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Abstract 24 

Aim: Dark diversity refers to the set of species that are not observed in an area but could potentially 25 

occur based on suitable local environmental conditions. In this paper, we applied both niche-based 26 

and co-occurrence-based methods to estimate the dark diversity of vascular plant species in the 27 

subarctic mountains. We then aimed to unravel the drivers explaining (1) why some locations were 28 

missing relatively more suitable species than others, and (2) why certain plant species were more often 29 

absent from suitable locations than others. 30 

Location: The Scandinavian mountains around Abisko, northern Sweden. 31 

Methods: We calculated the dark diversity in 107 plots spread out across four mountain trails using 32 

four different methods: two co-occurrence-based (Beals’ index and hypergeometric method) and two 33 

niche-based (climatic niche model and climatic niche model followed by species-specific threshold) 34 

methods. We then applied multiple generalized linear mixed-effects models and general linear models 35 

to determine which habitat characteristics and species traits contributed the most to dark diversity. 36 

Results: The study showed a notable divergence in the predicted drivers of dark diversity depending 37 

on the method used. Nevertheless, we can conclude that plot-level dark diversity was generally 17% 38 

higher in areas at low elevations and 31% higher in areas with a low species richness. 39 

Conclusion: Our findings call for caution when interpreting statistical findings of dark diversity 40 

estimates. Even so, all analyses point towards an important role for natural processes such as 41 
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competitive dominance as the main driver of the spatial patterns found in dark diversity in the 42 

northern Scandes. 43 

Key-words: plant ecology, Beals’ index, co-occurrence-model, niche-model, method comparison, plant 44 

diversity, regional species pool, plant traits, habitat characteristics 45 

Introduction 46 

Terrestrial ecosystems are increasingly affected by land-use and climate change, leading to large-scale 47 

biodiversity loss and community turnover (Theurillat & Guisan, 2001; Mooney et al., 2009; Newbold et 48 

al., 2015). Biodiversity plays an important role in ecosystem health and its loss alters ecosystem 49 

function (Hooper et al., 2012; Tilman et al., 2014). While most research has focused on the set of 50 

species that occur in an area, much less attention has gone to those species that are missing but could 51 

potentially inhabit the area (Pärtel et al., 2011). Nevertheless, to get a better understanding of 52 

community patterns and their underlying processes, such species absences hold viable additional 53 

information (Pärtel, 2014). Knowing which species from the regional species pool are absent within a 54 

given locality and identifying why, can help fine-tune conservation planning (Lewis et al., 2017). For 55 

example, if many of the absent – yet expected based on climate conditions – species are dispersal 56 

limited or cannot access the focal area due to strong dispersal barriers (i.e., habitat fragmentation), 57 

then some form of facilitated dispersal through assisted migration or actions to restore habitat 58 

connectivity is needed to restore biodiversity. However, if the nutrient conditions in the soil of the 59 

focal area are unsuitable for many of the missing species, then only providing assisted migration 60 

towards climatically suitable locations or restoring suitable climatic corridors would not be sufficient 61 

as restoration measures.  62 

Species belonging to the missing part of the environmentally filtered regional species pool are defined 63 

as the so-called “dark diversity” (see Figure 1a), a concept introduced by Pärtel et al. (2011). To be part 64 

of the dark diversity, the absent species must have a reasonable probability of dispersing to and 65 

establishing viable populations in the area (i.e., by belonging to the regional species pool) and its 66 

ecological requirements (depending on the methodology used that may incorporate either only its 67 

climatic or all environmental requirements) must match the local conditions (Pärtel, 2014). As a result, 68 

species that are present in the regional surroundings of the focal locality can be locally missing because 69 

they have a lower competitive ability, are dispersal limited, are ill-adapted to abiotic conditions, or due 70 

to stochastic processes (Keddy, 1992; Riibak et al., 2015). Understanding how extrinsic abiotic 71 

conditions and intrinsic species characteristics related to competition and dispersal abilities influence 72 

a species’ absence can consequently give a better view of the community assembly (Belinchón et al., 73 

2020). 74 

The dark diversity concept does not encompass the total regional species pool across different habitats 75 

but focuses on the environmentally filtered, or habitat-specific, regional species pool (Lewis et al., 76 

2017). Combining this habitat-specific regional species pool with the local observed species 77 

composition can result in an estimate of the dark diversity (Figure 1). However, there are several 78 

methods that use different biotic and abiotic filters to estimate the habitat-specific species pool (Figure 79 

1). Depending on the method, different outcomes can be expected, as explained below. One of the 80 

main benefits of the dark diversity concept is that it enables us to compare biodiversity across various 81 

habitats or ecosystems despite significant differences in local diversity by deriving a relativized 82 

biodiversity index from the dark diversity, known as community completeness (Pärtel et al., 2011; 83 

Pärtel et al., 2013).  84 
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 85 

Figure 1: Schematic overview of three approaches used to estimate the habitat-specific species pool (SP). a) the theoretical 86 
concept of dark diversity, where the dark diversity is the non-observed set of species in a certain location, after filtering the 87 
regional species pool based on abiotic, dispersal and biotic interaction limitations. In b), dark diversity is calculated using 88 
climatic filtering of the regional species pool (e.g. using climatic niche models to estimate which species could occur at a 89 
certain location), while c) represents commonly used co-occurrence-based methods, which integrate both abiotic and 90 
interaction filters. Figure adjusted from Stephenson (2016). The combination of dark- and observed diversity encompasses the 91 
habitat-specific species pool. Note that for both the methods in b) and c), several other methodological decisions can still be 92 
made that might affect the outcome. 93 

Estimating dark diversity is not straightforward but can be done in multiple ways (Lewis et al., 2016, 94 

Figure 1). The difficulty lies in estimating the habitat-specific species pool, which is, as explained above, 95 

the set of species in a region that can persist in the environmental conditions of the target site (Pärtel 96 

et al., 2011). It encompasses both the observed and dark diversity of the focal habitat. One could 97 

perform extensive sampling of habitat types in a region to estimate the habitat-specific species pool 98 

of each habitat type but this can be costly and time-consuming (de Bello et al., 2016). Therefore, 99 

computational approaches are often implemented. Most commonly, two types of methods are used 100 

to estimate the habitat-specific species pool, either (1) based on the abiotic niche of the species (e.g., 101 

using ecological indicator values or species distribution models) or (2) based on metrics of species’ co-102 

occurrence (e.g., the Beals’ probability index or the hypergeometric method) (Lenoir et al., 2010; de 103 

