degree at most , and belongs in P Λ (R -1 ). Hence, ℑ * , * ∈ * P Λ (R -1 ).

Lemma 34. Assumption 8 holds.

Proof. Let ∈ Δ -1 ( ). We need to prove that tr P -Λ ( ) ⊂ P -Λ ( ). Since P -Λ ( ) = P -1 Λ ( ) + P -1 Λ +1 ( ) by Lemma 5 and Definition 6, and tr P -1 Λ ( ) ⊂ P -1 Λ ( ) by Lemma 33, we only need to show that tr P -1 Λ +1 ( ) ⊂ P -1 Λ ( ) + P -1 Λ +1 ( ). By assumption T , is affine, so there is a constant ∈ R , such that for all ∈ ( ) ⊂ R -1 , Hence, tr * = tr * + tr * .

Since is a constant, we have ∈ P -1 Λ (R ), and Lemma 33 yields tr * ∈ P -1 Λ ( ) and tr * ∈ P -1 Λ +1 ( ). Proof. The main idea is to use the general bound * ≤ ∇ ∞ det(∇ -1 )

∞ for ∈ 2 Λ ( ). We infer from the regularity assumption (2) that, for all 1 ≤ ≤ , all ∈ Δ (M ℎ ), and all ∈ P Λ (R ), we have

Moreover, (55) and the fact that the pullback commutes with the differential give, for all , ℓ ∈ N

Let us now prove [START_REF] Demlow | Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces[END_REF]. For all ∈ P -1 Λ ( ), the relation (58) shows that = * and d = * d for some ∈ P -1 Λ (R ), and since ( 17) is valid in R (see, e.g., [START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF]Lemma 9] for = 3 in vector proxies), we therefore have

≈ ℎ d .

We now turn to [START_REF] Demlow | An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces[END_REF]. For all = * ∈ P -1 Λ +1 ( ) and = * ∈ dP Λ -1 ( ) with , in the corresponding spaces on R instead of , we have

where ∈ [0, 1], and the functions ℎ, 1 , 3 are 2 and satisfy

See Figure 4 for an illustration.

Figure 4: with four edges, corresponding to a section of cone with a curved edge.

Moreover, assume that ℎ is strictly increasing with a derivative bounded from below, and that 1 -3 is strictly positive (meaning that 1 and 3 do not intersect).

Lemma 37. The function

Proof. Since ℎ is a 2 -diffeomorphism and 1 -3 > 0, it can easily be verified that is a 2isomorphism with inverse

In order to show the compatibility with the trace, we exhibit some explicit affine function , such that • = . This will give • = . For this, we simply readily check that

that give when composed with . For 1 , we have

.

For 2 , we have

.

For 3 , we have

.

For 4 , we have

.

B Tensor calculus identities

Let = ( ) denote the metric on the tangent bundle of an -dimensional Lorentzian manifold, and let (

) := ( ) -1 . Assuming det < 0, the volume form is given in coordinates by

where 1 ... denotes the Levi-Civita symbol. Given a 1-form := d and a vector field := , we define the sharp ♯ and flat ♭ operator to raise and lower indices by: ( ♯ ) := , ( ♭ ) := .

We use the Hodge star operator ★ to identify -forms with ( -)-forms. In index notation, it is defined point wise on the linear basis of -forms by 

where 1 ... 1 ... is the generalized Kronecker delta (equal to 1 if 1 . . . is an even permutation of 1 . . . , -1 if it is an odd permutation and 0 otherwise). The generalized Kronecker delta can also be used to compute wedge products in index notation. The wedge product of two 1-forms = d and = d is given by

Specialising to the case of 2 + 1 dimensions, let

for some 2 by 2 symmetric and positive definite matrix , and let

The inverse matrix of is given by

, and = 1 -1 . The determinant of and are related bydet = det .

Lemma 39. The contraction of the volume form with is given by

where vol is the spatial volume form (associated with ).

Proof. An explicit computation gives

Lemma 40. For any 1-form , denoting by the restriction of on a time slice, we have

We readily infer the following corollary from (64) and the identity = 0: