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ABSTRACT
Generative adversarial network (GAN) models can synthesize high-
quality audio signals while ensuring fast sample generation. How-
ever, they are difficult to train and are prone to several issues in-
cluding mode collapse and divergence. In this paper, we introduce
SpecDiff-GAN, a neural vocoder based on HiFi-GAN, which was
initially devised for speech synthesis from mel spectrogram. In our
model, the training stability is enhanced by means of a forward dif-
fusion process which consists in injecting noise from a Gaussian
distribution to both real and fake samples before inputting them to
the discriminator. We further improve the model by exploiting a
spectrally-shaped noise distribution with the aim to make the dis-
criminator’s task more challenging. We then show the merits of our
proposed model for speech and music synthesis on several datasets.
Our experiments confirm that our model compares favorably in au-
dio quality and efficiency compared to several baselines.

Index Terms— Generative adversarial network (GAN), diffu-
sion process, deep audio synthesis, spectral envelope

1. INTRODUCTION

Deep audio synthesis refers to a class of models which leverage neu-
ral networks to generate natural-sounding audio signals based on
given acoustic features. It has applications in many different tasks
including the generation of speech (e.g., text-to-speech (TTS) [1],
speech-to-speech translation [2], voice conversion [3]), music syn-
thesis [4, 5], and sound effects generation [6, 7].

Audio synthesis was for long dominated by likelihood-based
models such as autoregressive models [8] and flow-based models [9].
However, the sequential nature of the former models leads to slow
inference times as each output element is generated one by one, con-
ditioned on previously generated elements. Flow-based models, on
the other hand, are not parameter-efficient as they typically require a
deep architecture to perform complex invertible transformations.

With the emergence of generative adversarial networks (GANs)
[10], which have yielded promising results in the generation of high-
resolution images, GAN-based audio synthesis models have been
proposed [11, 12]. They can produce high-fidelity waveforms while
maintaining a fast and computationally competitive sampling. How-
ever, GANs are hard to train and are known to suffer from mode
collapse [13]. This issue was addressed by denoising diffusion prob-
abilistic models (DDPMs) [14–16], but these models suffer them-
selves from a slow reverse process, which requires a huge number of
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Fig. 1: Overview of SpecDiff-GAN

steps to obtain satisfactory results, thus making them inapplicable in
real-life settings.

In this paper, we propose to tackle the training instability of
GANs and the slow inference process of DDPMs. To that aim, we
choose HiFi-GAN [11], an efficient and high-quality mel spectro-
gram to speech waveform synthesizer, as a core model, and build
an enhanced HiFi-GAN model exploiting a noise-shaping diffusion
process, showing the merit of our proposed model on a large variety
of audio signals. More precisely, our main contributions include:

• The injection of instance noise into both inputs (real and fake) of
the discriminator similarly to [17] to help stabilize the training;

• The use of a spectrally-shaped noise distribution to make the dis-
criminator’s task more challenging. In particular, we evaluate sev-
eral variations for the noise distribution exploiting the inverse filter
described in [18], which is based on the spectral envelope of the
mel spectrogram input;

• An extensive experimental work with application not only to
speech but also instrumental music synthesis, which to the best
of our knowledge has not been done before for Hifi-GAN based
models.

Our proposed model is illustrated in Fig. 1. Examples and full code
are available at https://specdiff-gan.github.io/.

2. RELATED WORK

2.1. HiFi-GAN
HiFi-GAN [11] addresses the challenges of high-quality speech syn-
thesis by leveraging GANs. The model employs a generator network
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that takes mel spectrograms as input and utilizes a progressive up-
sampling process to synthesize time-domain waveforms closely re-
sembling the original audio signals. HiFi-GAN’s architecture fea-
tures a multi-receptive field fusion module, which enhances repre-
sentation by integrating information from different receptive regions.
Additionally, it features two discriminators: multi-period discrim-
inator (MPD) and multi-scale discriminator (MSD), which respec-
tively capture periodic patterns and identify long-term dependencies.
This approach has demonstrated remarkable performance in generat-
ing high-quality audio with improved sampling accuracy and speed.

