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Abstract: This paper is devoted to the study of perturbation evolution problems involving time-
dependent m-accretive operators. We present for a specific class of m-accretive operators with convex
weakly compact-valued perturbation, some results about the existence of absolutely continuous
solutions and BRVC solutions. We finish by giving several applications to various domains such
as relaxation results, second-order evolution inclusions, fractional-order equations coupled with
m-accretive operators and Skorohod differential inclusions.
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1. Introduction

In the present paper, we are mainly interested in the study of the perturbed evolution
problem governed by a time-dependent m-accretive operator A(t)

− du
dν

(t) ∈ A(t, u(t)) + f (t, u(t)), ν a.e t ∈ [0, T]. (1)

Here ν is a given positive Radon measure on [0, T], u : [0, T]→ E is a right continuous
function with bounded variation, du is its differential measure or Stieltjes measure, du

dν is the
density of du with respect to ν, t 7→ A(t) : D(A(t))→ 2E is a time-dependent m-accretive
operator, f : [0, T] × E → E is a Caratheodory mapping. Multivalued perturbations
F : [0, T]× E→ E are also considered.

When E is a separable Hilbert space and A(t) is assumed to be a Lipschitz in variation
or bounded variation and continuous in variation maximal monotone operator, the study of (1)
is performed in [1] and includes the convex sweeping process (or Moreau’s process), an
area which enjoyed a great deal of intense activity with application to mechanics [2],

− du
dr

(t) ∈ NC(t)u(t) + f (t, u(t)), dr a.e t ∈ [0, T], (2)

where C(t) is a closed convex moving set, i.e., dH(C(t), C(s))) ≤ |r(t) − r(s)| for all
s, t ⊂ [0, T], r : [0, T] → [0, ∞[ is a nondecreasing right continuous function with Stieltjes
measure, dr, dH denotes the Hausdorff distance on closed sets of E and NC(t) is the normal
cone of the closed convex set C(t). See [3–6] and the references therein.
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Consequently, it is interesting to extend the theory outside of Hilbert space to a time-
dependent m-accretive operator A(t). To our knowledge, until now one cannot expect
a positive answer to the existence problem of bounded variation and right continuous
(BVRC) solution for (1) in the framework of a time-dependent m-accretive operator. The
main difficulty is how to formulate the notion of solution to have convenient applications.

Therefore, it is important to know a few significant classes of m-accretive operators
for which existence of absolutely continuous or bounded variation and right continuous
(BVRC) solutions to (1) are proved.

In this regard, we present several new variants in the study of absolutely continuous
and BVRC solutions for (1) with time-dependent m-accretive operator A(t) and weakly
compact-valued perturbation F. This leads to some remarkable applications such as
periodic solutions, relaxation problems, second-order evolution driven with m-accretive
operators with perturbation, fractional-order equation coupled with m-accretive operators,
functional differential inclusion governed by m-accretive operators, sweeping process, and
Skorohod differential inclusions.

Our techniques are essentially based on Moreau’s catching-up algorithm [7] and deep
results on the differential measures of vector functions of bounded variation [8,9]. We
provide a new method for proofs that are simpler and that are independent in an essential
way to the results in m-accretive theory. Very roughly, our method makes it possible to
obtain, from sequences of partitions of the considered study interval, solutions as the limit
of step approximations and provides an estimate of their velocity. Our results are studied
from a theoretical point of view as well as in applications. They make it possible to obtain
concrete solutions in various domains such as elastoplasticity, mechanics, traffic equilibria,
and social and economic models.

2. Preliminaries and Background

We will use the following definitions and notations and summarize some basic results.

- Let E be a Banach space and E∗ be its topological dual.
- BE is the closed unit ball of E.
- c(E), cc(E), ccwl(E), cwk(E) is the collection of nonempty closed, closed convex,

closed convex weakly locally compact which contain no line, weakly compact convex
subsets of E respectively.

- If K is a subset of E, δ∗(., K) is the support function of K. For any convex weakly
compact subset K of E, |K| := supx∗∈BE∗

|δ∗(x∗, K)|
- λ:= dt is the Lebesgue measure on [0, T], L([0, T]) is the σ-algebra of Lebesgue mea-

surable subsets of [0, T].
- B(E) is the Borel σ-algebra of E.
- A map u: [0, T]→ E is absolutely continuous (shortly AC) if there exists an integrable

mapping v such that u(t) = u0 +
∫ t

0 v(s)ds; in this case u̇ = v a.e. on I.
A map u: [0, T] → E is BVRC if u is of bounded variation (shortly BV) and right
continuous.

- L1
E([0, T], dt) (shortly L1

E([0, T])) is the Banach space of Lebesgue–Bochner integrable
functions f : [0, T]→ E.

- We denote byW1,∞
E ([0, T]) the set of all absolutely continuous mappings v : [0, T]→ E

such that v̇ ∈ L∞
E ([0, T]).

- If X is a topological space, CE(X) is the space of continuous mappings u : X → E
equipped with the norm of uniform convergence.

- A set-valued mapping F : [0, T] ⇒ E is measurable if its graph belongs to L([0, T])⊗
B(E). A closed convex valued mapping F : X → cc(E) defined on a topological space
X is scalarly upper semicontinuous if for every y ∈ E∗, the scalar function δ∗(y, F(.))
is upper semicontinuous on X.

- Let E be a Banach space and E∗ be its topological dual. Recall that operator A :
D(A) ⊂ E→ 2E is accretive if ||x− x|| ≤ ||x− x + λ(y− y)|| for all x, x ∈ D(A), y ∈
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Ax, y ∈ Ax and λ > 0 and A is m-accretive if, in addition, R(I + λA) = E for all
λ > 0.

- If A is m-accretive, then,

(i) for each λ > 0, the resolvent Jλ = (IE + λA)−1 is single-valued and non-
expensive, i.e.,

||Jλx− Jλy|| ≤ ||x− y||

for each (x, y) ∈ E,
(ii) the Yosida-approximation of A defined by

Aλ :=
1
λ
(IE − Jλ)

is single-valued, Lipschitz continuous with Lipschitz-constant 2
λ ,

(iii) Aλx ∈ AJλx for each x ∈ E,
(iv) ||Aλx|| ≤ ||A0x|| for each x ∈ D(A) where A0x is the element of minimum

norm of Ax.

Define 〈x, y〉+ = limt→0
1
2t [||x + ty||2 − ||x||2], for x, y ∈ E. Then A is accretive iff

〈x− x, y− y〉+ ≥ 0

for x, x ∈ D(A), y ∈ Ax, y ∈ Ax. The duality map J : E → 2E∗ is defined by J(x) :=
{x∗ ∈ E∗ : 〈x∗, x〉 = ||x||2 = ||x∗||2}, x ∈ E. Then 〈x, y〉+ = sup{〈x∗, y〉 : x∗ ∈ J(x)} =
δ∗(y, J(x)), for x, y ∈ E. We refer to [10–12] for the theory of accretive operators and
evolution equations in Banach spaces.

3. Basic Hypotheses. Statement of Existence Theorems

We start this section by recalling some lemmas that are used in our proofs.
At first, the following is a discrete version of Gronwall’s lemma.

Lemma 1. Let (αi), (βi), (γi) and (ai) be sequences of nonnegative real numbers such that
ai+1 ≤ αi + βi

(
a0 + a1 + .... + ai−1

)
+ (1 + γi)ai for i ∈ N0. Then

aj ≤
(

a0 +
j−1

∑
k=0

αk

)
· exp

( j−1

∑
k=0

(
kβk + γk

))
for j ∈ N0.

The following version of Gronwall’s lemma is crucial for your purpose.

Lemma 2. Let µ be a positive Radon measure on I = [0, T]. Let g ∈ L1
R+(I, µ) and β ≥ 0 be such

that , ∀t ∈ I, 0 ≤ µ({t})g(t) ≤ β < 1. Let ϕ ∈ L∞
R+(I, µ) satisfy

ϕ(t) ≤ α +
∫
]0,t]

g(s)ϕ(s)µ(ds), ∀t ∈ I,

where α is a positive constant. Then

ϕ(t) ≤ α exp(
1

1− β

∫
]0,t]

g(s)µ(ds)), ∀t ∈ I.

Proof. This lemma is due to M. Monteiro Marques.

Lemma 3. Let µ be a non-atomic positive Radon measure on the interval I = [0, T]. Let c, p be
nonnegative real functions such that c ∈ L1([0, T],R, µ), p ∈ L∞(I,R; µ), and let α ≥ 0. Assume
that for µ− a.e. t ∈ I

p(t) ≤ α +
∫ t

0
c(s)p(s)µ(ds).
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Then, for µ− a.e. t ∈ [0, T],

p(t) ≤ α · exp
( ∫ t

0
c(s)µ(ds)

)
.

The proof (see [1], Lemma 2.7) is not a consequence of the classical Gronwall lemma dealing
with Lebesgue measure dt on I. It relies on a deep result of Moreau–Valadier on the
derivation of (vector) functions of bounded variation [9].

In the present paper, E is a separable Banach space. We are mainly interested in the
study of perturbed evolution problems governed by a time-dependent m-accretive operator
A(t)

− du
dν

(t) ∈ A(t, u(t)) + f (t, u(t)), ν a.e. t ∈ [0, T], (3)

where u: [0, T] → E is a right continuous function with bounded variation, du is its
differential measure, ν is a positive measure on [0, T], du

dν is the density of the differential
measure du with respect to the measure ν, t 7→ A(t): D(A(t))→ 2E is a time-dependent m-
accretive operator, f : [0, T]× E→ E is a Caratheodory mapping (multivalued perturbations
F: [0, T]× E → E are also considered). We also treat the case of m-accretive operator A:
D(A)→ 2E with various perturbation

− du
dt

(t) ∈ Au(t) + f (t, u(t)), dt a.e. t ∈ [0, T], (4)

where u: [0, T]→ E is absolutely continuous, f : [0, T]× E→ E is a Caratheodory mapping
(multivalued perturbations F: [0, T] × E → E are also considered). A special study of
integro-differential Volterra inclusion is provided

− du
dt

(t) ∈ Au(t) +
∫ t

0
f (t, s, u(s))ds, dt a.e. t ∈ [0, T], (5)

where u: [0, T]→ E is absolutely continuous, f : [0, T]× [0, T]× E→ E is a Caratheodory
mapping.

3.1. Existence Results for (3) in the Bounded Variation and Right Continuous Case

Our first result on the existence of the BVRC solution to a perturbed evolution problem
(3) is stated with the following hypotheses: Let t : 7→ A(t) : D(A(t))→ ccwl(E) be a time-
dependent m-accretive operator satisfying:
(HA

1 ) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖) for t ∈ [0, T], x ∈ D(A(t));

(HA
2 ) Γ: t 7→ D(A(t)) has right closed graph Gr(Γ), and for each t ∈ [0, T], for each k > 0,

the set {x ∈ D(A(t)): ||x||| ≤ k} is relatively compact, shortly D(A(t)) is ball compact;
(HA

3 ) (t, x) 7→ A(t, x): Gr(Γ) → ccwl(E) is scalar upper semicontinuous: for tn ↓ t, for
xn → x with xn ∈ D(A(tn)) and x ∈ D(A(t)),

∀x∗ ∈ E∗, lim sup
n

δ∗(x∗, A(tn, xn)) ≤ δ∗(x∗, A(t, x));

(HA
4 ) There exists a nondecreasing and right continuous function r: [0, T] → [0, ∞[ such

that r(T) < ∞ with the Stieltjes measure dr such that for t < τ ⊂ [0, T], for λ > 0 and
x ∈ D(A(t))

‖x− JA(τ)
λ (x)‖ ≤ (r(τ)− r(t))(1 + ||A0(t, x)||);

(HF) Let F: [0, T]× E→ cwk(E) be a convex weakly compact-valued mapping such that

(i) F is scalarly L([0, T])⊗ B(E)-measurable, i.e., for each x∗ ∈ E∗, the scalar function
δ∗(x∗, F(., .)) is L([0, T])⊗B(E)-measurable,
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(ii) for each t ∈ [0, T], F(t, .) is scalarly upper semicontinuous, i.e., for each x∗ ∈ E∗, the
scalar function δ∗(x∗, F(t, .)) is upper semicontinuous on E,

(iii) F(t, x) ⊂ M(1 + ||x||)BE for all (t, x) ∈ [0, T]× E for some positive constant M.

We present at first our main existence result of BVRC solution.

Theorem 1. Assume that E be a separable Banach space. Let t 7→ A(t): D(A(t))→ ccwl(E) be
a time-dependent m-accretive operator satisfying (HA

1 ), (HA
2 ), (HA

3 ), (HA
4 ). Let F: [0, T]× E→

cwk(E) satisfying (HF). Let ν = dr + λ and let dλ
dν be the density of λ relatively to the measure ν.