Bello et al., 2016; Carmona and Pärtel, 2020).  104 

Ecological indicator values are a proxy for species' ecological requirements and are often used to 105 

characterize environmental conditions. The approach allows to identify species from the regional 106 

species pool along environmental gradients based on their ecological preferences (Ellenberg et al., 107 

1991). A downside of this method is the difficulty of defining the realized niche of species since such 108 

indicator values are rough estimates of the niche optimum along a few specific ecological gradients, 109 

often based on expert knowledge (Lewis et al., 2016). Potentially more accurate approaches based on 110 

abiotic conditions make use of habitat suitability models to estimate species' environmental niches 111 

(Guisan & Thuiller, 2005). These models can be used to determine the environmental conditions 112 

suitable for a species (Parolo et al., 2008). In this method, the accuracy of the models highly depends 113 

on the resolution as well as on the selected set of environmental data (de Bello et al., 2016). 114 

Additionally, predicting a species’ habitat suitability based only on occurrence observations and 115 
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environmental data may prove to be difficult since processes like competition can play a crucial role, 116 

especially at the local scale (Cadotte & Tucker, 2017). 117 

In both the above-mentioned methods, the aim is to estimate the suitability of a location based only 118 

on the environmental niche of the species, regardless of the other species co-occurring in said location. 119 

By contrast, one could also estimate the potential of finding a species at a certain location based on 120 

the presence of its associated species. The Beals’ probability index can be used to calculate species co-121 

occurrence patterns (Beals, 1984). It relies on the idea that the presence of a species that is frequently 122 

found together with another species could indicate shared suitable abiotic conditions (Ewald, 2002). If 123 

the associated species of a target species are observed, but the target species itself is not, it is part of 124 

the dark diversity. The hypergeometric method works similarly by verifying if certain species 125 

associations occur more often than predicted by chance and by estimating the dark diversity of a given 126 

species at a location from the likelihood of its co-occurrence with species present at that location 127 

(Carmona & Pärtel, 2020). The major difference between the Beals’ probability index and 128 

hypergeometric method is that the hypergeometric method compares the actual number of co-129 

occurrences between two species to the association of random pairs of species (i.e. under the 130 

assumption that there is no association). The difference between the observed and random 131 

association provides the index value, whereas for the Beals’ index, the index value is only based on the 132 

observed patterns of co-occurrence (Carmona & Pärtel, 2020; Trindade et al., 2023). The advantage of 133 

these two co-occurrence-based approaches is that one only requires species composition data in the 134 

community without the need for environmental conditions. However, the prediction of the probability 135 

of a given species to belong to the dark diversity is dependent on the distribution of other species, 136 

which is especially challenging for species that are not strongly confined to particular communities or 137 

for environments where traditional communities and thus species associations are truncated (e.g., due 138 

to habitat disturbances).  139 

All these methods share a common purpose: they help recognize species that belong to the habitat-140 

specific species pool. The species not recorded in the observed diversity, but belonging to the habitat-141 

specific species pool of the focal site are part of the dark diversity (Figure 1; Pärtel et al., 2011). 142 

Considering the absence of a standard method for calculating the habitat-specific species pool and, by 143 

extension, the dark diversity, we used both niche- and co-occurrence-based approaches. Our aim was 144 

to estimate the dark diversity around Abisko, Sweden. We wanted to explore whether these different 145 

methods would yield varying estimates of dark diversity due to their inherent filters (Figure 1). We 146 

then further explored the drivers behind the spatial patterns of this dark diversity and assessed the 147 

impact of the different methods on these drivers. The concept of dark diversity is still in its infancy and 148 

therefore only a handful of studies have explored why species are part of the dark diversity, none of 149 

which were to our knowledge conducted in subarctic environments (Belinchón et al., 2020; Moeslund 150 

et al., 2017; Riibak et al., 2015). In this study, we wanted to unravel the drivers behind (1) why some 151 

locations are missing relatively more suitable species than others, and (2) why certain vascular plants 152 

of the Scandinavian mountains are more often absent from suitable locations than others. 153 

In light of the first research question, we expected locations with a higher relative dark diversity, 154 

hereafter referred to as plot-level dark diversity (i.e., a higher percentage of missing species from the 155 

habitat-specific species pool) to: (1) appear at lower elevations, as more intense competition will 156 

exclude a higher proportion of species (Jones & Gilbert, 2016); (2) be at the extreme ends of 157 

disturbance gradients, based on the intermediate disturbance hypothesis (Lembrechts et al., 2014; 158 

Rashid et al., 2021); (3) be at the extreme end of low pH and/or moisture gradients, since such 159 

conditions can be tolerated by a few species only (Gough et al., 2000; Vonlanthen et al., 2006); or (4) 160 

have low observed species richness, as these locations will be dominated by highly competitive species 161 
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preventing specialist species from co-occurring (Pellissier et al., 2010). Of course, these factors would 162 

act in addition to the stochasticity that always explains part of the variation in species occurrences at 163 

small spatial scales (Mohd et al., 2016). 164 

The composition of dark diversity can be influenced by not only plot characteristics but also species 165 

traits. Certain traits might make some species more likely to be absent from plots, thereby contributing 166 

to the dark diversity (Moeslund et al., 2017). Therefore, we have selected six species traits related to 167 

resource-use efficiency and dispersal as these can play a key factor in plant recruitment and 168 

persistence. We predict that plant species with a higher dark diversity probability, hereafter referred 169 

to as species-level dark diversity (i.e., absent in a higher percentage of plots where they were predicted 170 

to occur) to: (1) have a higher specific leaf area (SLA), since the soils in the alpine habitats of the study 171 

area are nutrient-poor (Westoby, 1998); (2) have a lower maximum vegetative plant height, as smaller 172 

plants would be more easily outcompeted in plots were they could theoretically occur; (3) have a 173 

higher seed mass or short-distance dispersal, since these are (loosely) correlated to a limited dispersal 174 

ability and lower seed abundance, which decreases the number of successful dispersal events (Howe 175 

& Smallwood, 1982; Ozinga et al., 2005); (4) be more recently introduced in the region, as non-native 176 

species have a more limited distribution and show possible time-lags in niche filling (Alexander et al., 177 

2016; Crooks, 2005); or finally, (5) be associated with arbuscular mycorrhizal (AM) or ectomycorrhizal 178 

(EcM) fungi, as the native vegetation in the region is dominated by ericoid mycorrhizal (ErM) species 179 

(Finlay, 2008; Tedersoo, 2017). 180 

2 Materials and methods  181 

2.1 Study area  182 

The field data collection was performed in July and August 2021 in the Abisko area, northern Sweden 183 