2.2. SpecGrad

SpecGrad, introduced by Koizumi et al. [18], is a diffusion-based
vocoder. This model enhances the quality of synthesized audio by
leveraging a diffusion process that adapts the shaping of noise in
the spectral domain. Let N (0,Σ) be the noise distribution. Spec-
Grad proposes to include information from the spectral envelope
into Σ. To achieve this, Σ is decomposed as Σ = LLT , where
L = G+MSGG, with G and G+ denoting matrix representations
of the short-time Fourier transform (STFT) and its inverse, and MSG

a complex diagonal matrix representing a filter based on the spec-
tral envelope. Specifically, the magnitude of MSG aligns with the
spectral envelope, while the phase component is obtained as that of
the minimum phase response. By incorporating spectral envelope
information in this way, SpecGrad enhances the modeling of au-
dio signals, resulting in improved audio quality and naturalness in
the generated audio compared to previous diffusion models [15,16].
However, it is important to note that the slow inference speed of
SpecGrad limits its suitability for real-world applications.

2.3. Diffusion-GAN

Diffusion-GAN [17] is a novel approach for training GANs using
diffusion processes to enhance stability and quality. By gradually
transforming real and generated samples through an adaptive diffu-
sion process, Diffusion-GAN bridges the gap between initial gen-
erator outputs and the target data distribution. This regularization
mechanism mitigates challenges associated with mode collapse and
unstable training dynamics, contributing to improved training effi-
ciency and sample quality in GANs. The original paper applied this
approach to image synthesis, and its application to the audio domain
remains limited [19].

3. PROPOSED METHOD

3.1. Architecture

Our generator network closely mirrors the architecture used in HiFi-
GAN, chosen for its remarkable capability to produce high-quality
audio samples swiftly. Furthermore, we incorporate HiFi-GAN’s
multi-period discriminator (MPD), which comprises several sub-
discriminators, each parameterized with a period p, to effectively
capture periodic patterns. However, instead of utilizing the multi-
scale discriminator (MSD), we opted for UnivNet’s multi-resolution
discriminator (MRD) [20]. MRD is a composition of multiple
sub-discriminators, each parameterized by a tuple indicating (FFT
size, hop size, Hann window length). These varying temporal and
spectral resolutions enable the generation of high-resolution signals
across the full band. Integrating MRD consistently improves sample
quality and reduces artefacts in audio synthesis, as shown in [12,21].

3.2. Enhancing the GAN model with diffusion

Following [17], we leverage a diffusion process during GAN train-
ing. In this approach, rather than discerning between the original
and generated data, the discriminator learns to distinguish between
the perturbed versions of each (see Fig. 1).

We recall that, during the forward diffusion process, an ini-
tial sample denoted as x0 ∼ q(x0) undergoes a series of T
sequential steps where it is progressively perturbed by Gaussian
noise. Denoting the noise schedule by {βt}Tt=1, this can be for-
malized as q(x1:T |x0) =

∏
t≥1 q(xt|xt−1) with q(xt|xt−1) =

N (xt;
√
1− βtxt−1, βtI). Let αt = 1−βt and ᾱt =

∏t
u=1 αu. It

can be shown that, in the forward process, xt can be sampled at any
arbitrary time step t in closed form by xt =

√
ᾱtx0 +

√
1− ᾱtϵ,

where ϵ ∼ N (0,Σ).
In the context of our model, we denote by x ∼ p(x) the ground-

truth audio and by s the input condition of the generator, i.e., the mel
spectrogram of the ground-truth audio. Using these notations, G(s)
is the generated signal. Perturbed samples are acquired as follows:

y ∼ q(y|x, t), y =
√
ᾱtx+

√
1− ᾱtϵ (1)

yg ∼ q(yg|G(s), t), yg =
√
ᾱtG(s) +

√
1− ᾱtϵ

′ (2)

where ϵ, ϵ′ ∼ N (0,Σ), q(y|x, t) is the conditional distribution of
the noisy sample y given the target data x and the diffusion step t
and q(yg|G(s), t) is the conditional distribution of the noisy sample
yg given the generated signal G(s) and the diffusion step t.

3.3. Noise distribution

We explore two options for Σ. In the first case, we set it to
Σstandard = σ2I, a similar approach to that in [17], where I rep-
resents the identity matrix and σ is a scalar. We refer to this model
as StandardDiff-GAN. In the second option, drawing inspiration
from SpecGrad [18], we shape the noise based on the spectral en-
velope. Our filter Mspec is however the inverse of the one used
in SpecGrad, specifically Mspec = M−1

SG . This choice results in
a noise distribution that emphasizes increased noise incorporation
in low-energy regions, thereby challenging the discriminator. The
version of our model incorporating this noise distribution, with vari-
ance Σspec = LspecL

T
spec where Lspec = G+MspecG, is referred to

as SpecDiff-GAN.