Then for all u0 ∈ D(A(0)) the evolution problem

−Du(t) ∈ A(t, u(t)) + F(t, u(t))

admits a BVRC solution u with u(0) = u0, that is, there exists a BVRC mapping u: [0, T] → E
and a Lebesgue-integrable mapping z: [0, T]→ E such that

u(0) = u0 ∈ D(A(0))
u(t) ∈ D(A(t)), ∀t ∈ [0, T]
du
dν (t) ∈ L∞

E ([0, T], ν)
z(t) ∈ F(t, u(t)), λ a.e
− du

dν (t) ∈ A(t, u(t)) + z(t) dλ
dν (t), ν a.e, t ∈ [0, T]

Proof. Let for each (t, x) ∈ [0, T]× E, f (t, x) be the element of minimal norm of F(t, x), i.e.,
f (t, x) = PF(t,x)(0). For each x ∈ E, the map t 7→ f (t, x) is L([0, T])-measurable by virtue
of Theorem III-41(2) [13], and by (HF

4 )

|| f (t, x)|| ≤ M(1 + ||x||), ∀(t, x) ∈ [0, T]× E. (6)

We choose a sequence (εn)n ⊂ [0, 1] which decreases to 0 as n → ∞ and a partition
0 = tn

0 < tn
1 < . . . < tn

kn
= T of I such that

tn
i+1 − tn

i + dr(]tn
i , tn

i+1[) ≤ εn for i = 0, . . . , kn − 1. (7)

Such a partition can be obtained by considering the measure ν = dr + λ using the construc-
tions developed in Castaing-Marques [1].

For i = 0, . . . , kn − 1, let

δn
i+1 = dr(]tn

i , tn
i+1]) = r(ti+1)− r(tn

i ); ηn
i+1 = tn

i+1 − tn
i ; βn

i+1 = ν(]tn
i , tn

i+1]). (8)

We define a sequence of step-mappings un:I → E as follows:

un(t) = un
0 = u0 ∈ D(A(0)) for t ∈ [0, tn

1 ], and

un(t) = un
i , t ∈ [tn

i , tn
i+1], un(T) = un

kn
,

for i = 0, 1, . . . , kn − 1,

un
i+1 = J

A(tn
i+1)

βn
i+1

(
un

i −
∫ tn

i+1

tn
i

f (s, un
i )dλ(s)

)
with J

A(tn
i+1)

βn
i+1

(x) =
(

I + βn
i+1 A(tn

i+1)
)−1

(x), (9)

for x ∈ E. By construction un
i+1 ∈ D(A(tn

i+1)) and

−
un

i+1 − un
i

ν(]tn
i , tn

i+1])
∈ A(tn

i+1, un
i+1) +

1
ν(]tn

i , tn
i+1])

∫ tn
i+1

tn
i

f (s, un
i )dλ(s)

so that

−
un

i+1 − un
i +

∫ tn
i+1

tn
i

f (s, un
i )dλ(s)

ν(]tn
i , tn

i+1])
∈ A(tn

i+1, un
i+1). (10)
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We also define the bounded variation and right continuous mapping

vn(t) = un
i +

ν(]tn
i , t])

ν(]tn
i , tn

i+1])
(un

i+1 − un
i +

∫ tn
i+1

tn
i

f (s, un
i )dλ(s))−

∫ t

tn
i

f (s, un
i )dλ(s)

on each interval [tn
i , tn

i+1] so that vn is bounded variation and right continuous on [0, T].
Step 1. Estimates and convergence.

‖un
i+1 − un

i ‖ ≤ ‖J
A(tn

i+1)

βn
i+1

(un
i −

∫ tn
i+1

tn
i

f (s, un
i )ds)− J

A(tn
i+1)

βn
i+1

(un
i )‖+ ‖J

A(tn
i+1)

βn
i+1

un
i − un

i ‖

≤
∫ tn

i+1

tn
i

‖ f (s, un
i )‖dλ(s) + r(tn

i+1)− r(tn
i )[1 + |A0(tn

i , un
i )|]

≤ M(1 + ||un
i ||)βn

i+1 + βn
i+1[1 + c(1 + ||un

i ||)]

(using (6), (HA
1 ), (HA

4 )). Whence we obtain

‖un
i+1 − un

i ‖ ≤ (M + c)βn
i+1‖un

i ‖+ (M + c + 1)βn
i+1,

‖un
i+1‖ ≤ (M + c + 1) βn

i+1))‖un
i ‖+ (M + c + 1) βn

i+1.

Then, by Gronwall discrete Lemma 1 it implies that for n ∈ N, and i = 0, . . . , kn:

||un
i || ≤ [||u0||+ (M + c + 1)

kn−1

∑
i=0

βn
i+1] · exp

[
(M + c)

kn−1

∑
i=0

βn
i+1
]
.

It follows that

||un
i || ≤

[
||u0||+ (M + c + 1)(T + r(T))] · exp

[
(M + c)(T + r(T))] =: K1. (11)

and then
||un

i+1 − un
i || ≤ K2 βn

i+1. (12)

Putting K := max(K1, K2) we conclude that

sup
n∈N
‖un‖ ≤ K, (13)

and

sup
n

var(un) = sup
n

( kn−1

∑
i=0
‖un

i+1 − un
i ‖
)
≤ K(T + r(T)). (14)

We note that un is uniformly bounded and bounded in variation (cf (13) and (14) and
{un(t): n ∈ N} is relatively compact for each t since D(A(t)) is ball compact according to
(HA

2 ) and the estimation (13) so that by Helly principle [14] we may assume un pointwise
strongly converges to a BV mapping v. Now we will focus on the estimate for vn. We will
show that vn has the density dvn

dν (.) with respect to ν with the estimation || dvn
dν (t)|| ≤ L, ν

a.e for some constant L > 0. Let us denote by zn(t) = f (t, un
i ) for t ∈ [tn

i , tn
i+1]. We note

that for any t ∈ [0, T],

vn(t) = vn(0) +
∫
]0,t]

φn(s)dν(s)−
∫ t

0
zn(s)dλ(s),

where

φn(t) :=
kn−1

∑
i=0

un
i+1 − un

i +
∫ tn

i+1
tn
i

f (s, un
i )dλ(s)

ν(]tn
i , tn

i+1])
1]tn

i ,tn
i+1]

(t).
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Since ν = dr + λ, the Lebesgue measure λ is absolutely continuous with respect to the
measure ν, it has a density dλ

dν ∈ L∞
R ([0, T], ν) relatively to ν, then the above expression of

vn(t) is written as

vn(t) = vn(0) +
∫
]0,t]

[φn(s)− zn(s)
dλ

dν
(s)]dν(s).