(68°21’N, 18°49’E). The region has a subarctic montane climate with an average annual temperature 184 

of -0.6°C (1913-2020, although average annual temperatures have not dropped below 0°C since 2011) 185 

and average annual precipitation of 310 mm (Abisko Scientific Research Station, 400 m above sea level 186 

(a.s.l.); https://polar.se/). The soil is comprised of till, colluvium, and glacio-fluvial deposits (Callaghan 187 

et al., 2013). At high elevations, the area is covered in snow for about 27 weeks of the year (Callaghan 188 

et al., 2013). At low elevations, the vegetation is dominated by open birch forests (Betula pubescens 189 

Ehrh.), with additional presence of rowan (Sorbus aucuparia L.) and several willow species (Salix sp.). 190 

The understory vegetation often consists of heath species (e.g., dwarf birch (Betula nana L.), European 191 

blueberry (Vaccinium myrtillus L.) and black crowberry (Empetrum nigrum L.)), or meadow species 192 

(e.g., Alpine bistort (Bistorta vivipara L.), globeflower (Trollius europaeus L.) and Alpine saw-wort 193 

(Saussurea alpina DC.)) (Sonesson & Lundberg, 1974). Above the treeline (520 m a.s.l), the vegetation 194 

is dominated by alpine/arctic heathland species (e.g., blue heath (Phyllodoce caerulea L.), bog 195 

blueberry (Vaccinium uliginosum L.) and lingonberry (Vaccinium vitis-idaea L.)) (Kullman, 2015). 196 

2.2 Field data collection 197 

2.2.1 Study sites  198 

A total of 107 plots were surveyed in the vicinity of four mountain trails: Björkliden, Låktatjåkka, Nuolja, 199 

and Rallarvägen (Figure 2).  200 

https://polar.se/
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 201 

Figure 2: Map of the study area around Abisko, Sweden (grey dot on the inset), with 107 surveyed plots 202 

along the four hiking trails (colors) and the different survey methods (symbols). 203 

Data from new and ongoing vegetation surveys were combined, with two different methodologies: 73 204 

1 m × 1 m plots from a long-term vegetation composition monitoring project in the area (hereafter 205 

called ‘small plots’), as well as 34 large (10 m × 10 m) plots established in the framework of the global 206 

DarkDivNet network (Pärtel et al., 2019). Of the 107 plots, 40 were situated along trails close to 207 

Björkliden and around Låktatjåkka (Wedegärtner et al., 2022), 57 in the Abisko National Park on Mount 208 

Nuolja (MacDougall et al., 2021), and 10 along the Rallarvägen.  209 

2.2.2 Large plots 210 

The vegetation monitoring method used in the large plots was based on the DarkDivNet protocol 211 

(Pärtel et al., 2019). The plots (10 m × 10 m) were placed at a 10 m perpendicular distance from the 212 

trail. In each plot, all vascular plants were recorded. Species were identified using the Fjällflora 213 

(Mossberg & Stenberg 2008). Observations that could not be identified to the species level (e.g., 214 

Alchemilla sp.) were removed from the species list and thus also from the regional species pool. 215 

Furthermore, following the DarkDivNet protocol, the maximum vegetative height (cm) was measured 216 

with a ruler for the tallest individual of each species in all plots.  217 

In every plot, we visually estimated the cover (%) of total vegetation, bare ground, rock, litter, 218 

herbaceous vegetation, bryophytes, lichen, shrubs, and trees (> 200 cm). At the center of every plot, 219 

the exact location was recorded with a hand-held GARMIN GPSMAP® 66i GPS receiver. Soil samples 220 

were collected using the protocol explained below (see 2.3). 221 

2.2.3 Small plots  222 
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The small plots were surveyed using the pin-point or point intercept method, which is often used to 223 

assess plant cover (Jonasson, 1988). A 1 m × 1 m plot was placed at 10 m from the trail. In one plot, 224 

100 pins were vertically dropped in 10 cm increments from left to right and top to bottom. With every 225 

pin-drop, we recorded the vascular plant species touching the pin, multiple recordings for the same 226 

species occurred when more than one individual of that species touched the pin. When the pin 227 

touched only the ground, the observation was categorized as either litter, bryophytes, bare soil, or 228 

lichen, a single hit was noted. Soil samples were collected using the same protocol as explained below 229 

(see 2.3). 230 

2.3 Soil sample analysis  231 

Soil samples were collected in 50 out of the 107 plots (both large and small plots). During sampling, 232 

the litter covering the soil was removed and a minimum of 300 g of soil was taken from the top 10 cm 233 

of the ground. Soil samples could not be collected along the Nuolja trail (57/107 plots) as this trail is in 234 

the Abisko National Park and no sampling permission was obtained in the year of the survey. However, 235 

50 of these plots were long-term permanent plots for which soil pH measurements were available from 236 

previous soil sampling campaigns conducted in 2018 (using the same sampling and analysis 237 

procedure). The seven remaining plots were in very close (<10 m) proximity to small plots for which 238 

pH was measured in 2018, and we therefore used the mean pH of those plots. Ultimately, pH could be 239 

obtained for all but one plot, assuming that when largely undisturbed – as was the case in the system 240 

– pH-values would only change slightly over time. 241 

All soil samples were stored in a fridge at 4°C until they were analyzed between September and 242 

December 2021 at the University of Antwerp, Belgium. To measure soil pH, 25 mL of a KCl solution was 243 

added to 10 g (9.9-10.1 g) of soil. The samples were put in a shaker for an hour and afterward rested 244 

for another 60 min. Then, soil pH was measured with a 914 pH/Conductometer by Metrohm© in the 245 

liquid layer at the top of the sample after shortly manually shaking the tubes. 246 

2.4 Online data collection  247 

2.4.1 Gridded data products  248 

To create the climatic niche models, we collected gridded climate data with a resolution of 30 249 

arcseconds (c. 1 km at the equator) for annual mean air temperature, annual precipitation, mean 250 

maximum air temperature of the warmest month, and mean minimum air temperature of the coldest 251 

month. Gridded data were downloaded from CHELSA version 1.2, representing the long-term (1979-252 

2013) climatic conditions (Karger et al., 2017). 253 

Soil temperature estimates (i.e., annual mean soil temperature, mean soil minimum temperature of 254 

the coldest month and mean soil maximum temperature of the warmest month) were obtained from 255 

the SoilTemp global maps of soil temperature (Lembrechts et al., 2021). The SoilTemp maps were 256 

derived from CHELSA monthly air temperature maps and the offset between gridded air temperature 257 

and in-situ soil temperature measurements stored in the SoilTemp database (Lembrechts et al. 2020). 258 

