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Abstract: This paper is devoted to the study of evolution problems involving fractional flow and time
and state dependent maximal monotone operator which is absolutely continuous in variation with
respect to the Vladimirov’s pseudo distance. In a first part, we solve a second order problem and give
an application to sweeping process. In a second part, we study a class of fractional order problem
driven by a time and state dependent maximal monotone operator with a Lipschitz perturbation in a
separable Hilbert space. In the last part, we establish a Filippov theorem and a relaxation variant
for fractional differential inclusion in a separable Banach space. In every part, some variants and
applications are presented.

Keywords: fractional differential inclusion; maximal monotone operator; Riemann–Liouville integral;
absolutely continuous in variation; Vladimirov pseudo-distance
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1. Introduction

In recent decades, fractional equations and inclusions have proven to be interesting tools in
the modeling of many physical or economic phenomena. In addition, there has been a significant
development in fractional differential theory and applications in recent years [1–7]. In the case of the
sole inclusion, Dαu(t) ∈ F(t, u(t)), one can find an important piece of literature. For examples,
in following papers, study is made with different boundary conditions [8–12], with use of the
non-compactness measure [13,14], with use of contraction principle in the space of selections of the set
valued map instead in the space of solutions [15], with compactness conditions [16] or inclusions with
infinite delay [17]. To the best of our acknowledge, a very few study is available in the fractional order
differential inclusion coupled with a time and state dependent maximal monotone operator ([18] with
subdifferential operators).

The main objective of the present work is to develop the existence theory for a coupled system of
evolution inclusion driven by fractional differential equation and time and state dependent maximal
monotone operators. The developments of the article are as follows.
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At first, we investigate a second order problem governed a time and state dependent maximal
monotone operator with Lipschitz perturbation in a separable Hilbert space E (The second order is in
the state variable x).

(1.1)


x(t) = x0 +

∫ t
0 u(s)ds, t ∈ [0, T]

u(t) ∈ D(At,x(t)), t ∈ [0, T]
−u̇(t) ∈ At,x(t)u(t) + f (t, x(t), u(t)) a.e.

Secondly, we investigate a class of fractional order problem driven by a time and state dependent
maximal monotone operator with Lipschitz perturbation in E of the form

(1.2)


Dαh(t) + λDα−1h(t) = u(t), t ∈ [0, 1]

Iβ
0+h(t) |t=0 := limt→0

∫ t
0

(t−s)β−1

Γ(β)
h(s)ds = 0, h(1) = Iγ

0+h(1) =
1∫

0

(1−s)γ−1

Γ(γ) h(s)ds

−u̇(t) ∈ At,h(t)u(t) + f (t, h(t), u(t)) a.e.

where α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 are given constants, Dα is the standard Riemann–Liouville
fractional derivative , Γ is the gamma function, (t, x)→ A(t,x) : D(A(t,x))→ 2E is a maximal monotone
operator with domain D(A(t,x)) and f : [0, 1]× E× E→ E is a single valued Lipschitz perturbation
w.r.t y ∈ E.

Thirdly, we finish the paper with a Fillipov theorem and relaxation theorem for fractional
differential inclusion in a separable Banach space E

(PF)

{
Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ [0, 1]
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

and

(PcoF)

{
Dαu(t) + λDα−1u(t) ∈ coF(t, u(t)), a.e. t ∈ [0, 1]
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

where F is closed valued L(I)×B(E)-measurable and Lipschitz w.r.t x ∈ E.
Within the framework of studies concerning coupled systems of evolution inclusion driven by

fractional differential equation and time and state dependent maximal monotone operator, our results
are fairly general and new and give further insight into the characteristics of both evolution inclusion
and fractional order boundary value problems.

2. Notations and Preliminaries

In the whole paper, I := [0, T] (T > 0) is an interval of R and E is a separable Hilbert space with
the scalar product 〈·, ·〉 and the associated norm ‖ · ‖. BE denotes the unit closed ball of E and rBE
its closed ball of center 0 and radius r > 0. We denote by L(I) the sigma algebra on I, λ := dt the
Lebesgue measure and B(E) the Borel sigma algebra on E. If µ is a positive measure on I, we will
denote by Lp(I, E, µ) p ∈ [1,+∞[, (resp. p = +∞), the Banach space of classes of measurable functions
u : I → E such that t 7→ ‖u(t)‖p is µ-integrable (resp. u is µ-essentially bounded), equipped with its
classical norm ‖ · ‖p (resp. ‖ · ‖∞). We denote by C(I, E) the Banach space of all continuous mappings
u : I → E, endowed with the sup norm.
The excess between closed subsets C1 and C2 of E is defined by e(C1, C2) := supx∈C1

d(x, C2), and the
Hausdorff distance between them is given by

dH(C1, C2) := max
{

e(C1, C2), e(C2, C1)
}

.

The support function of S ⊂ E is defined by: δ∗(a, S) := supx∈S〈a, x〉, ∀a ∈ E.
If X is a Banach space and X∗ its topological dual, we denote by σ(X, X∗) the weak topology on X,
and by σ(X∗, X) the weak* topology on X∗.
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Let A : E ⇒ E be a set-valued map. We denote by D(A), R(A) and Gr(A) its domain, range
and graph. We say that A is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0 whenever xi ∈ D(A), and yi ∈ A(xi),
i = 1, 2. In addition, we say that A is a maximal monotone operator of E, if its graph could not be
contained properly in the graph of any other monotone operator. By Minty’s Theorem, A is maximal
monotone iff R(IE + A) = E.

If A is a maximal monotone operator of E, then, for every x ∈ D(A), A(x) is nonempty closed
and convex. We denote the projection of the origin on the set A(x) by A0(x).

Let λ > 0; then, the resolvent and the Yosida approximation of A are the well-known operators
defined respectively by JA

λ = (IE + λA)−1 and Aλ = 1
λ (IE − JA

λ ). These operators are single-valued
and defined on all of E, and we have JA

λ (x) ∈ D(A), for all x ∈ E. For more details about the theory of
maximal monotone operators, we refer the reader to [5,19,20].

Let A : D(A) ⊂ E→ 2E and B : D(B) ⊂ E→ 2E be two maximal monotone operators, then we
denote by dis(A, B) the pseudo-distance between A and B defined by

dis(A, B) = sup
{
〈y− y′, x′ − x〉
1 + ‖y‖+ ‖y′‖ : x ∈ D(A), y ∈ Ax, x′ ∈ D(B), y′ ∈ Bx′

}
. (1)

This pseudo-distance due to Vladimiro [21] is particularly well suited to the study of operators
(see its use in [22]) and also, in the sweeping process, for its links with the Hausdorff distance in convex
analysis. Indeed, if NC(t,x) is the normal cone of the closed convex set C(t, x), we have

dis(NC(t,x), NC(s,y)) = dH(C(t, x), C(s, y)).

This property will be used in this paper.
For the proof of our main theorems, we will need some elementary lemmas taken from

reference [23].

Lemma 1. Let A be a maximal monotone operator of E. If x ∈ D(A)) and y ∈ E are such that

〈A0(z)− y, z− x〉 ≥ 0 ∀z ∈ D(A),

then x ∈ D(A) and y ∈ A(x).

Lemma 2. Let An (n ∈ N), A be maximal monotone operators of E such that dis(An, A)→ 0. Suppose also
that xn ∈ D(An) with xn → x and yn ∈ An(xn) with yn → y weakly for some x, y ∈ E. Then, x ∈ D(A)

and y ∈ A(x).

Lemma 3. Let A, B be maximal monotone operators of E. Then,
(1) for λ > 0 and x ∈ D(A)

‖x− JB
λ (x)‖ ≤ λ‖A0(x)‖+ dis(A, B) +

√
λ
(
1 + ‖A0(x)‖

)
dis(A, B).

(2) For λ > 0 and x, x′ ∈ E
‖JA

λ (x)− JA
λ (x′)‖ ≤ ‖x− x′‖.

Lemma 4. Let An (n ∈ N), A be maximal monotone operators of E such that dis(An, A)→ 0 and ‖A0
n(x)‖ ≤

c(1 + ‖x‖) for some c > 0, all n ∈ N and x ∈ D(An). Then, for every z ∈ D(A), there exists a sequence (ζn)

such that
ζn ∈ D(An), ζn → z and A0

n(ζn)→ A0(z). (2)
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3. On Second Order Problem Driven by a Time and State Dependent Maximal Operator

Let I = [0, T] and let E be a separable Hilbert space. In this part, we are interested in solving the
problem (1.1).

Lemma 5. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ‖A0

(t,x)y‖ ≤ c(1 + ‖x‖+ ‖y‖) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r‖x− y‖, for all 0 ≤ τ ≤ t ≤ T and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2, shortly
a ∈W1,2(I).
Then, the following hold:

Fact I : For any absolutely continuous x ∈W1,2
E (I) and for any u0 ∈ D(A(0,x(0))), the problem

−u̇(t) ∈ A(t,x(t))u(t), a.e. t ∈ I
u(t) ∈ D(A(t,x(t))), ∀t ∈ I
u(0) = u0 ∈ D(A(0,x(0)))

has a unique absolutely continuous solution with ‖u̇(t)‖ ≤ K(1 + β̇(t)) where β(t) =∫ t
0 [ȧ(s) + r‖ẋ(s))‖]ds, ∀t ∈ I and K is a positive constant depending on ‖u0‖, c, T, x and β.

Fact J : Assume that
(H3) (t, x, y)→ J

A(t,x)
λ (y) is L(I)⊗B(E)⊗B(E)-measurable.

Then, the composition operator Ax : D(Ax) ⊂ L2(I, E, dt)→ 2L2(I,E,dt) defined by

Axu = {v ∈ L2(I, E, dt) : v(t) ∈ A(t,x(t))u(t) a.e. t ∈ I}

for each u ∈ D(Ax) where
D(Ax) := {u ∈ L2(I, E, dt) : u(t) ∈ D(A(t,x(t))) a.e. t ∈ I, for which ∃ y ∈ L2(I, E, dt) : y(t) ∈
A(t,x(t))u(t), a.e. t ∈ I}
is maximal monotone. Consequently, the graph of Ax : D(Ax) ⊂ L2(I, E, dt)→ 2L2(I,E,dt) is strongly-weakly
sequentially closed in L2(I, E, dt)× L2(I, E, dt).

Proof. Fact I . The mapping Bt = A(t,x(t)) is a time dependent absolutely continuous in variation
maximal monotone operator: For all 0 ≤ τ ≤ t ≤ T, we have by (H2)

dis(Bt, Bτ) = dis(A(t,x(t)), A(τ,x(τ)))

≤ |a(t)− a(τ)|+ r||x(t)− x(τ)||
≤
∫ t

τ ȧ(s)ds + r
∫ t

τ ‖ẋ(s)‖ds
= β(t)− β(τ)

where β(t) =
∫ t

0 [ȧ(s) + r‖ẋ(s)‖]ds, ∀t ∈ I. Furthermore, by (H1), we have{
‖B0

t y‖ = ‖A0
(t,x(t))y‖ ≤ c(1 + ‖x(t)‖+ ‖y‖)

≤ c1(1 + ‖y‖)
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for all y ∈ D(A(t,x(t))), where c1 is a positive generic constant. Consequently, by [22] (Theorem 3.5),
for every u0 ∈ D(B0), a unique absolutely continuous mapping u : I → E exists satisfying

−u̇(t) ∈ Btu(t) = A(t,x(t))u(t), a.e. t ∈ I
u(t) ∈ D(Bt) = D(A(t,x(t))), ∀t ∈ I
u(0) = u0 ∈ D(B0) = D(A(0,x(0)))

with ‖u̇(t)‖ ≤ K(1 + β̇(t)), where β(t) =
∫ t

0 [ȧ(s) + r‖ẋ(s))‖]ds, ∀t ∈ I and K is a positive constant
depending on ‖u0‖, c, T, β.

Fact J . Taking account J , it is clear that D(Ax) is nonempty and Ax is well defined. It is
easy to see that Ax is monotone. Let us prove that Axis maximal monotone. We have to check that
R(IL2(I,E,dt) + λAx) = L2(I, E, dt) for each λ > 0. Let g ∈ L2(I, E, dt). Then, from (H3) t 7→ v(t) =

J
A(t,x(t))
λ g(t) = g(t)− λA

A(t,x(t))
λ g(t) is measurable. Set

h(t) = λA
A(t,x(t))
λ g(t) = λA

A(t,x(t))
λ g(t)− λA

A(t,x(t))
λ u(t) + λA

A(t,x(t))
λ u(t)

where u denotes the absolutely continuous solution to − du
dt (t) ∈ A(t,x(t))u(t) using Fact I . Then, h is

measurable with
‖h(t)‖ ≤ 2‖g(t)− u(t)‖+ λ‖A

A(t,x(t))
λ u(t)‖

by noting that A
A(t,x(t))
λ is 2

λ -Lipschitz and so we deduce that h ∈ L2(I, E, dt) because g ∈ L2(I, E, dt)

and t 7→ A
A(t,x(t))
λ u(t) ∈ L∞(I, E, dt) using (H1). This proves that v ∈ L2(I, E, dt) and g ∈ v + λAxv so

that R(IL2(I,E;dt) + λAx) = L2(I, E, dt).

Here is a useful application.

Corollary 1. With hypotheses and notation of the preceding lemma, let (vn) and (un) be two sequences in
L2(I, E, dt) such that vn(t) ∈ A(t,x(t))un(t) a.e for all n ∈ N. If vn → v weakly in L2(I, E, dt) and un → u
strongly in L2(I, E, dt), then v(t) ∈ A(t,x(t))u(t) a.e.

Theorem 1. Let I = [0, T]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ‖A0

(t,x)y‖ ≤ c(1 + ‖x‖+ ‖y‖) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r‖x− y‖ , for all 0 ≤ τ ≤ t ≤ T and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) is boundedly-compactly measurable in the sense, for any bounded set B ⊂ E, there is a
measurable compact valued integrably bounded mapping ΨB : I → E such that D(A(t,x)) ⊂ ΨB(t) ⊂ γ(t)BE
for all (t, x) ∈ I × B where γ ∈ L2(I,R, dt).

Then, for any (x0, u0) ∈ E×D(A(0,x0)
), there exist an absolutely continuous x : I → E and an absolutely

continuous u : I → E such that 
x(t) = x0 +

∫ t
0 u(s)ds, ∀t ∈ I

x(0) = x0, u(0) = u0 ∈ D(A(0,x0)
)

−u̇(t) ∈ A(t,x(t))u(t) a.e. t ∈ I
u(t) ∈ D(A(t,x(t))), ∀t ∈ I

Proof. Let us consider the closed convex subset Xγ in the Banach space CE(I) defined by

Xγ : {h ∈W1,2(I, E) : h(t) = x0 +
∫ t

0
ḣ(s)ds, ||ḣ(s)|| ≤ γ(s) a.e., γ ∈ L2(I, R, dt)}.



Mathematics 2020, 8, 1395 6 of 31

Then, Xγ is equi-absolutely continuous. By the fact that J , for each h ∈ Xγ, there is a unique
W1,2(I, E) mapping uh : I → E, which is the W1,2(I, E) solution to the inclusion

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0))) = D(A(0,x0))

),

with ‖u̇h(t)‖ ≤ K(1 + β̇(t)), where β(t) =
∫ t

0 [ȧ(s) + γ(s)]ds, ∀t ∈ I and K is a positive constant
depending on ||u0||, c, T, β. We refer to [22] (Theorem 3.5) for details of the estimate of the velocity.
Now, for each h ∈ Xγ, let us consider the mapping

Φ(h)(t) := x0 +
∫ t

0
uh(s)ds, t ∈ I.

As uh(s) ∈ D(A(s,h(s))) ⊂
⋃

x∈Xγ(s) D(A(s,x)) ⊂ Ψγ(s) ⊂ γ(s)BE for all s ∈ [0, T], where Ψγ :
I → E is a compact valued measurable mapping given by condition (H3). It is clear that Φ(h) ∈ Xγ.
Our aim is to prove the existence theorem by applying some ideas developed in [24] via a generalized
fixed point theorem [25] (Theorem 4.3), [26] (Lemma 1). Nevertheless, this needs a careful look using
the estimation of the absolutely continuous solution given above. For this purpose, we first claim that
Φ : Xγ → Xγ is continuous and, for any h ∈ Xγ and for any t ∈ I, the inclusion holds

Φ(h)(t) ∈ u0 +
∫ t

0
coΨγ(s)ds.

Since s 7→ coΨγ(s) is a convex compact valued and integrably bounded multifunction, the second
member is convex compact valued [27] so that Φ(X ) is equicontinuous and relatively compact in the
Banach space CE(I). Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges
uniformly to h in Xγ, then the AC solution uhn associated with hn

uhn(0) ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) a.e. t ∈ I

uniformly converges to the AC solution uh associated with h
uh(0) = u0 ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I

As (uhn) is equi-absolutely continuous with the estimate ||u̇hn(t)|| ≤ K(1 + β̇(t)) a.e for all n ∈ N,

we may assume that (uhn) converges uniformly to a AC mapping u and (
duhn

dt ) converges weakly in
L2

E(I, dt) to w ∈ L2
E(I, dt) with ‖w(t)‖ ≤ K(1 + β̇(t)) a.e. t ∈ I so that

weak- lim
n

uhn = weak- lim
n

uhn(0) + weak- lim
n

∫
I

duhn

dt

= u(0) +
∫

I
w dt := z(t), t ∈ I
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By identifying the limits, we get u(t) = z(t) = u(0) +
∫

I w dt, t ∈ I with u(0) =

weak- limn uhn(0) = limn uhn(0) and du
dt = w. As uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I and uhn(t) → u(t),

A0
(t,hn(t))

uhn(t) is bounded using (H1) for every t ∈ [0, T] and

dis(A(t,hn(t)), A(t,h(t))) ≤ r‖hn(t)− h(t)‖ → 0

when n→ ∞ by (H2), from Lemma 2, we deduce that u(t) ∈ D(A(t,h(t))), ∀t ∈ I. Now, we are going
to check that u satisfies the inclusion

−du
dt

(t) ∈ A(t,h(t))u(t) a.e. t ∈ I

As duhn
dt →

du
dt weakly in L2(I, E, dt), we may assume that ( duhn

dt ) Komlos converges to du
dt . There is

a dt-negligible set N such that for t ∈ I \ N

lim
n→∞

1
n

n

∑
j=1

duhj

dt
(t) =

du
dt

(t). (3)

−
duhn

dt
(t) ∈ A(t,hn(t))un(t). (4)

Let η ∈ D(A(t,h(t))).
Using Lemma 4, there is a sequence (ηn) such that ηn ∈ D(A(t,hn(t))), ηn → η and A0

(t,hn(t))
ηn →

A0
(t,h(t))η. From (4), by monotonicity,

〈
duhn

dt
, uhn(t)− ηn〉 ≤ 〈A0

(t,hn(t))ηn, ηn − uhn(t)〉. (5)

From

〈duhn

dt
(t), u(t)− η

〉
=
〈duhn

dt
(t), uhn(t)− ηn

〉
+
〈duhn

dt
(t), u(t)− uhn(t)− (η − ηn)

〉
,

let us write

1
n

n

∑
j=1

〈duhj

dt
(t), u(t)− η

〉
=

1
n

n

∑
j=1

〈duhj

dt
(t), uhj

(t)− ηj
〉
+

1
n

n

∑
j=1

〈duhj

dt
(t), u(t)− uhj

(t)
〉

+
n

∑
j=1

〈duhj

dt
(t), ηj − η

〉
,

so that

1
n

n

∑
j=1

〈duhj

dt
(t), u(t)− η

〉
≤ 1

n

n

∑
j=1

〈
A0
(t,hj(t))

ηj, ηj − uhj
(t)
〉
+ K(1 + β̇(t))

1
n

n

∑
j=1
‖u(t)− uhj

(t))‖.

+K(1 + β̇(t))
1
n

n

∑
j=1
‖ηj − η‖.

Passing to the limit using (3) when n→ ∞, this last inequality gives immediately

〈du
dt

(t), u(t)− η
〉
≤
〈

A0
(t,h(t))η, η − u(t)

〉
a.e.
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As a consequence, by Lemma 1, we get − du
dt (t) ∈ A(t,h(t))u(t) a.e. with u(0) ∈ D(A(0,h(0))) so

that, by uniqueness, u = uh.
Now, let us check that Φ : X → X is continuous. Let hn → h. We have

Φ(hn)(t)−Φ(h)(t) =
∫ t

0
uhn(s)ds−

∫ t

0
uh(s)ds =

∫ t

0
[uhn(s)− uh(s)]ds

As ||uhn(.)− uh(.)|| → 0 pointwisely and is uniformly bounded, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤ sup

t∈I

∫ t

0
||uhn(.)− uh(.)||ds→ 0

so that Φ(hn)−Φ(h)→ 0 in CE(I). Since Φ : Xγ → Xγ is continuous and Φ(Xγ) is relatively compact
in CE(I), by [25] (Theorem 4.3), [26] (Lemma 1), Φ has a fixed point, say h = Φ(h) ∈ Xγ that means

h(t) = Φ(h)(t) = x0 +
∫ t

0
uh(s)ds, t ∈ I,

uh(t) ∈ D(A(t,h(t)))

− duh
dt

(t) ∈ A(t,h(t))uh(t) dt-a.e.

the proof is complete.

There is a direct application to sweeping process.

Corollary 2. Let C : I × E→ E be a convex compact valued mapping satisfying
(i) C(t, x) ⊂ γ(t)BE, ∀(t, x) ∈ I × E, where γ ∈ L2(I,R, dt),
(ii) dH(C(s, x), C(t, y)) ≤ a(t)− a(τ) + r||x− y|| , for all 0 ≤ τ ≤ t ≤ 1 and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(iii) For any t ∈ I , for any bounded set B ⊂ E, C(t, B) is relatively compact.
Then, for any (x0, u0) ∈ E× C(0, x0), there exist an absolutely continuous x : I → E and and absolutely
continuous u : I → E such that 

x(t) = x0 +
∫ t

0 u(s)ds, ∀t ∈ I
x(0) = x0, u(0) = u0 ∈ C(0, x0)

−u̇(t) ∈ NC(t,x(t))u(t) a.e. t ∈ I
u(t) ∈ C(t, x(t)), ∀t ∈ I

Proof. It is easy to apply Theorem 1 with A(t,x(t)) = NC(t,x(t))

Now, we proceed to the Lipschitz perturbation of the preceding theorem.

Theorem 2. Let I = [0, T]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E be a maximal monotone operator satisfying:
(H1) ‖A0

(t,x)y‖ ≤ c(1 + ‖x‖+ ‖y‖) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r‖x− y‖ , for all 0 ≤ τ ≤ t ≤ T and for all (x, y) ∈ E× E, where
r is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) is boundedly-compactly measurable in the sense, for any bounded set B ⊂ E, there is a
measurable compact valued integrably bounded mapping ΨB : I → E such that D(A(t,x)) ⊂ ΨB(t) ⊂ γ(t)BE
for all (t, x) ∈ I × B, where γ ∈ L2(I,R, dt).
Let f : I × E× E→ E such that
(i) f (., x, y) is Lebesgue measurable on I for all (x, y) ∈ E× E
(ii) f (t, ., .) is continuous on E× E,
(iii) || f (t, x, y)|| ≤ M for all (t, x, y) ∈ I × E× E,
(iv) || f (t, x, y)− f (t, x, z)|| ≤ M||y− z||, for all (t, x, y, z) ∈ I × E× E× E
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for some positive constant M.
Then, for any (x0, u0) ∈ E× D(A(0,x0)

), there exists an absolutely continuous x : I → E and an absolutely
continuous u : I → E such that

x(t) = x0 +
∫ t

0 u(s)ds, ∀t ∈ I
x(0) = x0, u(0) = u0 ∈ D(A(0,x0)

)

−u̇(t) ∈ A(t,x(t))u(t) + f (t, x(t), u(t)) a.e. t ∈ I
u(t) ∈ D(A(t,x(t))), ∀t ∈ I

Proof. Let us consider the closed convex subset Xγ in the Banach space CE(I) defined by

Xγ : {h ∈W1,2(I, E) : h(t) = x0 +
∫ t

0
ḣ(s)ds, ||ḣ(s)|| ≤ γ(s) a.e., γ ∈ L2(I, R, dt)}.

Then, Xγ is equi-absolutely continuous. By fact J , for each h ∈ Xγ, there is a unique W1,2(I, E)
mapping uh : I → E, which is the W1,2(I, E) solution to the inclusion

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0))) = D(A(0,x0))

),

with ||u̇h(t)|| ≤ K(1 + β̇(t)) + M(K + 1) = η(t) where β(t) =
∫ t

0 [ȧ(s) + γ(s)]ds, ∀t ∈ I and K is a
positive constant depending on ||u0||, c, T, β. We refer to (Theorem 3.5) for details of the estimate of
the velocity. Now, for each h ∈ Xγ, let us consider the mapping

Φ(h)(t) := x0 +
∫ t

0
uh(s)ds, t ∈ I.

As uh(s) ∈ D(A(s,h(s))) ⊂
⋃

x∈Xγ(s) D(A(s,x)) ⊂ Ψγ(s) ⊂ γ(s)BE for all s ∈ [0, T], where Ψγ :
I → E is a compact valued measurable mapping given by condition (H3). It is clear that Φ(h) ∈ Xγ.
Our aim is to prove the existence theorem by applying some ideas developed in Castaing et al. [24]
via the same generalized fixed point theorem already used [25,26]. Nevertheless, this needs a careful
look using the estimation of the absolutely continuous solution given above. For this purpose, we first
claim that Φ : Xγ → Xγ is continuous, and, for any h ∈ Xγ and for any t ∈ I, the inclusion holds

Φ(h)(t) ∈ u0 +
∫ t

0
coΨγ(s)ds.

Since s 7→ coΨγ(s) is a convex compact valued and integrably bounded multifunction, the second
member is convex compact valued [27] so that Φ(X ) is equicontinuous and relatively compact in the
Banach space CE(I). Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges
uniformly to h in Xγ, then the AC solution uhn associated with hn

uhn(0) ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t)), a.e. t ∈ I

uniformly converges to the AC solution uh associated with h
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I
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As (uhn) is equi-absolutely continuous with the estimate ||u̇hn(t)|| ≤ K(1 + β̇(t)) + (K + 1)M =

ψ(t) a.e for all n ∈ N, we may assume that (uhn) converges uniformly to a AC mapping u and (
duhn

dt )

converges weakly in L2
E(I, dt) to w ∈ L2

E(I, dt) with ||w(t)|| ≤ K(1+ β̇(t))+ (K + 1)M a.e. t ∈ I so that

weak- lim
n

uhn = weak- lim
n

uhn(0) + weak- lim
n

∫
[0,t]

duhn

dt

= u(0) +
∫
[0,t]

w dt := z(t), t ∈ I

By identifying the limits, we get
u(t) = z(t) = u(0) +

∫
[0,t] w dt, t ∈ I with u(0) = weak- limn uhn(0) = limn uhn(0) and du

dt = w.

As uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I and uhn(t) → u(t), A0
(t,hn(t))

uhn(t) is bounded using (H1) for every
t ∈ I and

dis(A(t,hn(t), A(t,h(t)) ≤ r||hn(t)− h(t)|| → 0

when n→ ∞ by (H2), from Lemma 2, we deduce that u(t) ∈ D(A(t,h(t))), ∀t ∈ I.
Now, we are going to check that u satisfies the inclusion

−du
dt

(t) ∈ A(t,h(t))u(t) + f (t, h(t), uh(t)) a.e. t ∈ I

As u̇hn → u̇ weakly in L2
H([0, 1]), u̇hn → u̇ Komlos. Note that f (t, hn(t), uhn(t))→ f (t, h(t), u(t))

weakly in L2
E([0, 1]). Thus, zn(t) := f (t, hn(t), uhn(t)) → z(t) := f (t, h(t), u(t)) Komlos. Hence,

u̇hn(t) + f (t, hn(t), uhn(t) → u̇(t) + f (t, h(t), u(t)) Komlos. Apply Lemma 4 to A(t,hn(t)) and A(t,h(t))

to find a sequence (ηn) such that ηn ∈ D(A(t,hn(t))), ηn → η, A0
(t,hn(t)

ηn → A0
(t,h(t))u(t). From

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t))

by monotonicity

〈
duhn

dt
+ zn(t), uhn(t)− ηn〉 ≤ A0

(t,hn(t))ηn, ηn − uhn(t)〉.

From 〈duhn

dt
(t) + zn(t), u(t)− η

〉
=
〈duhn

dt
(t) + zn(t), uhn(t)− ηn

〉
+
〈duhn

dt
(t) + zn(t), u(t)− uhn(t)− (η − ηn)

〉
,

let us write
1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), u(t)− η

〉
=

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), uhj

(t)− ηj
〉

+
1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), u(t)− uhj

(t)
〉

+
n

∑
j=1

〈duhj

dt
(t) + zj(t), ηj − η

〉
,

so that

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), u(t)− η

〉
≤ 1

n

n

∑
j=1

〈
A0
(t,hj(t))

ηj, ηj − uhj
(t)
〉
+ (ψ(t) + M)

1
n

n

∑
j=1
‖v(t)− uhj

(t))‖.
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+(ψ(t) + M)
1
n

n

∑
j=1
‖ηj − η‖.

Passing to the limit using (3) when n→ ∞, this last inequality gives immediately

〈du
dt

(t) + z(t), u(t)− η
〉
≤
〈

A0
(t,h(t))η, η − u(t)

〉
a.e.

As a consequence, by Lemma 1, we get − du
dt (t) ∈ A(t,h(t))u(t) + z(t) a.e. with u(t) ∈ D(A(t,h(t)))

for all t ∈ [0, 1] so that, by uniqueness, u = uh.
Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
uhn(s)ds−

∫ 1

0
uh(s)ds

=
∫ 1

0
[uhn(s)− uh(s)]ds

≤
∫ 1

0
‖uhn(s)− uh(s)‖ds

As ‖uhn(·)− uh(·)‖ → 0 uniformly, we conclude that

sup
t∈[0,1]

‖Φ(hn)(t)−Φ(h)(t)‖ ≤
∫ 1

0
‖uhn(·)− uh(·)‖ds→ 0

so that Φ(hn)→ Φ(h) in CE([0, 1]). Since Φ : Xγ → Xγ is continuous and Φ(Xγ) is relatively compact
in CE(I), by [25,26] Φ has a fixed point, say h = Φ(h) ∈ Xγ that means

h(t) = Φ(h)(t) = x0 +
∫ t

0
uh(s)ds, t ∈ I,

uh(t) ∈ D(A(t,h(t)))

− duh
dt

(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) dt-a.e.

The proof is complete.

4. Towards a Fractional Order of Evolution Inclusion with a Time and State Dependent Maximal
Monotone Operator

Now, I = [0, 1] and we investigate a class of boundary value problem governed by a fractional
differential inclusion (FDI) in a separable Hilbert space E coupled with an evolution inclusion governed
by a time and stated dependent maximal monotone operator:

Dαh(t) + λDα−1h(t) = u(t), t ∈ I, (6)

Iβ
0+h(t) |t=0 := lim

t→0

∫ t

0

(t− s)β−1

Γ(β)
h(s)ds = 0, h(1) = Iγ

0+h(1) =
1∫

0

(1− s)γ−1

Γ(γ)
h(s)ds, (7)

− du
dt

(t) ∈ A(t,h(t))u(t) a.e. t ∈ I. (8)

where α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 are given constants, Dα is the standard Riemann–Liouville
fractional derivative, and Γ is the gamma function.
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4.1. Fractional Calculus

For the convenience of the reader, we begin with a few reminders of the concepts that will be
used in the rest of the paper.

Definition 1 (Fractional Bochner integral). Let E be a separable Banach space. Let f : I = [0, 1] → E.
The fractional Bochner-integral of order α > 0 of the function f is defined by

Iα
a+ f (t) :=

∫ t

a

(t− s)α−1

Γ(α)
f (s)ds, t > a.

In the above definition, the sign “
∫

” denotes the classical Bochner integral.

Lemma 6 ([10]). Let f ∈ L1([0, 1], E, dt). We have

(i) If α ∈]0, 1[ then Iα f exists almost everywhere on I and Iα f ∈ L1(I, E, dt).
(ii) If α ∈ [1, ∞), then Iα f ∈ CE(I).

Definition 2. Let E be a separable Banach space. Let f ∈ L1(I, E, dt). We define the Riemann–Liouville
fractional derivative of order α > 0 of f by

Dα f (t) := Dα
0+ f (t) =

dn

dtn In−α
0+ f (t) =

dn

dtn

∫ t

0

(t− s)n−α−1

Γ(n− α)
f (s)ds,

where n = [α] + 1.

In the case E ≡ R, we have the following well-known results.

Lemma 7 ([1,3]). Let α > 0. The general solution of the fractional differential equation Dαx(t) = 0 is given by

x(t) = c1tα−1 + c2tα−2 + · · ·+ cNtα−N , (9)

where ci ∈ R, i = 1, 2, . . . , N (N is the smallest integer greater than or equal to α).

Remark 1. Since Dα
0+ Iα

0+v(t) = v(t), for every v ∈ C(I), Dα
0+ [I

α
0+Dα

0+x(t)− x(t)] = 0 and, by Lemma 7,
it follows that

x(t) = Iα
0+Dα

0+x(t) + c1tα−1 + · · ·+ cNtα−N , (10)

for some ci ∈ R, i = 1, 2, . . . , N.

We denote by Wα,1
B,E(I) the space of all continuous functions in CE(I) such that their

Riemann–Liouville fractional derivative of order α− 1 are continuous and their Riemann–Liouville
fractional derivative of order α are Bochner integrable.

4.2. Green Function and Its Properties

Let α ∈]1, 2], β ∈ [0, 2− α], λ ≥ 0, γ > 0 and G : [0, 1]× [0, 1]→ R be a function defined by

G(t, s) = ϕ(s)Iα−1
0+ (exp(−λt)) +


exp(λs)Iα−1

s+ (exp(−λt)), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,
(11)
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where

ϕ(s) =
exp(λs)

µ0

[(
Iα−1+γ
s+ (exp(−λt))

)
(1)−

(
Iα−1
s+ (exp(−λt))

)
(1)
]

(12)

with
µ0 =

(
Iα−1
0+ (exp(−λt))

)
(1)−

(
Iα−1+γ
0+ (exp(−λt))

)
(1). (13)

We recall and summarize a useful result ([28]).

Lemma 8. Let E be a separable Banach space. Let G be the function defined by (11)–(13).

(i) G(·, ·) satisfies the following estimate

|G(t, s)| ≤ 1
Γ(α)

(
1 + Γ(γ + 1)
|µ0|Γ(α)Γ(γ + 1)

+ 1
)
= MG.

(ii) If u ∈Wα,1
B,E ([0, 1]) satisfying boundary conditions (7), then

u(t) =
1∫

0

G(t, s)
(

Dαu (s) + λDα−1u(s)
)

ds for every t ∈ [0, 1].

(iii) Let f ∈ L1
E ([0, 1]) and let u f : [0, 1]→ E be the function defined by

u f (t) :=
1∫

0

G(t, s) f (s)ds for t ∈ [0, 1].

Then,
Iβ
0+u f (t) |t=0 = 0 and u f (1) =

(
Iγ
0+u f

)
(1).

Moreover u f ∈Wα,1
B,E([0, 1]) and we have

(
Dα−1u f

)
(t) =

t∫
0

exp(−λ(t− s)) f (s)ds + exp(−λt)
1∫

0

ϕ(s) f (s)ds for t ∈ [0, 1], (14)

(
Dαu f

)
(t) + λ

(
Dα−1u f

)
(t) = f (t) for all t ∈ [0, 1]. (15)

Remark 2. From Lemma 8, we can claim that, if

u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ L1

E([0, 1]),

then, for all t ∈ [0, 1],∥∥∥u f (t)
∥∥∥ ≤ MG ‖ f ‖L1

E([0,1]) and
∥∥∥Dα−1u f (t)

∥∥∥ ≤ MG ‖ f ‖L1
E([0,1]) , (16)

Indeed, by Lemma 8(i), it suffices to prove that
∥∥∥Dα−1u f (t)

∥∥∥ ≤ MG ‖ f ‖L1
E([0,1]).

It follows from (14) that ∥∥∥Dα−1u f (t)
∥∥∥ ≤ ∫ 1

0
(1 + |ϕ(s)|)| f (s)|ds.

This, by an increase of ϕ (See [28] (2.9)), gives∥∥∥Dα−1u f (t)
∥∥∥ ≤ Γ(α)MG ‖ f ‖L1

E([0,1])
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and, since α ∈ [1, 2], implies our conclusion.

4.3. Topological Structure of the Solution Set

From Lemma 8, we summarize a crucial fact.

Lemma 9. Let E be a separable Banach space. Let f ∈ L1(I, E, dt). Then, the boundary value problem{
Dαu(t) + λDα−1u(t) = f (t), t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

has a unique Wα,1
B,E(I)-solution defined by

u(t) =
∫ 1

0
G(t, s) f (s)ds, t ∈ I.

Theorem 3. Let E be a separable Banach space. Let X : I → E be a convex compact valued measurable
multifunction such that X(t) ⊂ γBE for all t ∈ I, where γ is a positive constant and S1

X be the set of all
measurable selections of X. Then, the Wα,1

B,E(I)-solutions set of problem{
Dαu(t) + λDα−1u(t) = f (t), f ∈ S1

X , a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)
(17)

is compact in CE(I).

Proof. By virtue of Lemma 6, the Wα,1
B,E([0, 1])-solutions set X to the above inclusion is characterized by

X = {u f : I → E, u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

X , t ∈ I}

Claim: X is bounded, convex, equicontinuous and compact in CE(I).
From definition of the Green function G, it is not difficult to show that {u f : f ∈ S1

X} is bounded,

equicontinuous in CE(I). Indeed, let
(

u fn

)
be a sequence in X . We note that, for each n ∈ N, we have

u fn ∈Wα,1
B,E(I), and

u fn(t) =
∫ 1

0
G(t, s) fn(s)ds, t ∈ I,

with

• Iβ
0+u fn(t)|t=0 = 0, u fn(1) = Iγ

0+u(1),

•
(

Dα−1u fn

)
(t) =

∫ t

0
exp(−λ(t− s)) fn(s)ds + exp(−λt)

∫ 1

0
ϕ(s) fn(s)ds, t ∈ I,

•
(

Dαu fn

)
(t) + λ

(
Dα−1u fn

)
(t) = fn(t), t ∈ I.
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For t1, t2 ∈ I, t1 < t2, we have

u fn(t2)− u fn(t1) =
∫ 1

0
G(t, s)( fn(t2, s)− fn(t1, s))ds

=
∫ 1

0
ϕ(s) fn(s)ds

(∫ t2

0

e−λτ

Γ(α− 1)
(t2 − τ)α−2dτ −

∫ t1

0

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
+
∫ t2

0
eλs
(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
f (s)ds−

∫ t1

0
eλs
(∫ t1

s

e−λτ

Γ(α− 1)
(t1 − τ)α−2dτ

)
f (s)ds

=
∫ 1

0
φ(s) f (s)ds

[∫ t1

0
e−λτ (t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ +

∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ

]
+
∫ t1

0
eλs
(∫ t1

s
e−λτ (t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ

)
f (s)ds

+
∫ t1

0
eλs
(∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ

)
f (s)ds +

∫ t2

t1

eλs
(∫ t2

s

(t2 − τ)α−2

Γ(α− 1)
e−λτdτ

)
f (s)ds.