Therefore dvn has a density dvn
dν relatively to ν with dvn

dν ∈ L∞
E ([0, T], ν) and for ν a.e we have

dvn

dν
(t) = φn(t)− zn(t)

dλ

dν
(t),

dvn

dν
(t) + zn(t)

dλ

dν
(t) = φn(t) =

kn−1

∑
i=0

un
i+1 − un

i +
∫ tn

i+1
tn
i

f (s, un
i )dλ(s)

ν(]tn
i , tn

i+1])
1]tn

i ,tn
i+1]

(t).

Please note that on any interval [tn
i , tn

i+1], ||φn(t)|| ≤ K2 + M(1 + K), using the estimate
(12) of ||un

i+1 − un
i ||, and

∫ tn
i+1

tn
i

f (s, un
i )dλ ≤ M(1 + K)ηn

i+1,

using the above estimate of ||un
i ||. So

||dvn

dν
(t) + zn(t)

dλ

dν
(s)|| ≤ K2 + M(1 + K), (15)

as consequence

||dvn

dν
(t)|| ≤ K2 + 2M(1 + K) := L. (16)

Hence, we have

vn(t) = u0 +
∫
]0,t]

dvn

dν
(t)dν(t), ∀t ∈ [0, T],

with the estimate (16). Define ϕn, θn : I → I by ϕn(t) = tn
i and θn(t) = tn

i+1 for t ∈]tn
i , tn

i+1]
and ϕn(0) = θn(0) = 0, so that

vn(ϕn(t)) = u0 +
∫
]0,ϕn(t)]

dvn

dν
(t) dν(t), ∀t ∈ [0, T],

vn(θn(t)) = u0 +
∫
]0,θn(t)]

dvn

dν
(t) dν(t), ∀t ∈ [0, T],

with
−dvn

dν
(t) ∈ A(θn(t))vn(θn(t) + f (t, vn(ϕn(t))

dλ

dν
(t), dν a.e.

according to (10) and our notation. It is clear that ||vn(θn(t))− vn(t))|| → 0 when n goes
to ∞ and so is the term ||vn(ϕn(t))− vn(t))||. As consequence, vn is uniformly bounded,
||vn(t)|| ≤ ||x0||+ Lν(]0, T]), ∀t ∈ [0, T], ∀n ∈ N, and equi-right continuous with bounded
variation: ||vn(t)− vn(τ)|| ≤ Lν(]τ, t]), ∀τ < t ∈ [0, T]. Hence the sequence vn pointwise
converges weakly to a BVRC mapping u,

u(t) = u0 +
∫
]0,t]

du
dν

(s)dν(s)
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and we may assume that dvn
dν converge weakly in L1

E([0, T], ν) to an integrable mapping
du
dν with || du

dν || ≤ K2 + 2M(1 + K), ν a.e. By construction for every t we note that for all
t ∈ [tn

i , tn
i+1],

||vn(t)− un(t)|| ≤ ||vn(t)− un
i || ≤ ||un

i+1 − un
i ||+ 2

∫ tn
i+1

tn
i

|| f (s, un
i )||ds

≤ ||un
i+1 − un

i ||+ 2M(1 + ||un
i ||)(tn

i+1 − tn
i ) ≤ [K + 2M(1 + K)]εn.

It implies that vn(t)− un(t) → 0 for all t ∈ [0, T] and by identifying the limits, we have
u = v. With our notations, recall that

−dvn

dν
(t)− f (t, vn(ϕn(t))

dλ

dν
(t) ∈ A(θn(t), vn(θn(t)).

Now, we use Mazur’s trick and (HA
3 ) to finish the proof being ensured that u(t) ∈ D(A(t))

using the fact that vn(θn(t)) ∈ D(A(θn(t)) θn(t) ↓ t and vn(θn(t)) → u(t). Let ζn(t) :=
f (t, vn(ϕn(t)) and ζ(t) := f (t, u(t)). As vn(ϕn(t)) → u(t), ζn(t) → ζ(t), so ζn → ζ
weakly in L1

E([0, T], λ). Hence dvn
dν (.) + ζn(.) dλ

dν (.) weakly converges in L1
E([0, T], ν) to

du
dν (.) + z(.) dλ

dν (.). For convenient notation let

wn(t) = −
dvn

dν
(t)− ζn(t)

dλ

dν
(t),

w(t) = −du
dν

(t)− ζ(t)
dλ

dν
(t).

Then {wn} weakly converges in L1
E([0, T], ν) to w. We will show that

w(t) = −du
dν

(t)− ζ(t)
dλ

dν
(t) ∈ A(t, u(t)), ν a.e.

By applying Mazur’ s lemma, there exists a sequence {ŵn(.)} which converges strongly in
L1

E([0, T], ν) to w = − du
dν (.)− z(.) dλ

dν (.) with

ŵn(t) ∈ co{wk(t) : k ≥ n}.

Extracting a subsequence, we may ensure that ŵn(t) → w(t) = − du
dν (t)− z(t) dλ

dν (t) ν a.e.
Consequently, for t /∈ N where N is a ν-negligible set , we have

w(t) = −du
dν

(t)− z(t)
dλ

dν
(t) ∈

⋂
n

co{ŵk(t) : k ≥ n}.

It follows that for t /∈ N and for any x∗ ∈ E∗,

〈x∗, w〉 ≤ inf
n

sup
k≥n
〈x∗, ŵk〉.

So, by the above fact we obtain

〈x∗, w(t)〉 ≤ lim sup δ∗(x∗, A(θn(t), vn(θn(t)) ≤ δ∗(x∗, A(t, u(t)),

because θn(t) ↓ t, vn(θn(t) ∈ D(A(θn(t)) and vn(θn(t) → u(t) with u(t) ∈ D(A(t)). As
consequence by ([13], Prop. III.35) we obtain

w(t) = −du
dν

(.)− z(.)
dλ

dν
(.) ∈ A(t, u(t)).
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It remains to check that z(t) ∈ F(t, u(t)), λ a.e. However, this fact is clearly true thanks to
the property F. Indeed from zn(t) ∈ F(t, vn(ϕn(t)) we have for any x∗ ∈ E∗,

〈x∗, zn(t)〉 ≤ δ∗(x∗, F(t, vn(ϕn(t))).