3.4. Adaptive diffusion

Similar to the approach in [17], we dynamically regulate the level of
difficulty for the discriminators during training by incorporating an
adaptive update mechanism for the maximum number of diffusion
steps, denoted as T , within the interval [Tmin, Tmax]. This adaptive
adjustment ensures that the discriminators are provided with vary-
ing degrees of challenge as they learn to distinguish between real
and generated samples. When the discriminators struggle to per-
form effectively, we decrease T to provide more opportunities for
learning from relatively simpler samples, such as non-perturbed or
slightly noisy ones. Conversely, if the discriminators find it too easy
to differentiate between the diffused generated and real samples, we
increase T to introduce more complexity to their task.

To quantify the extent of discriminator overfitting to the training
data, we employ a metric similar to that in [22], computed over B
consecutive minibatches as

rd = E[sign(Dtrain − 0.5)], (3)
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where Dtrain represents the discriminator outputs on samples of the
training set and E[·] a mean over the B minibatches. rd attempts to
estimate the portion of the training set for which discriminator out-
puts would exceed 0.5. A value of rd close to 1 indicates overfitting,
while a value close to 0 suggests no overfitting. We update T every
B = 4 minibatches using the following rule:

T ← T + sign(rd − dtarget) · C, (4)

where dtarget is a hyperparameter representing the desired value for
rd, and C is a constant chosen to regulate the rate at which T tran-
sitions from Tmin to Tmax. The diffusion timestep t ≤ T is then
drawn from a discrete distribution pπ defined with cT =

∑T
u=1 u

as:

t ∼ pπ := Discrete (1/cT , 2/cT , . . . , T/cT ) . (5)

This distribution gives more weight to larger values of t, influencing
the choice of diffusion steps during training.

3.5. Training losses

We here describe the various training losses. For the sake of simplic-
ity, we denote both discriminators as D following [11].

Our discriminative loss is provided by the following formula:

LD = E(x,s,t,y,yg)

[
(D(y)− 1)2 + (D(yg))

2] , (6)

where y and yg are obtained as in Section 3.2. For HiFi-GAN, the
loss is simply obtained asLD=E(x,s)[(D(x)−1)2+(D(G(s)))2].

The SpecDiff-GAN generator, as HiFi-GAN, employs an adver-
sarial loss and two extra losses to enhance perceptual and spectral
similarity with the ground-truth audio, a feature matching (FM) loss
and a mel spectrogram loss. The total loss is formulated as

LG = E(s,t,yg)

[
(D(yg)− 1)2

]
+ λFME(x,s,t,y,s,yg)

[ L∑
i=1

1

Ni
∥Di(y)−Di(yg)∥1

]
+ λmelE(x,s) [∥ϕ(x)− ϕ(G(s))∥1] , (7)

where λFM and λmel are scalar coefficients, ϕ is a function that trans-
forms a waveform into its mel spectrogram, L denotes the number
of layers in the discriminator, Di the features in the ith layer of the
discriminator and Ni their number. It is important to highlight that
we employ the diffused versions of the real and fake data only for the
first two terms in the generator loss. The last term in Eq. (7) indeed
does not involve the discriminator.

4. EXPERIMENTS

We present hereafter the experimental protocol used to evaluate our
method and the baseline models.

4.1. Datasets

For our experiments, we consider the following datasets:
• LJSpeech [23] is a single-speaker speech dataset. It contains En-

glish recordings sampled at 22050 Hz with a total duration of
∼ 24 hours. We use the same train/test split as in HiFi-GAN [11]
(i.e., 12950 clips for training and 150 clips for testing).

• VCTK [24] is a clean multispeaker dataset with 110 speakers,
63 female and 47 male. The clips were recorded using two mi-
crophones and we consider the Microphone 1 configuration. It
comprises ∼ 41 hours of utterances in different English accents.
We resample the recordings from 48 kHz to 24 kHz. We keep 10
speakers for testing and use the others for training.

• MAPS [25] is a dataset of MIDI piano recordings captured under
9 distinct recording conditions, and sampled at a rate of 44.1 kHz.
We focus on a specific subset consisting of classical piano com-
positions (MUS), totaling approximately 18 hours. We split the
dataset into 229 pieces for training and 41 pieces for testing. Sub-
sequently, we converted offline all tracks to single-channel audio
and segmented them into 5-second fragments.