Then, we get

‖u fn(t2)− u fn(t1)‖ ≤
∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t1

0
e−λτ (t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

+
∫ 1

0

(
|ϕ(s)|+ eλs

)
|X(s)|ds

∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ

+
∫ t2

t1

eλs|X(s)|ds
∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ.

It is easy to obtain, after an integration by part, that

∫ t2

t1

e−λτ (t2 − τ)α−2

Γ(α− 1)
dτ = e−λt1

(t2 − t1)
α−2

Γ(α)
+ λ

∫ t2

t1

e−λτ (t2 − τ)α−1

Γ(α)
dτ ≤ 1 + λ

Γ(α)
(t2 − t1)

α−1

and ∫ t1

0
e−λτ (t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ ≤

∫ t1

0

(t1 − τ)α−2 − (t2 − τ)α−2

Γ(α− 1)
dτ

=
(t2 − t1)

α−1 + tα−1
1 − tα−1

2
Γ(α)

Using the inequality that |ap − bp| ≤ |a− b|p for all a, b ≥ 0 and 0 < p ≤ 1, we yield

∫ t1

0
e−λτ (t2 − τ)α−2 − (t1 − τ)α−2

Γ(α− 1)
dτ ≤ 2

Γ(α)
(t2 − t1)

α−1

Then, since α ∈]1, 2], we can increase ‖u fn(t2)− u fn(t1)‖ by

‖u fn(t2)− u fn(t1)‖ ≤ K|t2 − t1|α−1

with K =
∫ 1

0

[
(3 + λ)|φ(s)|+ (4 + 2λ)eλs] |X(s)|ds This shows that

{
u fn : n ∈ N

}
is equicontinuous

in CE(I). Moreover, for each t ∈ I, the set
{

u fn(t) : n ∈ N
}

is contained in the convex compact set∫ 1
0 G(t, s)X(s)ds [27,29] so that X is relatively compact in CE(I) as claimed. Thus, we can assume that

lim
n→∞

u fn = u∞ ∈ CE(I)



Mathematics 2020, 8, 1395 16 of 31

As S1
X is σ(L1

E, L∞
E∗)-compact, e.g., [29], we may assume that ( fn) σ(L1

E, L∞
E∗)-converges to f∞ ∈ S1

X ,
so that u fn weakly converges to u f∞ in CE(I) where u f∞(t) =

∫ 1
0 G(t, s) f∞(s)ds and so, for every t ∈ I,

u∞(t) = w- lim
n→∞

u fn(t) = w- lim
n→∞

∫ 1

0
G(t, s) fn(s)ds =

∫ 1

0
G(t, s) f∞(s)ds = u f∞(t),

and

w- lim
n→∞

(
Dα−1u fn

)
(t) = w- lim

n→∞

[∫ t

0
exp(−λ(t− s)) fn(s)ds + exp(−λt)

∫ 1

0
ϕ(s) fn(s)ds

]
=
∫ t

0
exp(−λ(t− s)) f∞(s)ds + exp(−λt)

∫ 1

0
ϕ(s) f∞(s)ds

=
(

Dα−1u f∞

)
(t), t ∈ I.

This means u∞ ∈ X , and the proof of the theorem is complete.

Remark 3. In the course of the proof of Theorem 3, we have proven the continuous dependence of the mappings
f 7→ u f and f 7→ Dα−1u f on the convex σ(L1

E, L∞
E∗)-compact set S1

X. This fact has some importance in
further applications.

Theorem 4. Let I = [0, 1]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ||A0

(t,x)y|| ≤ c(1 + ||x||+ ||y||) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r||x− y|| , for all 0 ≤ τ ≤ t ≤ 1 and for all (x, y) ∈ E× E, where r
is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) ⊂ X(t) ⊂ γBE for all (t, x) ∈ I × E, where X : I → E is a convex compact valued measurable
mapping and γ is a positive number.
Then, there is a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping u : I → E satisfying
Dαx(t) + λDα−1x(t) = u(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
u(t) ∈ D(A(t,x(t)))

− du
dt (t) ∈ A(t,x(t))u(t) a.e. t ∈ I.

Proof. Let us consider the convex compact subset X in the Banach space CE(I) defined by

X := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

X , t ∈ I}

We note that X is convex compact and equi-Lipschitz. Cf the proof of Theorem 3. Now, for each
h ∈ X , let us consider the unique absolutely continuous solution uh to

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0)))

For each h, let us set

Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds, t ∈ I
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Since uh(s) ∈ D(A(s,h(s))) ⊂ X(s), then it is clear that Φ(h) ∈ X .
Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges uniformly to h in X ,
then the absolutely continuous solution uhn associated with hn

uhn(0) = un
0 ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) a.e. t ∈ I

uniformly converges to the absolutely solution uh associated with h
uh(0) = u0 ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ [0, T]

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ [0, T]

This fact is ensured by repeating the proof of Theorem 1. Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)uhn(s)ds−

∫ 1

0
G(t, s)uh(s)ds

=
∫ 1

0
G(t, s)[uhn(s)− uh(s)]ds

≤
∫ 1

0
MG||uhn(s)− uh(s)||ds

As ||uhn(·)− uh(·)|| → 0 uniformly, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||uhn(·)− uh(·)||ds→ 0

so that Φ(hn)→ Φ(h) in CE(I). Since Φ : X → X is continuous, Φ has a fixed point, say h = Φ(h) ∈ X .
This means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds,

with 
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I

Coming back to Lemma 9 and applying the above notations, this means that we have just shown
that there exists a mapping h ∈Wα,∞

E (I) satisfying

Dαh(t) + λDα−1h(t) = uh(t),

Iβ
0+h(t) |t=0 = 0, h(1) = Iγ

0+h(1)

uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) a.e. t ∈ I

Now, we present an extension of the preceding theorem dealing with a Lipschitz perturbation.
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Theorem 5. Let I = [0, 1]. Let (t, x)→ A(t,x) : D(A(t,x))→ 2E a maximal monotone operator satisfying:
(H1) ||A0

(t,x)y|| ≤ c(1 + ||x||+ ||y||) for all (t, x, y) ∈ I × E× D(A(t,x)), for some positive constant c,
(H2) dis(A(t,x), A(τ,y)) ≤ a(t)− a(τ) + r||x− y|| , for all 0 ≤ τ ≤ t ≤ 1 and for all (x, y) ∈ E× E, where r
is a positive number, a : I → [0,+∞[ is nondecreasing absolutely continuous on I with ȧ ∈ L2(I,R, dt),
(H3) D(A(t,x)) ⊂ X(t) ⊂ γBE for all (t, x) ∈ I × E, where X : I → E is a convex compact valued measurable
mapping and γ is a positive number.
Let f : I × E× E→ E such that

(i) f (., x, y) is Lebesgue measurable on I for all (x, y) ∈ E× E
(ii) f (t, ., .) is continuous on E× E,
(iii) || f (t, x, y)|| ≤ M for all (t, x, y) ∈ I × E× E,
(iv) || f (t, x, y)− f (t, x, z)|| ≤ M||y− z||, for all (t, x, y, z) ∈ I × E× E× E

for some positive constant M.
Then, there is a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping v : I → E satisfying
Dαx(t) + λDα−1x(t) = v(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
v(t) ∈ D(A(t,x(t))), t ∈ I
− dv

dt (t) ∈ A(t,x(t))v(t) + f (t, x(t), v(t)) a.e. t ∈ I.

Proof. Let us consider the convex compact subset X in the Banach space CE(I) defined by

X := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

X , t ∈ I}

We note that X is convex compact and equi-Lipschitz. Cf the proof of Theorem 3. Now, for each
h ∈ X , let us consider the unique absolutely continuous solution uh to

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I
uh(t) ∈ D(A(t,h(t))), ∀t ∈ I
uh(0) = u0 ∈ D(A(0,h(0)))

Existence and uniqueness of absolutely solution uh are ensured by the fact that the operator
Bh(t) = A(t,h(t)) is a time dependent maximal monotone operator absolutely continuous in variation
(See Lemma 5), and the mapping fh(t, x) := f (t, h(t), y) is measurable with t ∈ I and Lipschitz with
y ∈ E. Furthermore, we have the estimate ||u̇h(t)|| ≤ ψ(t) a.e for all h ∈ X where ψ ∈ L2(I) by the
consideration given in Lemma 5 and the estimate of velocity given in ([22], Theorem 1). For each h,
let us set

Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds, t ∈ I.

Since uh(s) ∈ D(A(s,h(s))) ⊂ X(s), then it is clear that Φ(h) ∈ X .
Now, we check that Φ is continuous. It is sufficient to show that, if (hn) converges uniformly to h

in X , then the absolutely continuous solution uhn associated with hn
uhn(0) = un

0 ∈ D(A(0,hn(0)))

uhn(t) ∈ D(A(t,hn(t))), ∀t ∈ I

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t)) a.e. t ∈ I
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uniformly converges to the absolutely solution uh associated with h
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I

This need careful look. We note that uhn is equicontinuous with ||u̇hn(t)|| ≤ ψ(t) for almost
all t ∈ I and for all n ∈ N where ψ ∈ L2 and uhn(t) ∈ D(A(t,hn(t))) ⊂ X(t) for all t ∈ I and for all

n ∈ N. Thus, by extracting subsequence, we may assume that uhn(t)→ v(t) = v(0) +
∫ t

0 v̇(s)ds with
v̇ ∈ L2

E(I) for all t ∈ I and u̇hn → v̇ weakly in L2
E(I). Let us check that v(t) ∈ D(A(t,h(t))) for all t ∈ I.