Then by integrating on any λ-measurable set Q ⊂ [0, T] and by noting that zn, t 7→
δ∗(x∗, F(t, vn(ϕn(t)) and t→ δ∗(x∗, F(t, u(t)) are Borel, we obtain∫

Q
〈x∗, zn(t)〉dt ≤

∫
Q

δ∗(x∗, F(t, vn(ϕn(t))dt.

Passing to the limit yields∫
Q
〈x∗, z(t)〉dt ≤ lim sup

n

∫
Q

δ∗(x∗, F(t, vn(ϕn(t)))dt

≤
∫

Q
lim sup

n
δ∗(x∗, F(t, vn(ϕn(t)))dt ≤

∫
Q

δ∗(x∗, F(t, u(t)))dt,

so that
〈x∗, z(t)〉 ≤ δ∗(x∗, F(t, u(t)) λ a.e .

Since E is separable, and t 7→ F(t, u(t)) is measurable, by ([13], Proposition III-35), we
conclude that z(t) ∈ F(t, u(t)), λ a.e.

We provide some direct corollaries of Theorem 1.

Corollary 1. Assume that E separable Banach space. Let t 7→ A(t) : D(A(t)) → ccwl(E) be a
time-dependent m-accretive operator satisfying (HA

1 ), (HA
2 ), (HA

3 ), (HA
4 ). Let f : [0, T]× E→ E

such that

(i) f (., x) is L([0, T])-measurable on [0, T] for all x ∈ E,
(ii) f (t, x) is continuous on E for all t ∈ [0, T],
(iii) || f (t, x)|| ≤ M(1 + ||x||) for all (t, x) ∈ [0, T]× E.

Let ν = dr + λ and let dλ
dν (.) be the density of λ with respect to the measure ν. Then for all

u0 ∈ D(A(0)) the evolution problem

−Du(t) ∈ A(t, u(t)) + f (t, u(t))

admits at least a BVRC solution u with u(0) = u0, i.e., there exists a BVRC function u : [0, T]→ E
such that 

u(0) = u0 ∈ D(A(0)
u(t) ∈ D(A(t)), ∀t ∈ [0, T]
du
dν (t) ∈ L∞

E ([0, T], ν)

− du
dν (t) ∈ A(t, u(t)) + f (t, u(t)) dλ

dν (t), ν a.e.

Corollary 2. Assume that E is a separable Hilbert space. Let t 7→ A(t) : D(A(t))→ ccwl(E) be a
time-dependent m-accretive operator satisfying (HA

1 ), (HA
2 ), (HA

3 ), (HA
4 ). Let f : [0, T]× E→ E

such that

(i) f (., x) is L([0, T])-measurable on [0, T] for all x ∈ E,
(ii) || f (t, x)− f (t, y]|| ≤ M||x− y|| for all t, x, y ∈ [0, T]× E× E,
(iii) || f (t, x)|| ≤ M(1 + ||x||) for all (t, x) ∈ [0, T]× E,

for some constant M > 0. Let ν = dr + λ and let dλ
dν (.) be the density of λ relatively to the measure

ν. Assume further that there is β ∈]0, 1[ such that ∀t ∈ [0, T], 0 ≤ 2M dλ
dν (t)dν({t}) ≤ β < 1.

Then for all u0 ∈ D(A(0)) the evolution problem

−Du(t) ∈ A(t, u(t)) + f (t, u(t))



Mathematics 2022, 10, 317 10 of 32

admits a unique BVRC solution u with u(0) = u0, i.e., there exists a unique BVRC function u:
[0, T]→ E such that 

u(0) = u0 ∈ D(A(0))
u(t) ∈ D(A(t)), ∀t ∈ [0, T]
du
dν (t) ∈ L∞

E ([0, T], dν)

− du
dν (t) ∈ A(t, u(t)) + f (t, u(t)) dλ

dν (t), ν a.e.

Proof. We need only to prove the uniqueness, suppose that there are two BVRC solutions
u and v,

−du
dν

(t)− f (t, u(t))
dλ

dν
(t) ∈ A(t, u(t)),

−dv
dν

(t)− f (t, v(t))
dλ

dν
(t) ∈ A(t, v(t)).

By the monotonicity of A(t) we obtain〈
dv
dν

(t)− du
dν

(t) +
dλ

dν
(t) f (t, v(t))− dλ

dν
(t) f (t, u(t)), v(t)− u(t)

〉
≤ 0

by the Lipschitz condition on f (t, ·),〈
dv
dν

(t)− du
dν

(t), v(t)− u(t)
〉
≤
〈

dλ

dν
(t) f (t, u(t))− dλ

dν
(t) f (t, v(t)), v(t)− u(t)

〉

≤ M
dλ

dν
(t)‖v(t)− u(t)‖2.

Then, u and v are of bounded variation and right continuous and have the density du
dν and

dv
dν relatively to dν, by a result of Moreau concerning the differential measure [8], ||v− u||2
is BVRC and we have

d||v− u||2 ≤ 2〈v(.)− u(.),
dv
dν

(.)− du
dν

(.)〉dν

so that by integrating on ]0, t] and using the above estimate we obtain

||v(t)− u(t)||2 =
∫
]0,t]

d||u− v||2dν(t) ≤
∫
]0,t]

2〈v(.)− u(.),
dv
dν

(.)− du
dν

(.)〉dν(t)

≤
∫
]0,t]

2M
dλ

dν
(t)‖v(t)− u(t)‖2dν(t).

According to the assumption 0 ≤ 2M dλ
dν (t)dν({t}) ≤ β < 1 and using Grownwall’s Lemma

(Lemma 2), we deduce from the last inequality that u = v in [0, T]. This completes the
proof.

A concrete application is given by the convex sweeping process in a separable Hilbert
space E. If A(t, x) = NC(t)x, where C: [0, T]→ E is a closed convex valued mapping and
NC(t)x is the normal cone of C(t) at the point x ∈ C(t), one deduce the existence of BVRC
solutions of a closed convex and nonconvex sweeping process. See e.g., [15]. For more
information on the existence BVRC of solutions to the sweeping process we refer to [2,7,16].
The above results shed new light on the problem of the existence of BVRC solutions for a
class of time-dependent m-accretive operators with convex weakly compact perturbation.
At this point, compare with some related results in the literature [17–19] dealing with
mild solutions for evolution inclusion driven by fixed m-accretive operator A with convex
compact perturbation. Here our result is strong and new. Further applications will be
provided.
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3.2. Existence Results of Absolutely Continuous Solutions

We begin this section by recalling at first an important result in ([20], Theorem 4.6)
dealing with the existence of AC solution for problem (1).