The gridded data, representative of the upper soil layer (top 5 cm), had the same resolution as the 259 

CHELSA data, namely 30 arcseconds.  260 

Elevation was extracted from the European Digital Elevation Model (DEM) with a resolution of 25 m, 261 

obtained from Copernicus Land Monitoring Service version 1.1 (European Union, 2021).  262 

Lastly, the topographic wetness index, a topographical proxy for soil moisture, was obtained from a 263 

TWI raster layer covering Europe (Haesen et al., 2021). The TWI raster, which had a spatial resolution 264 

of 25 m, was generated using the method developed by Kopecký et al. (2021).  265 
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All gridded data were handled in R version 4.2.1 (R Core Team, 2021) using the raster (Hijmans et al., 266 

2012), sp (Pebesma et al., 2005), and rgdal (Keitt et al., 2010) packages to overlay the spatial 267 

coordinates of all 107 plots and extract climatic information at the plot-level. 268 

2.4.2 Type of disturbance  269 

For every plot, we assigned a type of disturbance based on its proximity to hiking trails, roads, and 270 

railroad. By visual assessment in QGIS, one of the three disturbance types (hiking trail, road or railroad) 271 

was assigned to every plot (QGIS Development Team, 2021). All plots were close to hiking trails, yet 272 

whenever the railroad or a road was within 150 m of the plot, its impact was considered dominant, 273 

and the hiking trail classification thus overruled. While a continuous variable for distance to the 274 

disturbance would have allowed for more nuance, adding a separate parameter for distance to the 275 

trail, to the road and to the railroad was not possible, as all plots were at a fixed distance of 10 m from 276 

a trail, and the distance to road and railroad were too strongly correlated. 277 

2.4.3 Amount of bare ground  278 

Disturbances can generate patches of bare ground that can open empty niches for new species to 279 

colonize and establish themselves (Lembrechts et al., 2014). The amount of bare ground (%), here used 280 

as a proxy of disturbance, was estimated or calculated for every plot. For the large plots, this was 281 

estimated from the percentage cover of litter and bare ground. This was calculated for the small plots 282 

by summing up all the pins that touched bare ground and litter, dividing this by the total number of 283 

pins in a plot.  284 

2.4.4 Plant functional traits  285 

Average maximum vegetative plant height per species was calculated from the measurements done in 286 

the large plots.  287 

The specific leaf area (SLA) for every species was retrieved from data collected in the framework of the 288 

Mountain Invasion Research Network (MIREN) in the region in 2017 (published as part of the Tundra 289 

Trait Team database (TTT); Bjorkman et al., 2018). The SLA was calculated as leaf area (cm²)/dry weight 290 

(g).  291 

Average seed mass per species was obtained from the global TTT database or – if not available there - 292 

the LEDA Traitbase (Bjorkman et al., 2018; Kleyer et al., 2008).  293 

The dispersal type per species was also retrieved from the LEDA Traitbase and used to categorize 294 

species according to their potential for long-distance dispersal (LDD) and short-distance dispersal (SDD) 295 

(Kleyer et al., 2008). All species were considered long-distance dispersers, hence this variable was not 296 

included in further analyses. 297 

2.4.5 Nativeness Index  298 

We used a continuous rather than a binary measure of the status of a species within a region, to get a 299 

more accurate view of the history of the species. Our nativeness index (NI) used historical surveys from 300 

the Global Biodiversity Information Facility (GBIF) database. It considered the first year a species was 301 

observed (year first occurrence species) and the first year in which more than 50 species were 302 

observed in the region (year first survey). If the NI was close to 1, the species was already observed at 303 

the time of the first survey. As the value approached 0, the species was observed increasingly recently 304 

for the first time and was thus more likely to be non-native.  305 

https://www.gbif.org/
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𝑁𝐼 =  
√𝑦𝑒𝑎𝑟 (2020) − 𝑦𝑒𝑎𝑟 𝑓𝑖𝑟𝑠𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

√𝑦𝑒𝑎𝑟 (2020) − 𝑦𝑒𝑎𝑟 𝑓𝑖𝑟𝑠𝑡 𝑠𝑢𝑟𝑣𝑒𝑦 (1850) 
 306 

Square roots were used in the formula to give more weight to recent differences (e.g., a first 307 

observation in 2010 vs 2020 is considered a more substantial difference than one in 1900 vs 1910). The 308 

first occurrence and the year of the first survey were obtained using the rgbif package (Chamberlain 309 

et al., 2021).  310 

Note that the region was poor in non-native species, and those present were mostly introduced 311 

already over a century ago (Wiegmans et al., 2022). This is reflected in the high values of our nativeness 312 

index (mean = 0.98, 5% lowest = 0.88). Consequently, one should not expect strong effects of 313 

nativeness on dark diversity patterns in the northern Scandes. 314 

2.4.6 Mycorrhizal associations  315 

The association of plant species with the main types of mycorrhizal fungi (AM = arbuscular mycorrhiza, 316 

EcM = ectomycorrhiza, ErM = ericoid mycorrhiza and NM = no mycorrhiza) was retrieved from the 317 

FungalRoot database (Soudzilovskaia et al., 2020).  318 

More details on the online data collection can be found in Appendix S1. 319 

2.5 Data-analysis  320 

2.5.1 Dark diversity modeling  321 

For further analysis, only species with 10 or more occurrences, were included (n=49), as sufficient 322 

observations were needed to calibrate climatic niche models and build co-occurrence matrices. We 323 

then used the same dataset in four different approaches to estimate dark diversity. All statistical 324 

analyses were conducted in R version 4.2.1 (R Core Team, 2021).  325 

Climatic niche modeling 326 

The presence and absence of all species in every plot was used to make climatic niche models. For 327 

every species, a generalized linear model (GLM; Bates et al., 2015) was calibrated, with a binomial 328 

distribution containing all climatic variables and their quadratic terms as explanatory variables (i.e., 329 

annual mean air temperature, annual precipitation, maximum air temperature of the warmest month, 330 

minimum air temperature of the coldest month, annual mean soil temperature, minimum soil 331 

temperature of the coldest month, and maximum soil temperature of the warmest month) and 332 

presence/absence (1/0) of a species per plot as the response variable. Multicollinearity was checked 333 

using the Variance Inflation Factor (VIF) from the car package (Fox & Weisberg, 2011) and variables 334 

that increased the VIF to 5 or more were removed. The final models contained: annual precipitation, 335 