We have dis(A(t,hn(t), A(t,h(t))) ≤ r||hn(t)− h(t)|| → 0. It is clear that (yn = A0
(t,hn(t)

uhn(t)) is bounded
and hence relatively weakly compact. By applying Lemma 2 to uhn(t)→ v(t) and to a convergence
subsequence of (yn) using uhn(t) ∈ X(t) ⊂ γBE to show that v(t) ∈ D(A(t,h(t))). As u̇hn → v̇ weakly
in L2

E(I), u̇hn → v̇ Komlos. Note that f (t, hn(t), uhn(t)) → f (t, h(t), uh(t)) weakly in L2
E(I). Thus,

zn(t) := f (t, hn(t), uhn(t)) → z(t) := f (t, h(t), v(t)) Komlos. Hence, u̇hn(t) + f (t, hn(t), uhn(t) →
v̇(t) + f (t, h(t), v(t)) Komlos. Apply Lemma 4 to A(t,hn(t)) and A(t,h(t)) to find a sequence (ηn) such
that such that ηn ∈ D(A(t,hn(t))), ηn → η, A0

(t,hn(t)
ηn → A0

(t,h(t))v(t) From

−u̇hn(t) ∈ A(t,hn(t))uhn(t) + f (t, hn(t), uhn(t))(
∗∗)

by monotonicity

〈
duhn

dt
+ zn(t), uhn(t)− ηn〉 ≤ A0

(t,hn(t))ηn, ηn − uhn(t)〉.(
∗∗∗)

From 〈duhn

dt
(t) + zn(t), v(t)− η

〉
=
〈duhn

dt
(t) + zn(t), uhn(t)− ηn

〉
+
〈duhn

dt
(t) + zn(t), v(t)− uhn(t)− (η − ηn)

〉
,

let us write
1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), v(t)− η

〉
=

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), uhj

(t)− ηj
〉
+

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), v(t)− uhj

(t)
〉

+
n

∑
j=1

〈duhj

dt
(t) + zj(t), ηj − η

〉
,

so that

1
n

n

∑
j=1

〈duhj

dt
(t) + zj(t), v(t)− η

〉
≤ 1

n

n

∑
j=1

〈
A0
(t,hj(t))

ηj, ηj − uhj
(t)
〉
+ (ψ(t) + M)

1
n

n

∑
j=1
‖v(t)− uhj

(t))‖.

+(ψ(t) + M)
1
n

n

∑
j=1
‖ηj − η‖.

Passing to the limit using (5) when n→ ∞, this last inequality gives immediately

〈dv
dt

(t) + z(t), v(t)− η
〉
≤
〈

A0
(t,h(t))η, η − v(t)

〉
a.e.
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As a consequence, by Lemma 1, we get
− dv

dt (t) ∈ A(t,h(t))v(t) + z(t) a.e. with v(t) ∈ D(A(t,h(t))) for all t ∈ I so that, by uniqueness, v = uh.
Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)uhn(s)ds−

∫ 1

0
G(t, s)uh(s)ds

=
∫ 1

0
G(t, s)[uhn(s)− uh(s)]ds

≤
∫ 1

0
MG||uhn(s)− uh(s)||ds

As ||uhn(·)− uh(·)|| → 0 uniformly, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||uhn(·)− uh(·)||ds→ 0

so that Φ(hn)→ Φ(h) in CE(I). Since Φ : X → X is continuous, Φ has a fixed point, say h = Φ(h) ∈ X .
This means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds,

with 
uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I

Coming back to Lemma 9 and applying the above notations, this means that we have just shown
that there exists a mapping h ∈Wα,∞

B,E (I) satisfying

Dαh(t) + λDα−1h(t) = uh(t),

Iβ
0+h(t) |t=0 = 0, h(1) = Iγ

0+h(1)

uh(0) ∈ D(A(0,h(0)))

uh(t) ∈ D(A(t,h(t))), ∀t ∈ I

−u̇h(t) ∈ A(t,h(t))uh(t) + f (t, h(t), uh(t)) a.e. t ∈ I

We finish the paper by investigating a fractional order to a sweeping process [30,31].
We begin recall the existence of absolutely continuous solution to a class of sweeping

process [18,32].

Theorem 6. Let f : [0, T] → E be a continuous mapping such that || f (t)|| ≤ β for all t ∈ [0, T], let v :
[0, T]→ R+ be a positive nondecreasing continuous function with v(0) = 0. Let C : [0, T]→ E be a convex
weakly compact valued mapping such that dH(C(t), C(τ)) ≤ |v(t)− v(τ)| for all t, τ ∈ [0, T]. Let A : E→ E
be a linear continuous coercive symmetric operator and let B : E→ E be a linear continuous compact operator.
Then, for any u0 ∈ E, the evolution inclusion

f (t) + Bu(t)− A
du
dt

(t) ∈ NC(t)(
du
dt

(t))

u(0) = u0

admits a unique W1,∞
E ([0, T]) solution u : [0, T]→ E.
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Theorem 7. Let f : I × E → E be a bounded continuous mapping such that || f (t, x)|| ≤ M for all (t, x) ∈
I × E, for some positive constant M, let v : I → R+ be a positive nondecreasing continuous function with
v(0) = 0. Let C : I → E be a convex compact valued mapping such that dH(C(t), C(τ)) ≤ |v(t)− v(τ)| for
all t, τ ∈ I. Let A : E→ E be a linear continuous coercive symmetric operator and let B : E→ E be a linear
continuous compact operator.
Then, for any u0 ∈ E, there exists a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping
u : I → E satisfying 

u(0) = u0 ∈ E
Dαx(t) + λDα−1x(t) = u(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
f (t, x(t)) + Bu(t)− A du

dt (t)) ∈ NC(t)(
du
dt (t)), a.e. t ∈ I

Proof. By Theorem 6 and the assumptions on f , for any bounded continuous mapping h : I → E,
there is a unique absolutely continuous solution vh to the inclusion{

vh(0) = u0 ∈ E
f (t, h(t)) + Bvh(t)− A dvh

dt (t)) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ I

with dvh
dt (t) ∈ C(t) a.e. so that vh(t) = u0 +

∫ t
0

dvh
ds (s)ds ∈ u0 +

∫ t
0 C(s)ds, ∀t ∈ I. By our assumption,

C is scalarly upper semicontinuous convex compact valued integrably bounded: C(t) ⊂ ρBE, ∀t ∈ I,
hence, by [33], t 7→ Ψ(t) := u0 +

∫ t
0 C(s)ds is a scalarly upper semicontinuous convex compact valued

integrably bounded mapping with Ψ(t) := u0 +
∫ t

0 C(s)ds ⊂ u0 + ρBE, ∀t ∈ I. Let us consider the
closed convex subset X in the Banach space CE(I) defined by

X := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

u0+ρBE
, t ∈ I},

where S1
u0+ρBE

denotes the set of all integrable selections of the convex weakly compact valued constant

multifunction u0 + ρBE. Now, for each h ∈ X , let us consider the mapping defined by

Φ(h)(t) :=
∫ t

0
G(t, s)vh(s)ds,

for t ∈ I. Then, it is clear that Φ(h) ∈ X . Since u0 +
∫ t

0 C(s)ds is a convex compact, Φ(X ) is
equicontinuous and relatively compact in the Banach space CE(I) by virtue of Theorem 3 using the
compactness of Ψ(t). Now, we check that Φ is continuous. It is sufficient to show that, if (hn) uniformly
converges to h in X , then the absolutely continuous solution vhn associated with hn{

vhn(0) = u0 ∈ E
f (t, hn(t)) + Bvhn(t)− A dvhn

dt (t)) ∈ NC(t)(
dvhn

dt (t)), a.e. t ∈ I

uniformly converges to the absolutely continuous solution vh associated with h{
vh(0) = u0 ∈ E
f (t, h(t)) + Bvh(t)− A dvh

dt (t)) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ I

As (vhn) is equi-absolutely continuous with vhn t) ∈ u0 +
∫ t

0 C(s)ds, ∀t ∈ I, we may assume that
(vhn) uniformly converges to an absolutely continuous mapping z.
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Since vhn(t) = u0 +
∫
]0,t]

dvhn
ds (s)ds, t ∈ I and dvhn

ds (s) ∈ C(s), a.e. s ∈ I, we may assume that ( dvhn
dt )

weakly converges in L1
E(I) to w ∈ L1

E(I) with w(t) ∈ C(t), t ∈ I so that

lim
n

vhn(t) = u0 +
∫ t

0
w(s)ds := u(t), t ∈ I.

By identifying the limits, we get

u(t) = z(t) = u0 +
∫ t

0
w(s)ds

with u̇ = w. Therefore, by applying the arguments in the variational limit result in [34], we get

f (t, h(t)) + Bu(t)− A
du
dt

(t)) ∈ NC(t)(
du
dt

(t)), a.e. t ∈ I

with u(0) = u0 ∈ E, so that, by uniqueness, u = vh. Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)vhn(s)ds−

∫ 1

0
G(t, s)vh(s)ds

=
∫ 1

0
G(t, s)[vhn(s)− vh(s)]ds

≤
∫ 1

0
MG||vhn(s)− vh(s)||ds

As ||vhn(·)− vh(·)|| → 0 uniformly, we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||vhn(·)− vh(·)||ds→ 0

so that Φ(hn) → Φ(h) in CE(I). Since Φ : X → X is continuous and Φ(X ) is relatively compact in
CE(I), by [25,26] Φ has a fixed point, say h = Φ(h) ∈ X . This means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)vh(s)ds,

with 
vh(0) = u0 ∈ E
Dαh(t) + λDα−1h(t) = vh(t), t ∈ I
Iβ
0+h(t) |t=0 = 0, h(1) = Iγ

0+h(1)
f (t, h(t)) + Bvh(t)− A dvh

dt (t)) ∈ NC(t)(
dvh
dt (t)), a.e. t ∈ I

The proof is complete.