Theorem 2. Assume that E is a separable reflexive uniformly convex space along with the dual E∗.
Let A: D(A)→ 2E is an m-accretive operator satisfying
(H1) ||A0x|| ≤ c(1 + ||x||) for all x ∈ D(A) where c is a positive constant,
(H2) D(A) closed and for each k > 0, the set {x ∈ D(A) : ||x|| ≤ k} is compact.
Let f : [0, T]× [0, T]× E→ E satisfying to the conditions
(H3)(t, s)→ f (t, s, x) is Lebesgue measurable on [0, T]× [0, T], ∀(t, s, x) ∈ [0, T]× [0, T]× E,
(H4) ‖ f (t, s, x)− f (t, s, y) ≤ M||x− y||, ∀t, s ∈ [0, T], ∀x, y ∈ E,
(H5)|| f (t, s, x)||| ≤ M(1 + ||x||), ∀t, s, x ∈ [0, T]× [0, T]× E,
where M is positive constant.
Then, for every u0 ∈ D(A), there exists a uniqueW1,∞

E ([0, T])-mapping u : [0, T]→ E such that
u(0) = u0,
u(t) ∈ D(A), ∀t ∈ [0, T],
−u̇(t) ∈ Au(t) +

∫ t
0 f (t, τ, u(τ))dτ a.e.

Lemma 4. Assume that E and E∗ are uniformly convex reflexive separable and A(t) : D(A(t))→
cc(E) is a time-dependent m-accretive operator satisfying:
(A1): t→ Aλ(t, x) is L([0, T])-measurable for all λ > 0 and for all x ∈ E,
(A2): |Aλ(t, x)| ≤ |A0(t, x)| ≤ c(1 + ||x||) for all λ > 0 and for all fixed x ∈ D(A(t)) where c
is a positive constant.
Then the operator A : D(A) ⊂ L2

E([0, T], dt)→ 2L2
E([0,T],dt) ,

Au = {v ∈ L2
E([0, T], dt) : v(t) ∈ A(t, u(t)), a.e t ∈ [0, T]},

for each u ∈ D(A) where D(A) is defined by
D(A) := {u ∈ L2

E([0, T], dt) : u(t) ∈ D(A(t)) a.e. t ∈ [0, T] : exist v ∈ L2
E([0, T], dt) :

v(t) ∈ A(t, u(t)), a.e. t ∈ [0, T]} is m-accretive. As consequence, the graph of A is strongly
weakly closed.

Proof. It is easy to see that A is accretive in L2
E([0, T], dt), namely

|| f − f ||L2
E([0,T],dt) ≤ ||( f − f ) + λ(g− g)||L2

E([0,T],dt), ∀g ∈ A( f ), g ∈ A( f ).

We need to check that R(IL2
E([0,T],dt) + λA) = L2

E([0, T], dt) for each λ > 0. Let g ∈
L2

E([0, T], dt). Then t 7→ vλ(t) = [IE + λA(t)]−1g(t) = Jλ(t, g(t)) = g(t)− λAλ(t, g(t)).
We note that Aλ(t, .) is 2

λ -Lipschitz map in E and Aλ(., x) is L([0, T])-measurable for all
λ > 0 and for all x ∈ E. Set h(t) = Aλ(t, g(t)) = (Aλ(t, g(t))− Aλ(t, u(t)) + Aλ(t, u(t)).
Then h is measurable with ||h(t)|| ≤ 2

λ ||g(t)− u(t)||+ ||Aλ(t, u(t)|| and so we deduce that
h ∈ L2

E([0, T], dt) because u and g belong to L2
E([0, T], dt) and t 7→ Aλ(t, u(t)) is L([0, T])-

measurable and belongs to L2
E([0, T], dt) because ||Aλ(t, u(t))|| ≤ ||A0(t, u(t))|| ≤ c(1 +

||u(t)||) for all t ∈ [0, T]. This proves that vλ ∈ L2
E([0, T], dt) and g(t) ∈ vλ(t) + λAvλ(t))

so that R(IL2
E([0,T],dt) + λA) = L2

E([0, T], dt). So, we conclude that the m-accretiveness of
A.

Remark 1. This lemma has some importance in further application. If A : D(A) → cc(E) is a
fixed m-accretive operator, the result is obvious. See e.g., [12].

Our second result on the existence of AC solution to a perturbed evolution problem
(3) with time-dependent m-accretive operator is stated as follows.
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Theorem 3. Let E be a separable Banach space. Let t 7→ A(t) : D(A(t)) → ccwl(E) be a
time-dependent m-accretive operator satisfying
(HA

1 ) there exists a nonnegative real number c such that

||A0(t, x)|| ≤ c(1 + ‖x‖) for t ∈ [0, T], x ∈ D(A(t)),

(HA
2 ) t 7→ D(A(t)) has closed graph, Gr(D(A)), and

⋃
t∈[0,T] D(A(t)) is ball compact,

(HA
3 ) (t, x) 7→ A(t, x) : Gr(D(A)) → ccwl(E) is scalar upper semicontinuous: for tn ↓ t, for

xn → x with xn ∈ D(A(tn)) and x ∈ D(A(t)),

∀x∗ ∈ E∗, lim sup
n

δ∗(x∗, A(tn, xn)) ≤ δ∗(x∗, A(t, x)),

(HA
4 )
′ There exists a nondecreasing and absolutely continuous function β : [0, T]→ [0, ∞[ with

β̇ ∈ L2, such that for t < τ ⊂ [0, T], for λ > 0 and x ∈ D(A(t)),

‖x− JA(τ)
λ (x)‖ ≤ (β(τ)− β(t))(1 + ||A0(t, x)||),

(HF) Let F : [0, T]× E→ ck(E) be a convex compact-valued mapping such that

(i) F is scalarly L([0, T]) ⊗ B(E)-measurable, i.e., for each x∗ ∈ E∗, the scalar function
δ∗(x∗, F(., .)) is L([0, T])⊗B(E)-measurable,

(ii) for each t ∈ [0, T], F(t, .) is scalarly upper semicontinuous, i.e., for each x∗ ∈ E∗, the scalar
function δ∗(x∗, F(t, .)) is upper semicontinuous on E,

(iii) F(t, x) ⊂ M(1 + ||x||)BE for all (t, x) ∈ [0, T]× E for some positive constant M.