minimum soil temperature of the coldest month, maximum soil temperature of the warmest month, 336 

and their quadratic terms. No further model selection was done as we were not interested in a model 337 

identifying the drivers of the species' climatic niche, but rather wanted to approximate their climatic 338 

niche as consistently as possible.  339 

To predict the probability of a species’ occurrence in a specific plot, the GLM was calibrated on all 340 

remaining plots (Lembrechts et al., 2019) and the probability was estimated for that specific plot 341 

excluded from the model calibration. This leave-one-out procedure was then repeated for all plots and 342 

all species, each time predicting the probability of occurrence of a species in a plot based on a model 343 

calibrated on its occurrence pattern in all other plots. We then calculated the relative dark diversity 344 

per plot by averaging the predicted presence of each absent species in a plot and the dark diversity 345 
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probability per species by averaging the predicted presence of a species across all plots where it was 346 

absent. 347 

The second method to estimate the dark diversity used the same climatic niche model as above. Yet, 348 

instead of continuous probability estimates, we converted niche model predictions into 349 

presence/absence estimates. For this, we calculated species-specific thresholds for presence using the 350 

function ecospat.max.tss from the ecospat package (Broennimann et al., 2022) which chooses the 351 

threshold that maximizes values for the True Skill Statistic (TSS), which assesses the accuracy of species 352 

distribution models (Allouche et al., 2006). Based on this, we created a binary dataset where the values 353 

below the threshold got a 0 (predicted to be absent) and the values above got a 1 (predicted to be 354 

present). Afterward, we removed the values where the species was observed to be present based on 355 

the vegetation surveys. To calculate the species-level dark diversity probability, we used the formula 356 

proposed by Moeslund et al. (2017), using the number of plot-level observations and predictions: 357 

# 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑑𝑎𝑟𝑘 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

# 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑝𝑜𝑜𝑙
 358 

To calculate the relative plot-level dark diversity: 359 

# 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 𝑑𝑎𝑟𝑘 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

# 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑝𝑜𝑜𝑙
 360 

The habitat-specific species pool consisted of both the observed and dark species. Note that at the 361 

species level, we are estimating the probability that a species belongs to the dark diversity (dark 362 

diversity probability), while at the plot-level, we are estimating the percentage of species from the 363 

species pool that is absent (dark diversity per se).  364 

Beals’ method 365 

Two co-occurrence-based methods to estimate the dark diversity were used, with the first being the 366 

Beals’ index (Beals, 1984), as applied by Lewis et al. (2016). We first built a species co-occurrence 367 

matrix, then calculated the Beals’ index, using the beals function from the vegan package, for each 368 

species in every plot, excluding the focal species as suggested by Oksanen et al. (2022). The thresholds 369 

used to decide whether a species was part of the regional species pool were species-specific and 370 

defined as the 5th percentile of the Beals’ index value for the species (Gijbels et al., 2012). Before 371 

calculating each threshold, the lowest value of the Beals' index was determined among the plots 372 

containing occurrences of the species in question, and all plots with values below this lowest value 373 

were discarded (Moeslund et al., 2017). For each plot, the dark diversity then consisted of all species 374 

from the habitat-specific species pool, except those present (Pärtel et al., 2011). To calculate the plot- 375 

and species-level dark diversity probability the same formulae as for the species-specific threshold 376 

were used.  377 

Hypergeometric method  378 

The second method used to estimate the dark diversity was the hypergeometric method, as proposed 379 

by Carmona & Pärtel (2020). This method avoids the binary form in which dark diversity is often 380 

defined. The co-occurrence matrix used for the Beals' method was also employed in this case. To get 381 

estimates of the dark diversity, we used the function DarkDiv from the DarkDiv package, with the 382 

argument ‘method’ containing ‘Hypergeometric’ (Carmona & Pärtel, 2020). We applied this method 383 

to all species in all plots for which we obtained a probability that the species could be present in that 384 

plot. Afterward, all values for plots where the species were observed to be present were removed and 385 

a conservative threshold of 0.9 was applied as done by Trindade et al. (2023). All values below 0.9 were 386 
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given a 0 since we did not expect the species to be present here. To calculate the relative plot-level 387 

dark diversity, per plot the mean was taken from the remaining values (i.e. all values larger than 0.9). 388 

The same was done for the species-level dark diversity, yet here the mean was taken per species.  389 

2.5.2 Drivers of relative plot-level dark diversity  390 

To investigate why certain plots had a higher relative dark diversity, we created generalized linear 391 

mixed-effects models (GLMMs) with a beta distribution and logit-link function using the glmmTMB 392 

package (Brooks et al., 2017). Predictions from each of the four dark diversity indices (the two 393 

approaches based on niche models, the Beals’ index, and the hypergeometric approach) were used as 394 

the response variable.  395 

These plot-level models contained elevation, soil pH, type of disturbance, amount of bare ground, TWI, 396 

observed species richness and plot size as explanatory variables. The plots were situated along various 397 

trails. To account for this hierarchical sampling design, the model included a random intercept for plot 398 

number nested within trail identity. Multicollinearity and distribution of residuals were checked using 399 

the Variance Inflation Factor (VIF) and the DHARMa package (Hartig, 2022) and deemed not violated. 400 

Due to the low sample size, we limited ourselves to linear patterns and did not include two-way 401 

interaction terms since these more complex models could not converge. For the same reason, 402 

quadratic effects were not tested, even though theoretically they could be expected for pH and soil 403 

moisture. However, within our study system both the pH and moisture gradient only reached extreme 404 

values on one side of the gradient (e.g., highly acidic yet no highly basic soils).  405 

No further model selection was performed (Hartig, 2018). The variance explained by the full model 406 

was obtained using the performance function from the performance package (Lüdecke et al., 2021). 407 

To determine the proportion of explained variance of every variable, we followed a variation 408 

partitioning approach. First, the variance of the full model was calculated. Afterward, for every 409 

explanatory variable, a model was made consisting of all variables except the focal variable. By 410 

extracting the marginal R² of the individual models from the R² of the full model, the variance of the 411 

focal variable was obtained (Legendre & Legendre, 1998). Community completeness was also 412 

calculated for each plot and every method as ln(observed richness/dark diversity) (Pärtel et al., 2013). 413 

A linear mixed model was created using the lmer function from the lme4 package (Bates et al., 2015) 414 

with plot as a random factor to compare whether the community completeness differed significantly 415 

depending on the method. The distribution of the residuals was checked using the DHARMa package 416 