Theorem 8. Theorems 6 and 7 results are inspired by some ideas in [18]. At this point, some variants are
available, mainly when the second member is a time dependent subdifferential operator [35], namely, for any
u0 ∈ E, there exists a Wα,1

B,E(I) mapping x : I → E and an absolutely continuous mapping u : I → E satisfying
u(0) = u0 ∈ E
Dαx(t) + λDα−1x(t) = u(t), t ∈ I
Iβ
0+x(t) |t=0 = 0, x(1) = Iγ

0+x(1)
f (t, x(t)) + Bu(t)− A du

dt (t) ∈ ∂ϕ(t, du
dt (t)), a.e. t ∈ I
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5. On a Fillipov Theorem

We end this section with a Fillipov theorem and a relaxation theorem for the fractional
differential inclusion {

Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

where F : I × E→ E is a closed valued Lipschitz mapping w.r.t.o x ∈ E.

Theorem 9. Assume that E is a separable Banach space. Let F : I × E → E be a closed valued L(I) ⊗
B(E)-measurable mapping such that
(H1): dH(F(t, x), F(t, y)) ≤ l(t)||x− y|| for all t, x, y where l ∈ L1

R(I)) such that ρ := MG||l||L1
R(I) < 1.

Assume further that
(H2) : there exists g ∈ L1

E(I) such that d(g(t), F(t, ug(t))) < l(t)
∑∞

n=1 nρn−1 where ug(t) =∫ 1
0 G(t, s)g(s)ds, ∀t ∈ I.

Then, the fractional differential inclusion{
Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

has at least a Wα,1
B,E(I)-solution u : I → E.

Proof. We use the ideas in the proof of Theorem 4.3 in [36], Remark 2 and Lemma 9.
It is worth mentioning that the series Λ := ∑∞

n=1 nρn−1 is convergent. Indeed, we have

lim
n→∞

(n + 1)ρn

nρn−1 = lim
n→∞

n + 1
n

ρ = ρ < 1.

Thus, by d’Alembert’s ratio test, the series ∑∞
n=1 nρn−1 is convergent

Step 1. We shall construct inductively sequence { fn(·)}∞
n=1 where f1 = g such that the following

conditions are fulfilled, for all n ≥ 1,

fn ∈ L1
E(I) and fn+1(t) ∈ F(t, u fn(t)), t ∈ I, (18)

‖ fn+1(t)− fn(t)‖ ≤ (n + 1)ρn−1l(t)Λ−1, (19)∥∥∥u fn+1(t)− u fn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fn+1(s)− fn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnΛ−1, (20)

for all t ∈ I. We note that the passage from (18) to (19) is obtained, thanks to (16) of Remark 2, with∥∥∥u fn+1(t)− u fn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fn+1(s)− fn(s)]ds

∥∥∥∥ ≤ MG ‖ fn+1(t)− fn(t)‖

By (H2), we have d( f1(t), F(t, u f1(t)) < l(t)Λ−1, t ∈ I. Let us consider the multifunction
Σ1 : I → c(E) defined by

Σ1(t) =
{

v ∈ F(t, u f1(t)) : ‖v− f1(t)‖ ≤ 2l(t)Λ−1
}

.

Clearly, Σ1 is Lebesgue measurable with nonempty closed values. In view of the existence theorem
of measurable selections (see [29]), there is a measurable function f2 : I → E such that f2(t) ∈ Σ1(t)
for all t ∈ I. This yields

f2(t) ∈ F(t, u f1(t)), ‖ f2(t)− f1(t)‖ ≤ 2l(t)Λ−1,
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for all t ∈ I. Thus, it is easy to see that f2 ∈ L1
E(I) and

∥∥∥u f2(t)− u f1(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ f2(s)− f1(s)]ds

∥∥∥∥ ≤ 2ρΛ−1,

for all t ∈ I.

� Suppose that we have constructed integrable functions f1, f2, . . . , fn such that

fi+1(t) ∈ F(t, u fi
(t)), t ∈ I,

‖ fi+1(t)− fi(t)‖ ≤ (i + 1)ρi−1l(t)Λ−1,

for all i = 1, 2, . . . , n− 1. Then,∥∥∥u fi+1
(t)− u fi

(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fi+1(s)− fi(s)]ds

∥∥∥∥ ≤ (i + 1)ρiΛ−1,

for i = 1, 2, . . . , n− 1.

� The function fn+1 is constructed as follows. We have

d
(

fn(t), F
(

t, u fn(t))
))
≤ dH

(
F(t, u fn−1(t)), F(t, u fn(t))

)
≤ l(t)

∥∥∥u fn(t)− u fn−1(t)
∥∥∥

≤ nρn−1l(t)Λ−1.

The multifunction Σn : I → c(E), defined by

Σn(t) =
{

v ∈ F (t, un(t)) : ‖v− fn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1
}

,

is Lebesgue measurable with nonempty closed values. Thus, there exists a measurable function
fn+1 such that

fn+1(t) ∈ F
(

t, u fn(t)
)

, ‖ fn+1(t)− fn(t)‖ ≤ (n + 1)ρn−1l(t)Λ−1,

for all t ∈ I. Then, it is clear that, for all t ∈ I,∥∥∥u fn+1(t)− u fn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[ fn+1(s)− fn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnΛ−1,

Thus, such a sequence { fn}∞
n=1 with the required properties exists.

Step 2. It follows that, for all n ≥ 1, we have

‖ fn+1 − fn‖L1
E(I) =

∫ 1

0
‖ fn+1(t)− fn(t)‖ dt ≤ (n + 1)ρn−1 ‖l‖L1

R+ (I) Λ−1. (21)
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On the other hand, by ρ < 1 the series ∑∞
n=1(n + 1)ρn−1 is convergent (using d’Alembert’s ratio

test). Now, we assert that { fn(·)}∞
n=1 is a Cauchy sequence in L1

E(I). Indeed, using (10), for n, m ∈ N
such that m > n, we have the estimate

‖ fm − fn‖L1
E(I) ≤ ‖ fn+1 − fn‖L1

E(I) + ‖ fn+2 − fn+1‖L1
E(I) + · · ·+ ‖ fm − fm−1‖L1

E(I)

≤
[
(n + 1)ρn−1 + (n + 2)ρn + · · ·+ mρm−2

]
‖l‖L1

R+ (I) Λ−1

≤
(

∞

∑
k=n

(k + 1)ρk−1

)
‖l‖L1

R+ (I) Λ−1

Letting n → ∞ in the above inequality, we see that ‖ fm − fn‖L1
E(I) goes to 0 when m, n goes to

∞. Since the normed space L1
E(I) is complete, ( fn) norm converges to an element f ∈ L1

E(I). By the
properties of our Green function and the definition of u fn , we conclude that u fn pointwise converge
with respect to the norm topology to u f

u f (t) =
∫ 1

0
G(t, s) f (s)ds, ∀t ∈ I.

Now, we claim that f (t) ∈ F(t, u f (t)), a.e. t ∈ I. Let us write

d( f (t), F(t, u f (t)) ≤
∣∣∣d( f (t), F(t, u f (t)))− d( fn(t), F(t, u f (t))

∣∣∣
+ d( fn(t), F(t, u f (t)). (22)

On the other hand,∣∣∣d( f (t), F(t, u f (t))− d( fn(t), F(t, u f (t)))
∣∣∣ ≤ ‖ f (t)− fn(t)‖ , (23)

and, by fn(t) ∈ F(t, u fn−1(t)), t ∈ I, we have

d( fn(t), F(t, u f (t)) ≤ dH

(
F(t, u fn−1(t)), F(t, u f (t))

)
≤ l(t)

∥∥∥u fn−1(t)− u f (t)
∥∥∥ . (24)

Since ( fn)n∈N norm converges to f ∈ L1
E(I), we may, by extracting subsequences, assume that

|| fn(t)− f (t)||E → 0 a.e. Now, passing to the limit when n→ ∞ in the preceding inequality, we get

d( f (t), F(t, u f (t))) = 0 a.e. t ∈ I

This implies that f (t) ∈ F(t, u f (t)), a.e.t ∈ I because F is closed valued. Thus, by Lemma 9,
we have shown that u f is a solution of the problem{

Dαu f (t) + λDα−1u f (t) ∈ F(t, u f (t)), a.e. t ∈ I
Iβ
0+u f (t) |t=0 = 0, u f (1) = Iγ

0+u f (1)

The proof of theorem is complete.

A relaxation theorem is available using the machinery developed in [36] Theorem 4.2 and
Lemma 9.

Theorem 10. Relaxation Assume that E is a separable Banach space. Let F : I × E→ E be a closed valued
L(I)⊗B(E)-measurable mapping such that



Mathematics 2020, 8, 1395 26 of 31

(H1): dH(F(t, x), F(t, y)) ≤ l(t)||x− y|| for all t, x, y where l ∈ L1
R(I)) such that ρ := MG||l||L1

R(I) < 1.
Assume further that
(H2) : there exists g ∈ L1

E(I) such that d(g(t), F(t, ug(t))) < l(t)
∑∞

n=1 nρn−1 where ug(t) =∫ 1
0 G(t, s)g(s)ds, ∀t ∈ I.

(H3) : d(0, F(t, x)) < c(t)(1 + ||x||), ∀(t, x) ∈ I × E where c is a positive integrable function.
Then, the following holds:
(a)

(PF)

{
Dαu(t) + λDα−1u(t) ∈ F(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

and

(PcoF)

{
Dαu(t) + λDα−1u(t) ∈ coF(t, u(t)), a.e. t ∈ I
Iβ
0+u(t) |t=0 = 0, u(1) = Iγ

0+u(1)

have at least a solution in Wα,1
B,E(I).

(b) Let f0 ∈ L1
E(I)) such that

f0(t) ∈ coF(t, u f0(t))

u f0(t) =
∫ 1

0
G(t, s) f0(s)ds, ∀t ∈ I

Then, for every ε > 0, there exists f ∈ L1
E(I) such that

f (t) ∈ F(t, u f (t)), a.e.

u f (t) =
∫ 1

0
G(t, s) f (s)ds, ∀t ∈ I

and
sup
t∈I
||u f (t)− u f0(t)|| ≤ ε.