• ENST-Drums [26] contains recordings by 3 drummers on 8 indi-
vidual audio channels with a total duration of 225 minutes. The
tracks were recorded using various drum kits and are sampled at
44.1 kHz. We split the recordings into 2512 for training and 466
for testing. Similarly to MAPS, our pre-processing pipeline in-
volves an offline conversion from stereo to mono and the subse-
quent segmentation of audio clips.

4.2. Model Setup

For MRD, we incorporate 3 sub-discriminators with the same
parameters as [20]: (1024, 120, 600), (2048, 240, 1200), and
(512, 50, 240). As in [11], we consider 5 sub-discriminators for
MPD with periods 2, 3, 5, 7, and 11 to prevent overlaps, and
λFM = 2 and λMel = 45 for the generator loss. We also keep the
same choice of optimizer and learning rate scheduler. For the diffu-
sion process, we adopt dtarget = 0.6, where experiments with other
values showed no significant difference, and σ = 0.05 as per [17].

We compare our model to other GAN models, namely HiFi-
GAN1, UnivNet-c322 and BigVGAN base model3.

4.3. Training configurations

Detailed training configurations for each dataset across the various
models are as follows:
• LJSpeech: The parameter values chosen are consistent with the

V1 configuration of HiFi-GAN. The initial learning rate is set to 2·
10−4 across all models, except for UnivNet and BigVGAN, where
we conduct experiments with an initial learning rate of 10−4 in
accordance with the settings outlined in their respective papers.

• VCTK: We adopt the 24 kHz base configuration of BigVGAN.
The other parameters are the same as those used for LJSpeech.

• MAPS and ENST-Drums: We use 128-dimensional log-mel
spectrograms with a Hann window size of 2048, a frame shift of
512, and 2048-point FFT with a full-band range (0 - 22.050 kHz).
UnivNet is not used in this configuration due to code adjustments
required. For other models, we increase upsampling rates and
kernel sizes to [8, 8, 2, 2, 2] and [16, 16, 4, 4, 4] respectively. All
models are trained with an initial learning rate of 2 · 10−4 and a
segment size of 16384.

All models are trained on 1 NVIDIA A100 GPU for 1M steps, with
a batch size of 16. All generators have approximately 14M parame-
ters.

1https://github.com/jik876/hifi-gan
2https://github.com/maum-ai/univnet
3https://github.com/NVIDIA/BigVGAN
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Table 1: Inference results on LJSpeech. (lr: initial learning rate)

Model PESQ (↑) STOI (↑) WARP-Q (↓)

HiFi-GAN 3.47 0.98 1.203
UnivNet (lr=1e-4) 3.44 0.98 1.330
StandardDiff-GAN 3.62 0.98 1.086
SpecDiff-GAN 3.76 0.99 1.018
BigVGAN (lr=1e-4) 3.72 0.98 1.073

Table 2: Inference results on VCTK. (lr: initial learning rate)

Model PESQ (↑) STOI (↑) WARP-Q (↓)

HiFi-GAN 2.97 0.94 1.213
UnivNet (lr=1e-4) 3.21 0.94 1.209
StandardDiff-GAN 3.37 0.96 1.046
SpecDiff-GAN 3.52 0.96 0.983
BigVGAN (lr=1e-4) 3.67 0.96 0.959

Table 3: FAD (↓) scores on MAPS and ENST-Drums datasets.

Model MAPS ENST-Drums

HiFi-GAN 0.153 0.226
StandardDiff-GAN 0.108 0.138
SpecDiff-GAN 0.080 0.149
BigVGAN 0.075 0.190

5. RESULTS

To evaluate the performance of trained models, we use Perceptual
Evaluation of Speech Quality (PESQ) [27], Short-Time Objective
Intelligibility (STOI) [28] and WARP-Q [29] for speech synthesis.
For each metric, we report the mean of the scores over all the pieces
in the test set. Each 95% confidence interval around the mean value
has margins smaller than 0.03, 0.001, and 0.008 respectively. For
music generation, we utilize the Fréchet Audio Distance (FAD) [30]
with the VGGish model [31] to generate the embeddings.