(Hartig, 2022) and assumptions were not deemed violated. As one needs to assess community 417 

completeness using species numbers, the community completeness based on the climatic niche 418 

models had to be calculated using a species-specific threshold as well, thus resulting in the same values 419 

as in the original dark diversity assessment using climatic niche models with a threshold. We thus 420 

maintained only one of these in the comparison.  421 

2.5.3 Drivers of species-level dark diversity probability 422 

To investigate why certain species had a higher dark diversity probability, we created GLMs with a beta 423 

distribution and logit-link function using the betareg package (Cribari-Neto & Zeilis, 2010) with 424 

predictions from each of the used dark diversity indices (based on the niche models, the Beals’ index, 425 

and the hypergeometric approach) as a response variable.  426 

First, full models were made separately for each dark diversity index that contained the nativeness 427 

index, maximum vegetative plant height, specific leaf area, dispersal type, seed mass, and mycorrhizal 428 

association as explanatory variables and species-level dark diversity as the response variable. 429 

Assumptions of multicollinearity and distribution of residuals were tested and not violated. Here as 430 
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well, two-way interaction terms could not be tested and no further model selection was performed 431 

(Hartig, 2018). Afterward, pairwise comparisons were conducted on the categorical parameters using 432 

the emmeans package (Lenth, 2022).  433 

3 Results  434 

3.1 Plot-level dark diversity  435 

Depending on the method, we could explain between 39% and 87% of the variance in plot-level dark 436 

diversity. In two cases (climatic niche models and hypergeometric method), elevation was responsible 437 

for the largest share, while in the two other cases (species-specific threshold and Beals’ index) species 438 

richness was the most dominant factor (Figure 3). On average across all models, elevation explained 439 

13% of the variance, species richness 7%, and plot size, type of disturbance, amount of bare ground, 440 

pH and TWI explained an additional 2%, 1%, 2%, 4% and 2%, respectively. Note that due to the nature 441 

of the variance partitioning calculations, variances do not necessarily add up to the total variance of 442 

the full model. 443 

 444 

Figure 3: Variance partitioning (expressed in % and calculated using the marginal R²) of the different 445 

explanatory variables in the GLMMs of the plot-level analyses on the predictions of each of the four 446 

different dark diversity methods. TWI = topographic wetness index. 447 

In three out of the four methods used, the plot-level dark diversity decreased significantly across the 448 

elevation gradient (Table 1; Figure 4). Only in the model based on the Beals’ index did elevation not 449 

have a significant influence (Table 1; Figure 4d). 450 

Table 1: Models explaining the plot-level dark diversity using the different dark diversity estimation 451 

methods: coefficients (p-values: * p≤0.05; ** p≤0.01; *** p≤0.001). The factor used for the intercept 452 

was allocated alphabetically and all other factors were compared to this baseline. Beals = Beals’ index; 453 

CN = climatic niche models; Hyper = hypergeometric method; SS = species-specific threshold; Elev = 454 

elevation; SR = species richness; TOD = type of disturbance; TWI = topographic wetness index. 455 
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Model Intercept 

(Road) 

Elev SR Plot 

size 

(10m x 

10m) 

TOD 

Hiking 

trail 

TOD 

Railroad 

% bare 

ground 

pH TWI AIC 

Beals 1.04* 10-4 -

0.082**

* 

-0.121 -0.112 -0.345 0.001 0.032 0.001 -195 

CN -0.327 -

0.00

1*** 

-

0.029**

*  

0.079 0.524 -0.251 -0.001* -0.022 -0.014 -370 

Hyper 0.101 -

0.00

1** 

0.01 -0.304 0.416 -0.177 -0.006 -0.001 -0.071 -137 

SS 3.00*** -

0.00

1** 

-

0.105**

*  

-0.408* 0.281 -0.165  -0.001 -

0.262*

**  

0.038 -140 

 456 
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457 
Figure 4: Marginal effects plots of the plot-level dark diversity as a function of elevation (m a.s.l.). The 458 

grey area indicates the 95% confidence interval and the grey dots are the raw data points. Dark 459 

diversity was estimated using a) the climatic niche models, b) the climatic niche models followed by the 460 

species-specific threshold, c) the hypergeometric method and d) the Beals’ index. S = significant; NS = 461 

non-significant. 462 

The plot-level dark diversity decreased significantly with increasing species richness in three cases 463 

(Table 1; Figure 5a, 5b, 5d), yet increased with increasing species richness when using the 464 

hypergeometric method, albeit not significantly (Table 1; Figure 5c). 465 

 466 
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467 
Figure 5: Marginal effects plots of the plot-level dark diversity as a function of species richness. The 468 

grey area indicates the 95% confidence interval, and the grey dots are the raw data points. a) the 469 

climatic niche models, b) the climatic niche models followed by the species-specific threshold, c) the 470 

hypergeometric method and d) the Beals’ index. S = significant; NS = non-significant. 471 

Furthermore, our results indicate that only the climatic niche model had a significant relationship 472 

between dark diversity and bare ground. Moreover, only the climatic niche model followed by the 473 

species-specific threshold had significant relationships with plot size and pH (Appendix S2, Figure S1a). 474 

In the remaining two models, none of the other variables were found to be significant predictors of 475 

dark diversity.  476 

Lastly, the community completeness based on the Beals’ index was significantly lower than the 477 

community completeness based on the other two methods (Appendix S2, Figure S2).  478 

3.2 Species-level dark diversity  479 

Depending on the method, we could explain between 8% and 45% of the variance in species-level dark 480 

diversity (Figure 6). In all cases, mycorrhizal association was responsible for the largest share (Figure 481 

6). On average across all models, mycorrhizal association explained 16% of the variance, seed mass 482 

9%, SLA 3% and the NI and the maximum vegetative plant height an additional 2% and 3%, respectively. 483 

Note that due to the nature of the variance partitioning calculations, variances do not necessarily add 484 

up to the total variance of the full model. 485 

 486 
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 487 

Figure 6: Variance partitioning (expressed in % and calculated using the marginal R²) of the different 488 

explanatory variables in the GLMs of the species-level analyses on the predictions of each of the four 489 

different dark diversity methods. SLA = specific leaf area.  490 

Mycorrhizal status was the only significant parameter in the climate niche model approach, with 491 

ericoid mycorrhizae differing significantly from AM, EcM and NM (Figure 7; Table 2; Appendix S3). 492 

Species with a symbiotic ericoid mycorrhizal association had a significantly higher dark diversity than 493 

all other associations when using the climatic niche models (Table 2; Figure 8a). However, the opposite 494 

was true when using the Beal’s index and climatic niche model followed by the species-specific 495 

threshold (Table 2; Figure 7b, d). For the Beals’ index the contrast test also revealed that ericoid 496 

mycorrhizae differed significantly from AM, EcM and NM (Figure 7d, Appendix S3). For the species-497 

specific threshold, the contrast test only showed a borderline significant difference between ErM and 498 