Then for all u0 ∈ D(A(0)) the evolution problem

−Du(t) ∈ A(t, u(t)) + F(t, u(t))

admits an absolutely continuous solution u with u(0) = u0, that is, there exists an absolutely
continuous mapping u : [0, T]→ E such that

u(0) = u0 ∈ D(A(0))
u(t) ∈ D(A(t)), ∀t ∈ [0, T]
du
dt (t) ∈ L2

E([0, T], dt)
z(t) ∈ F(t, u(t)), dt a.e
− du

dt (t) ∈ A(t, u(t)) + z(t), dt a.e., t ∈ [0, T].

Proof. We will use the ideas and techniques of Theorem 1 above and Theorem 1 in [21].
For the sake of completeness, we give here the proof. Let for each (t, x) ∈ [0, T]× E, f (t, x)
the element of minimal norm of F(t, x), i.e., f (t, x) = PF(t,x)(0). For each x ∈ E, the map
t 7→ f (t, x) is L([0, T])-measurable by virtue of Theorem III-41(2) [13], and by (HF

4 )

|| f (t, x)|| ≤ M(1 + ||x||), ∀(t, x) ∈ [0, T]× E. (17)

We choose any sequence (εn)n ⊂ I which decreases to 0 as n → ∞ and any sequence of

partition 0 = tn
0 < tn

1 < . . . < tn
k = T of I = [0, T] such that (tn

i+1 − tn
i ) +

∫ tn
i+1

tn
i

β̇(τ)dτ < εn

for i = 0, . . . , kn − 1, which is allowed since t→ β(t) + t is absolutely continuous. Without
loss of generality, we may assume that β(0) = 0. Let for i = 0, . . . , kn − 1, δn

i+1 = (tn
i+1− tn

i ),

βn
i+1 =

∫ tn
i+1

tn
i

β̇(τ)dτ so that β(tn
i+1)− β(tn

i ) = βn
i+1, ηn

i+1 := δn
i+1 + βn

i+1 ≤ εn. We define
the mapping vn : I → E by

vn(t) = un
i +

t− tn
i

tn
i+1 − tn

i
(un

i+1 − un
i +

∫ tn
i+1

tn
i

f (τ, un
i )dτ)−

∫ t

tn
i

f (τ, un
i )dτ,
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for t ∈ [tn
i , tn

i+1] where for i = 0, 1, . . . , kn − 1,

un
i+1 = J

A(tn
i+1)

δn
i+1

(un
i −

∫ tn
i+1

tn
i

f (τ, un
i )dτ).

By construction
un

i+1 ∈ D(A(tn
i+1),

− 1
δn

i+1
(un

i+1 − un
i +

∫ tn
i+1

tn
i

f (τ, un
i )dτ) ∈ A(tn

i+1, un
i+1).

Let us define θn(t) = tn
i+1, ϕn(t) = tn

i for t ∈ [tn
i , tn

i+1], i = 0, 1, . . . , kn− 1 and θn(0) = ϕn(0).
so that

−v̇n(t) ∈ A(θn(t), vn(θn(t)) + f (τ, vn(ϕn(τ))

a.e. with |θn(t)− t| → 0 and |ϕn(t)− t| → 0 as n→ ∞.
Step 1. Estimates and convergence.

||un
i+1 − un

i || = ||J
A(tn

i+1)

δn
i+1

(un
i −

∫ tn
i+1

tn
i

f (τ, un
i )dτ)− un

i ||

≤ ||JA(tn
i+1)

δn
i+1

(un
i −

∫ tn
i+1

tn
i

f (τ, un
i )dτ)− J

A(tn
i+1)

δn
i+1

(un
i )||

+||JA(tn
i+1)

δn
i+1

(un
i )− un

i ||

≤ M(1 + ||un
i ||)δn

i+1 + βn
i+1(1 + |A0(tn

i , un
i )|)

≤ M(1 + ||un
i ||)δn

i+1 + βn
i+1(1 + c(1 + ||un

i ||))

≤ [(M + c)||un
i ||+ M + c + 1]ηn

i+1.

Set M1 = M + c, M2 = M + c + 1, it comes that

||un
i+1|| ≤ (1 + M1ηn

i+1)||un
i ||+ M2ηn

i+1.

Then by Lemma 1 we obtain

||un
i || ≤ (||u0||+ M2(T + β(T)))exp.M1(T + β(T)) := c1

and
||un

i+1 − un
i || ≤ (M1c1 + M2)η

n
i+1 := c2ηn

i+1.

For all t ∈ [tn
i , tn

i+1] we deduce that

||vn(t)|| ≤ ||un
i+1||+ 2||un

i ||+ 2
∫ tn

i+1

tn
i

f (τ, un
i )dτ

≤ 3c1 + 2M(1 + c1)(tn
i+1 − tn

i ) ≤ 3c1 + 2M(1 + c1)T =: l1

with
||vn(tn

i+1)− vn(tn
i ) = ||un

i+1 − un
i || ≤ c2ηn

i+1.

Set K = max(l1, c2) we obtain

sup
n∈N
||vn|| ≤ K, sup

n∈N
var(vn) = sup

n∈N

kn−1

∑
i=0
||un

i+1 − un
i || ≤ K(T + β(T)).
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Estimate of v̇n. For all t ∈]tn
i , tn

i+1[ we have

||v̇n(t)|| ≤
||un

i+1 − un
i ||

tn
i+1 − tn

i
+ 2M(1 + c1).

Set for all t ∈ I, γ(t) = c2(1 + β(t)) so that

||un
i+1 − un

i || ≤
∫ tn

i+1

tn
i

γ(τ)dτ ≤ (tn
i+1 − tn

i )
1
2 (
∫ tn

i+1

tn
i

γ(τ)2dτ)
1
2 .

Whence

||v̇n||L2
E
=
∫ T

0
||v̇n(τ)||2dτ =

kn−1

∑
i=0

∫ tn
i+1

tn
i

||v̇n(τ)||2dτ

≤ 2
kn−1

∑
i=0

(
∫ tn

i+1

tn
i

([ ||un
i+1 − un

i ||
tn
i+1 − tn

i

]2
+
[
2M(1 + c1)

]2)dτ

= 2
kn−1

∑
i=0

([ ||un
i+1 − un

i ||
tn
i+1 − tn

i

]2
+
[
2M(1 + c1)

]2)
(tn

i+1 − tn
i )

≤ 2
kn−1

∑
i=0

( ∫ tn
i+1

tn
i

γ(τ)2dτ +
[
2M(1 + c1)

]2)
(tn

i+1 − tn
i )
)

≤ 2||γ||2L2 + 2T
[
2M(1 + c1)

]2
= c3.

As consequence

||vn(t)− vn(s)|| ≤
∫ t

s
|v̇n(τ)dτ ≤ c3(t− s)|

1
2 , ∀(t, s ∈ [0, T].