Proof. We will proceed in several steps.

Step 1. (a) follows from Theorem 9 applied to both F and coF taking account of (H1)− (H2). Let u f0(·)
be a Wα,1

B,E(I)-solution of the problem (PcoF) that is, u f0 ∈ SPcoF

f0(t) ∈ coF(t, u f0(t)), a.e. t ∈ I, (25)

u f0(t) :=
∫ 1

0
G(t, s) f0(s)ds, ∀t ∈ I (26)

Let S1
F and S1

coF denote the set of all L1
E(I)-selections of the set valued mappings t→ F(t, u f0(t))

and t→ coF(t, u f0(t)) By (H3), the multifunction t 7→ F(t, u f0(t)) is closed valued and integrable:

d(0, F(t, u f0(t)) < c(t)(1 + ||u f0(t)||)

so that S1
F is non empty. Then, according to Hiai–Umegaki [37], S1

coF = coS1
F where co is taken in L1

E(I).
This equality along with f0(t) ∈ coF(t, u f0(t)), a.e. t ∈ I yields f0 ∈ coS1

F. Let ε > 0. There exists
gε ∈ L1

E(I) such that gε ∈ coS1
F and || f0 − gε||L1

E(I) ≤
1
2 εΛ−1M−1

G so that

||u f0(t)− ugε(t)|| <
1
2

εΛ−1.
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As gε ∈ coS1
F, then gε = ∑n

i=1 λi f I with fi ∈ L1
E(I), fi(t) ∈ F(t, u f0(t)), λi ≥ 0, ∑n

i=1 λi = 1.
Let Φ(t) := { fi(t : 1 ≤ i ≤ n}, then Φ(t) is a compact valued integrably bounded mapping with
|Φ(t)| ≤ r(t) := sup1≤i≤n | fi(t)|. Then, from [38], there exists

h1 ∈ L1
E(I), h1(t) ∈ Φ(t) ⊂ F(t, u f0(t))), ∀t ∈ I

such that
sup

0≤t<τ≤1
||
∫ τ

t
[h1(s)− gε(s)]ds|| ≤ 1

2
εM−1

G ∆−1

so that

||uh1(t)− ugε(t)|| = ||
∫ 1

0
G(t, s)[h1(s)− gε(s)ds|| ≤ MG||

∫ 1

0
[h1(s)− gε(s)ds|| ≤ 1

2
ε∆−1.

Consequently,

(∗) ||uh1(t)− u f0(t)|| ≤ ε∆−1.

Step 2. We shall construct inductively sequence {hn(·)}∞
n=1 such that the following conditions are

fulfilled, for all n ≥ 1,
hn ∈ L1

E(I) and hn+1(t) ∈ F(t, uhn(t)), t ∈ I, (27)

‖hn+1(t)− hn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1, (28)∥∥∥uhn+1(t)− uhn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[hn+1(s)− hn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnεΛ−1, t ∈ I (29)

� The multifunction F(·, uh1(·)) is Lebesgue-measurable and

dH

(
F(t, uh1(t)), F(t, u f0(t))

)
≤ l(t)

∥∥∥uh1(t)− u f0(t)
∥∥∥

This implies that, for t ∈ I,

dH

(
F(t, uh1(t)), F(t, u f0(t))

)
≤ l(t)εΛ−1,

As h1(t) ∈ F(t, u f0(t)), we have d(h1(t), F(t, uh1(t)) ≤ l(t)εΛ−1, t ∈ I. Let us consider the
multifunction Σ1 : I → c(E) defined by

Σ1(t) =
{

v ∈ F(t, uh1(t)) : ‖v− h1(t)‖ ≤ 2l(t)εΛ−1
}

.

Clearly, Σ1 is Lebesgue measurable with nonempty closed values. In view of the existence
theorem of measurable selections (see [29]), there is a measurable function h2 : I → E such that
h2(t) ∈ Σ1(t) for all t ∈ I. This yields

h2(t) ∈ F(t, uh1(t)), ‖h2(t)− h1(t)‖ ≤ 2l(t)εΛ−1,

for all t ∈ I. Thus, it is easy to see that h2 ∈ L1
E(I) and

∥∥uh2(t)− uh1(t)
∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[h2(s)− h1(s)]ds

∥∥∥∥ ≤ 2ρεΛ−1,

for all t ∈ I.
� Suppose that we have constructed integrable functions h1, h2, . . . , hn such that

hi+1(t) ∈ F(t, uhi
(t)), a.e.t ∈ I,
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‖hi+1(t)− hi(t)‖ ≤ (i + 1)ρi−1l(t)εΛ−1,

for all i = 1, 2, . . . , n− 1. Then,∥∥∥uhi+1
(t)− uhi

(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[hi+1(s)− hi(s)]ds

∥∥∥∥ ≤ (i + 1)ρiεΛ−1,

for i = 1, 2, . . . , n− 1.

� The function hn+1 is constructed as follows. We have

d(hn(t), F(t, uhn(t))) ≤ dH(F(t, uhn−1(t)), F(t, uhn(t)))

≤ l(t)‖uhn(t)− uhn−1(t)‖ ≤ nρn−1l(t)εΛ−1

The multifunction Σn : I → c(E), defined by

Σn(t) =
{

v ∈ F (t, uhn(t)) : ‖v− hn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1
}

,

is Lebesgue measurable with nonempty closed values. Thus, there exists a measurable function
hn+1 such that

hn+1(t) ∈ F (t, uhn(t)) , ‖hn+1(t)− hn(t)‖ ≤ (n + 1)ρn−1l(t)εΛ−1,

for all t ∈ I. Then, it is clear that, for all t ∈ I,

∥∥∥uhn+1(t)− uhn(t)
∥∥∥ =

∥∥∥∥∫ 1

0
G(t, s)[hn+1(s)− hn(s)]ds

∥∥∥∥ ≤ (n + 1)ρnεΛ−1,

Thus, a sequence {hn}∞
n=1 satisfying (27)–(29)exists.

Step 3. It follows from (28) that, for all n ≥ 1, we have

‖hn+1 − hn‖L1
E(I) =

∫ 1

0
‖hn+1(t)− hn(t)‖ dt ≤ (n + 1)ρn−1 ‖l‖L1

R+ (I) εΛ−1. (30)

On the other hand, by ρ < 1, the series ∑∞
n=1(n + 1)ρn−1 is convergent (using d’Alembert’s ratio

test). Now, we assert that {hn(·)}∞
n=1 is a Cauchy sequence in L1

E(I). Indeed, using (30), for n, m ∈ N,
such that m > n, we have the estimate

‖hm − hn‖L1
E(I) ≤ ‖hn+1 − hn‖L1

E(I) + ‖hn+2 − hn+1‖L1
E(I) + · · ·+ ‖hm − hm−1‖L1

E(I)

≤
[
(n + 1)ρn−1 + (n + 2)ρn + · · ·+ mρm−2

]
‖ł‖L1

R+ (I) εΛ−1

≤
(

∞

∑
k=n

(k + 1)ρk−1

)
‖l‖L1

R+ (I) εΛ−1

Letting n → ∞ in the above inequality, we see that ‖hm − hn‖L1
E(I) goes to 0 when m, n goes to

∞. Since the normed space L1
E(I) is complete, (hn) norm converges to an element f ∈ L1

E(I). By the
properties of our Green function and the definition of uhn , we conclude that uhn pointwise converges
with respect to the norm topology to u f where

u f (t) =
∫ 1

0
G(t, s) f (s)ds.
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Moreover, from (29), we deduce that∥∥∥uhn(t)− u f0(t)
∥∥∥ ≤ ||uh1(t)− u f0(t)||+ ||uh2(t)− uh1(t)||+ . . . + ||uhn(t)− uhn−1(t)||

≤
(

n

∑
j=1

jρj−1

)
εΛ−1

for all t ∈ I. Recall that Λ = ∑∞
n=1 nρn−1. Thus, by letting n→ ∞ in the last inequality, we get∥∥∥u f − u f0

∥∥∥
CE(I)

= max
t∈I

∥∥∥u f (t)− u f0(t)
∥∥∥ ≤ ε.

Now, we claim that f (t) ∈ F(t, u f (t)), a.e. t ∈ I. Let us write

d( f (t), F(t, u f (t)) ≤
∣∣∣d( f (t), F(t, u f (t))− d(hn(t), F(t, u f (t))

∣∣∣
+ d(hn(t), F(t, u f (t)). (31)

On the other hand,∣∣∣d( f (t), F(t, u f (t))− d(hn(t), F(t, u f (t)))
∣∣∣ ≤ ‖ f (t)− hn(t)‖ , (32)

and, by hn(t) ∈ F(t, uhn−1(t)), t ∈ I, we have

d(hn(t), F(t, u f (t)) ≤ dH

(
F(t, uhn−1(t)), F(t, u f (t))

)
≤ l(t)

∥∥∥uhn−1(t)− u f (t)
∥∥∥ (33)

Since (hn)n∈N norm converges to f ∈ L1
E(I) we may, by extracting subsequences, assume that

||hn(t)− f (t)||E → 0 a.e. Now, passing to the limit when n→ ∞ in (31)–(33), we get

d( f (t), F(t, u f (t)) = 0 a.e. t ∈ I

This implies that f (t) ∈ F(t, u f (t)), a.e. t ∈ I because F is closed valued. Hence, u f is a solution
of the problem (PF), satisfying the required density property. The proof of theorem is complete.

6. Conclusions

In the context of separable Hilbert space, our algorithm and tools are fairly general and they
allow for treating several variants of system of fractional differential inclusion coupled with a time and
state dependent maximal monotone operators with Lipschitz perturbation, in particular the second
order solution of evolution inclusion governed time and state dependent maximal monotone operators
with Lipschitz perturbation. Our results contain novelties. Nevertheless, there are several issues—for
instance, the existence of solutions for the case of closed unbounded Lipschitz perturbation that is
needed in the optimal control.
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