NM (Figure 7b; Appendix S3). Lastly, and even more contrasting, species with a symbiotic 499 

ectomycorrhizal association had a significantly lower dark diversity than all other associations when 500 

using the hypergeometric method (Figure 7c). The contrast test also revealed that EcM differed 501 

significantly from AM and NM (Appendix S3).  502 

Table 2: Models explaining the plot-level dark diversity using the different dark diversity estimate 503 

methods: coefficients (p-values: * p≤0.05; ** p≤0.01; *** p≤0.001). The factor used for the intercept 504 

was allocated alphabetically and all other factors were compared to this baseline. Beals = Beals’ index; 505 

CN = climatic niche models; Hyper = hypergeometric method; SS = species-specific threshold; AM = 506 

arbuscular mycorrhiza; EcM = ectomycorrhiza; ErM = ericoid mycorrhiza; NM = no mycorrhiza; MVH = 507 

maximum vegetative plant height; SLA = specific leaf area; NI = nativeness index; SM = seed mass.  508 

Model Intercept 

(AM) 

EcM ErM NM MVH SLA NI SM AIC 

Beals 1.04* 0.170 -1.17*** 0.193 -10-4 -0.001 -3.28 -0.089 -19 
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CN -0.043 0.108 1.17***  -0.101 -10-4 -10-4 -1.37 -0.068 -72 

Hyper -3.66 -1.40* -0.597 0.314 0.001 -0.001 3.42 0.121 -38 

SS -5.96 0.453 -0.916* 0.208 -0.001 -0.001 6.95 0.082 -11 

 509 

510 
Figure 7: Prediction of the species-level dark diversity in relation to the mycorrhizal type based on the 511 

beta regression model. The black dots show the average dark diversity per individual factor whereas 512 

the error bars show the standard deviation. AM = arbuscular mycorrhiza; EcM = ectomycorrhiza; ErM 513 

= ericoid mycorrhiza; NM = no mycorrhiza. Dark diversity estimated using a) the climatic niche models, 514 

b) species-specific threshold, c) the hypergeometric method and d) the Beals’ index. 515 

None of the other variables had a significant influence on the species-level dark diversity.  516 

4. Discussion 517 

4.1. Plot-level dark diversity 518 
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We found relatively consistent patterns in the drivers of dark diversity at the plot-level, but much less 519 

consistency was observed at the species level. Plot-level dark diversity was most consistently related 520 

to elevation, with plots at higher elevations having a lower plot-level dark diversity - and thus fewer 521 

expected species missing - than plots at lower elevations. This was true for both niche-based methods 522 

as well as for the hypergeometric method, yet not for the Beals’ index, in which elevation was not 523 

significant. Such a decline with elevation is in line with ecological theory. Indeed, under harsh 524 

environmental conditions, competitive interactions are often replaced by mutualistic ones, or 525 

competition is at least lowered in intensity, thereby reducing the exclusion of less competitive species 526 

with a lower dark diversity as a result (Callaway et al., 2002; Klanderud, 2010; Lembrechts et al., 2018). 527 

Additionally, the presence of more ruderal and competitive species in the lowlands compared to the 528 

stress-tolerant species higher up in the mountains along roadsides also suggests that reduced 529 

competition can be one of the main drivers behind the lower dark diversity at higher elevations 530 

(Lembrechts et al., 2014). Furthermore, climatic conditions are usually milder in the lowlands, making 531 

them suitable for a broader set of species (Körner, 2021). Consequently, since more species can be 532 

present in these plots, it is also more likely that at least some of them are excluded, resulting in a 533 

higher number of species belonging to the dark diversity. As the co-occurrence-based metrics 534 

accounted for some of these factors (e.g., lower expectancy of species in plots dominated by species 535 

that traditionally outcompete them), it should come as no surprise that elevation was not significant 536 

in the model for the Beals’ index. 537 

Species richness was identified as a key driver of plot-level dark diversity in three out of the four 538 

methods. Its effect was negative for all but the hypergeometric method for which it was not significant, 539 

thus largely following our hypothesis. In this system, plots with a low number of species are likely to 540 

be dominated by highly competitive species, which can prevent the establishment of several species 541 

that could in theory occur there (Pellissier et al., 2010). Indeed, plots with a low species richness in the 542 

study system were often dominated by Empetrum nigrum. It is an efficient competitor for nutrients, 543 

can grow on soils with low pH, and has allelopathic effects against seed germination and the growth 544 

of surrounding species (Tybirk et al., 2000), and can possibly direct several species from the regional 545 

species pool locally to the dark diversity. Our results seem to support the study by Fløjgaard et al. 546 

(2020) who found that competitive species have an adverse effect on species richness, leading to an 547 

increase in dark diversity. Nevertheless, it is possible that approaches based on species co-occurrences, 548 

such as the hypergeometric method and the Beals’ index, already account for this effect of 549 

competition.  550 

Finally, the amount of bare ground, soil pH and plot size also appeared to have a significant effect on 551 

the plot-level dark diversity, but this was only the case for the niche-based methods. No other variables 552 

were significant for the other two methods which already indicates that these models should be 553 

handled with caution. 554 

4.2 Species-level dark diversity 555 

Mycorrhizal association was the only variable with significant influence, across all methods, on the 556 

species-level dark diversity across all methods. However, while species with a symbiotic ericoid 557 

mycorrhizal association had a significantly higher dark diversity than all other associations when using 558 

the climatic niche models, the opposite was true for the climatic niche model followed by a species-559 

specific threshold and the Beals’ method. Noteworthy, when using the hypergeometric method 560 

species with a symbiotic ectomycorrhizal association had a significantly lower dark diversity than all 561 

other associations. These contrasting results highlight the differences between the different methods 562 

used to estimate dark diversity. In the Scandinavian mountains, the species with an ErM association 563 
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(e.g. E. nigrum and V. vitis-idaea) were virtually not climate-limited (occurring in 64 and 63 out of the 564 

107 plots, respectively) and could in theory, based on their climatic niche, be present in all plots. 565 

Therefore, their dark diversity probability ended up being very high in any plot where they were 566 

absent, simply because of the underlying modeling approach. We aimed to correct this issue by using 567 

species-specific thresholds, yet here again mycorrhizal type was withheld as significant.  568 