5.1. Inference results for the different datasets

Table 1 presents the results on LJSpeech. SpecDiff-GAN exhibits
superior performance in terms of audio quality and speech intelligi-
bility when compared to both the baseline models and BigVGAN.
Performance drops with Σstandard (StandardDiff-GAN), highlighting
the importance of the noise shaping. Our model excels with known
speakers in band-limited conditions during inference.

The results for the VCTK dataset, which involves inference on
unseen speakers, are reported in Table 2. Among the models, BigV-
GAN with a learning rate of 2 · 10−4 has the best performance.
SpecDiff-GAN closely follows, with a negligible difference that is
not statistically significant. It is noteworthy that both SpecDiff-GAN
and StandardDiff-GAN outperform the baseline models, HiFi-GAN
and UnivNet. In particular, SpecDiff-GAN showcases a substantial
performance margin compared to the baselines.

Table 3 displays the results for the MAPS and ENST-Drums
datasets. For MAPS, SpecDiff-GAN outperforms both HiFi-GAN
and StandardDiff-GAN, highlighting the advantage of employing the
spectrally-shaped noise distribution. Notwithstanding, BigVGAN
demonstrates a slightly better performance compared to SpecDiff-
GAN. Surprisingly, in the case of ENST-Drums, StandardDiff-
GAN outperforms the other models, with SpecDiff-GAN following
closely behind. The ENST-Drums dataset’s small size (225 minutes)
and multiple tracks for the same drum performance from different
channels may have hindered the learning process.

Table 4: Ablation study on LJSpeech.

Model PESQ (↑) STOI (↑) WARP-Q (↓)

SpecDiff-GAN 3.76 0.99 1.018

StandardDiff-GAN 3.62 0.98 1.086
Without diffusion 3.52 0.98 1.135
MRD→MSD 3.65 0.98 1.069
(Σspec → Σstandard)
+ (MRD→MSD) 3.54 0.98 1.156

Table 5: Synthesis speed compared to real-time evaluated with a
batch of 100 one-second-long samples on 1 NVIDIA V100 GPU

Model LJSpeech VCTK MAPS ENST-Drums

BigVGAN base × 23.28 × 21.40 × 18.03 × 18.03
SpecDiff-GAN × 220.96 × 203.28 × 183.46 × 183.15

5.2. Ablation study

We conducted an ablation study on the MRD, the diffusion process,
and the reshaped noise distribution to assess the individual impact
of each component on the quality of the generated audio. We train
all models on LJSpeech for 1M steps. The results are presented in
Table 4. Eliminating the spectrally-shaped noise distribution and
adopting Σstandard instead (StandardDiff-GAN) leads to a deteriora-
tion in results. This behaviour is also observed when replacing the
MRD with the MSD. Furthermore, when we exclude the diffusion
process entirely (“Without diffusion”) or maintain it with Σstandard

and substitute the MSD for the MRD, the results decline even fur-
ther. It is worth noting that the last row in the table is equivalent to
HiFi-GAN with a non-spectrally-shaped diffusion process. A com-
parison of metric scores with those of HiFi-GAN in Table 1 reveals
that the diffusion process leads to improvement. This highlights that
each component of our model (MRD, diffusion, shaped noise) plays
a crucial role in enhancing audio quality.

5.3. Model complexity

In comparison to the base BigVGAN model, our model features
approximately 200k fewer parameters for all tested configurations.
Furthermore, our model demonstrates a notably faster synthesis
speed, as detailed in Table 5. This speed is equivalent to that of
HiFi-GAN and StandardDiff-GAN since they all share the same
generator. The primary reason for BigVGAN’s slower performance
lies in its utilization of the computationally intensive snake acti-
vation function [32]. This characteristic also makes BigVGAN
significantly slower to train compared to our model, with a training
duration factor ranging from 1.5 to 2.

6. CONCLUSION

We introduced SpecDiff-GAN, a novel approach harnessing a
forward diffusion process with spectrally-shaped noise to en-
hance GAN-based audio synthesis. Our application spanned both
speech and music generation. The experimental results showcased
SpecDiff-GAN’s capacity to generate high-quality waveforms sur-
passing baselines while being competitive to the state-of-the-art
model, BigVGAN. Notably, SpecDiff-GAN maintained efficient
inference speeds. Our approach is versatile, offering adaptability to
various GAN-based audio synthesis models.

Future research avenues include testing our model on a larger,
more diverse dataset, covering a wide spectrum of sound types for
universal audio synthesis.
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