These ErM-associated species not only dominated the studied landscape, but they were also often 569 

found in strong association with each other, resulting in clear predictions of their presence once one 570 

of them was present, when using the Beals’ index. As their spatial connection in the field was so 571 

consistent, their estimated dark diversity using these methods ended up relatively low. Additionally, 572 

as ErM-fungi are the most dominant and widespread fungi in tundra regions (Tendersoo, 2017), in 573 

theory, there ought to be enough coverage of ErM-fungi so that the establishment of species 574 

associated with them should not be hampered. Consequently, there should be less reason for the 575 

species to be absent in areas where they could potentially occur than for AM-associated species 576 

(Tendersoo, 2017). All of this suggests that the observed higher dark diversity estimates for ErM-577 

associated species based on the climatic niche approach are most likely a methodological artefact. 578 

These methodological issues could also explain why such little consistency was observed for the other 579 

studied drivers of species-level dark diversity, calling for caution when interpreting findings from any 580 

such dark diversity estimate separately.  581 

4.3 Comparison of methods and uncertainties 582 

In this paper, we estimated dark diversity using both niche-based and co-occurrence-based methods, 583 

which are often used interchangeably in the scientific literature. However, our results suggest that 584 

both approaches have significantly different assumptions and, as a result, get relatively incomparable 585 

results. Indeed, the niche-based approaches estimate the dark diversity as the set of species that could 586 

occur at a certain location based on their climatic niche or other environmental filters. The latter 587 

drivers are then often used as explanatory variables for the observed dark diversity, as done in the 588 

underlying study. For example, reduced competitive interactions in sites with larger percentages of 589 

bare ground would result in lower dark diversity, as is hinted at by our results.  590 

Co-occurrence-based methods, on the other hand, estimate dark diversity simply from the neighboring 591 

species with which a target species is usually associated. These approaches incorporate biotic 592 

interactions inherently in the dark diversity estimate. However, they do exclude species from the dark 593 

diversity for which the climatic conditions fall within their climatic limits, yet whose co-occurring 594 

species are also missing at a site. The latter could be especially problematic in diverse communities 595 

with high beta diversity, or areas with truncated, reduced, or novel communities as a result of 596 

anthropogenic land use or climatic changes (Christensen et al., 2021).  597 

Perhaps more worryingly, within each type of dark diversity estimation method, results were not 598 

necessarily in agreement with each other. We found largely different findings, especially for species-599 

level dark diversity, when using climatic niches with or without species-specific thresholds, as well as 600 

when using the hypergeometric method versus the Beals’ index. Additionally, the community 601 

completeness also differed significantly, depending on the method used. As such, our results highlight 602 

the need for caution and transparency when calculating and interpreting dark diversity estimates, as 603 

the conclusions depend heavily on the methodological decisions one makes, and methods should thus 604 

be tailored to the specific research questions.  605 
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Of course, several alternative methods could still be used to estimate dark diversity, and many 606 

adjustments to the methods used above could be proposed. For example, one could use global 607 

datasets such as GBIF to model the climatic niche, rather than data from the study region only. Using 608 

global datasets for such broader-scale niche models could result in a more accurate estimate of the 609 

climatic niche since the entire climatic niche could be modelled, rather than a truncated version as 610 

results from regional data (Bazzichetto et al., 2023). However, most of these global datasets lack 611 

absence data and presences are obtained using a wide variety of methodologies and spatial resolutions 612 

(Tessarolo et al., 2014), while abiotic data is at the global scale often only available at coarser resolution 613 

(Lembrechts et al., 2019). This could also make the predictions less accurate. Additionally, there is the 614 

possibility of mismatches, especially for rare species, since global datasets can be spatially biased 615 

(Meyer et al., 2016). Therefore, predicting local climatic niches based on global data can make it more 616 

difficult to figure out whether the absences are due to a bias in the global dataset or the drivers under 617 

investigation. Furthermore, it is worth mentioning that alternative thresholds could be used for the 618 

species-specific method, such as Cohen's Kappa or Area Under the Curve (AUC). The chosen TSS 619 

threshold in this study may be affected by the low prevalence of species (Leroy et al., 2018). However, 620 

since we only used the relatively common species, the issue of low prevalence should not pose a 621 

notable concern (Allouche et al., 2006; Wunderlich et al., 2019). These alternative threshold methods 622 

were not examined in this particular study as this may further complicate methodological decisions for 623 

dark diversity estimation. Hence, we suggest that more research is needed to investigate the impact 624 

of alternative thresholds when using species-specific methods. 625 

The most promising avenue could perhaps come from an approach that combines both climatic niches 626 

with co-occurrences, such as joint Species Distribution Models (jSDMs; Pollock et al., 2014). This recent 627 

class of distribution models draws information from species co-occurrences and explains spatial 628 

variation in species distributions by extending standard species distribution models with species–629 

species associations. Such an approach could potentially allow distinguishing through one model 630 

between absences driven by environmental unsuitability, biotic interactions, or other drivers. 631 

Nevertheless, Carmona & Pärtel (2020) did find that jSDMs could not outperform the hypergeometric 632 

method, yet they do substantially increase computational time.  633 

4.5 Conclusions 634 

The concept of dark diversity is still in its infancy, yet its contribution to understanding community 635 

completeness and its use in nature conservation has already been shown to be significant (Lewis et al., 636 

2017; Riibak et al., 2015). In this context, it is crucial to determine whether a species’ absence is a 637 

result of species-specific traits or plot characteristics, be it abiotic factors or biotic interactions, which 638 

is something traditional biodiversity studies that only focus on species presences cannot provide. We 639 

here compared different methodological approaches to estimate dark diversity and showed significant 640 

divergence in predicted drivers of dark diversity based on the method used, calling for caution when 641 

interpreting statistical findings on dark diversity estimates. Given the high level of variation in outcome 642 

between methods, it is currently not possible to recommend one or the other. More comparative 643 

studies in different environments are thus necessary to elaborate further on the search for a robust 644 

methodology to estimate dark diversity. Nevertheless, we can generally conclude that areas at low 645 

elevations, and, to a certain extent, with a low species richness showed a higher plot-level dark 646 

diversity, largely due to natural processes such as competitive dominance. How valid these findings 647 

are for patterns in dark diversity in other (mountain) areas across the globe remains to be seen, yet 648 

the significant effect of methodological decisions on conclusions should remind us that any other 649 

regional study on dark diversity should be cautious in its conclusions. Nonetheless, one could assume 650 
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that dark diversity will indeed decrease with increasing elevation since only more specialized species 651 

can survive at higher elevations, and competition is lower. 652 
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