Since vn(θn(t)) = un(θn(t)) and
⋃

t∈[0,T] D(A(t)) is ball compact, {vn(θn(t)} is relatively
compact and so is {vn(t)}. By Ascoli theorem, {vn} converges uniformly to an absolutely
continuous mapping v and we may assure that {v̇n} weakly converge in L2

E([0, T), dt) to v̇.
With our notations, recall that

−dvn

dt
(t)− f (t, vn(ϕn(t)) ∈ A(θn(t), vn(θn(t)).

Now, we use the Mazur’s trick and (HA
3 ) to finish the proof being ensured that v(t) ∈

D(A(t)) using the fact that vn(θn(t)) ∈ D(A(θn(t)), θn(t) ↓ t and vn(θn(t)) → v(t). Let
ζn(t) := f (t, vn(ϕn(t)) and ζ(t) := f (t, v(t)). As vn(ϕn(t)) → v(t), ζn(t) → ζ(t), so
ζn → ζ weakly in L2

E([0, T], dt). Hence dvn
dt (.) + ζn(.) weakly converges in L2

E([0, T], dt) to
du
dt (.) + z(.). For convenient notation let

wn(t) = −
dvn

dt
(t)− ζn(t),

w(t) = −dv
dt

(t)− ζ(t).

Then {wn} weakly converges in L2
E([0, T], dt) to w. We will show that

w(t) = −dv
dt

(t)− ζ(t) ∈ A(t, v(t)), dt a.e.

By applying Mazur’ s lemma, there exists a sequence {ŵn(.)} which converges strongly in
L2

E([0, T], dt) to w = − dv
dt (.)− z(.) with

ŵn(t) ∈ co{wk(t) : k ≥ n}.
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Extracting a subsequence, we may ensure that ŵn(t) → w(t) = − dv
dt (t) − z(t) λ a.e.

Consequently, for t /∈ N where N is a λ-negligible set , we have

w(t) = −dv
dt

(t)− z(t) ∈
⋂
n

co{ŵk(t) : k ≥ n}.

It follows that for t /∈ N and for any x∗ ∈ E∗,

〈x∗, w〉 ≤ inf
n

sup
k≥n
〈x∗, ŵk〉.

So, by the above fact we obtain

〈x∗, w(t)〉 ≤ lim sup
n

δ∗(x∗, A(θn(t), vn(θn(t)) ≤ δ∗(x∗, A(t, v(t)),

because θn(t) ↓ t, vn(θn(t) ∈ D(A(θn(t)) and vn(θn(t) → v(t) with v(t) ∈ D(A(t)). As
consequence by ([13], Prop. III.35) we obtain

w(t) = −dv
dt

(.)− z(.) ∈ A(t, v(t)).

It remains to check that z(t) ∈ F(t, u(t)), λ a.e. However, this fact is clearly true thanks to
the property of F. Indeed from zn(t) ∈ F(t, vn(ϕn(t)) we have for any x∗ ∈ E∗,

〈x∗, zn(t)〉 ≤ δ∗(x∗, F(t, vn(ϕn(t)).

Then by integrating on any λ-measurable set Q ⊂ [0, T] and by noting that zn, t 7→
δ∗(x∗, F(t, vn(ϕn(t))) and t→ δ∗(x∗, F(t, v(t))) are Borel, we obtain∫

Q
〈x∗, zn(t)〉dt ≤

∫
Q

δ∗(x∗, F(t, vn(ϕn(t)))dt.

Passing to the limit yields∫
Q
〈x∗, z(t)〉dt ≤ lim sup

n

∫
Q

δ∗(x∗, F(t, vn(ϕn(t)))dt

≤
∫

Q
lim sup

n
δ∗(x∗, F(t, vn(ϕn(t))dt ≤

∫
Q

δ∗(x∗, F(t, u(t)))dt

so that
〈x∗, z(t)〉 ≤ δ∗(x∗, F(t, u(t))) λ a.e.

Since E is separable, and t 7→ F(t, v(t)) is measurable, by ([13], Proposition III-35), we
conclude that z(t) ∈ F(t, u(t)), dt a.e.

4. Applications

Our first application uses the results of Theorem 1 on the existence of BVRC solutions
in the framework of time-dependent m-accretive operators in a separable Hilbert space.

4.1. Second-Order Evolution Inclusion Driven by a Time-Dependent m-Accretive Operator. The
BVRC Case

Theorem 4. Assume that E is a separable Hilbert space. Let t 7→ A(t) : D(A(t))→ cc(E) be a
time-dependent m-accretive operator satisfying (HA

1 ), (HA
2 ), (HA

3 ), (HA
4 ). Let f : [0, T]× E×

E→ E be a continuous mapping satisfying

(i) || f (t, x, y)|| ≤ M(1 + ||x||), ∀t, x, y ∈ [0, T]× E× E.
(ii) || f (t, x, z)− f (t, y, z)|| ≤ M||x− y||, ∀t, x, y, z ∈ [0, T]× E× E× E.
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Let ν = dr + λ and let dλ
dν the density of λ with respect to the measure dν. Assume further that there

is β ∈]0, 1[ such that ∀t ∈ I, 0 ≤ 2M dλ
dν (t)dν({t}) ≤ β < 1. Then for u0 ∈ D(A(0)), x0 ∈ E,

there are a BVRC mapping u : [0, T] → E with density du
dν relatively to dν, and an AC mapping

w : [0, T]→ E satisfying
w(t) = x0 +

∫ t
0 u(s)ds, t ∈ [0, T]

u(0) = u0 ∈ D(A(0))
u(t) ∈ D(A(t)), ∀t ∈ [0, T]
du
dν (t) ∈ L∞

E ([0, T], dν)

− du
dν (t) ∈ A(t, u(t)) + f (t, u(t), w(t)) dλ

dν (t), ν a.e.

Proof. For any continuous mapping h : [0, T]→ E, the mapping fh(t, x) := f (t, x, h(t)) is
measurable on [0, T] for any x ∈ E and satisfies || fh(t, x)|| ≤ M(1+ ||x||), ∀t, x ∈ [0, T]× E
and || fh(t, x) − fh(t, y))|| ≤ M||x − y||, ∀t, x, y ∈ [0, T] × E × E, so by Theorem 1 and
Corollary 2 there is a unique BVRC solution vh to the inclusion

vh(0) = u0 ∈ D(A(0))

vh(t) ∈ D(A(t)), ∀t ∈ [0, T]

−dvh
dν

(t) ∈ A(t, vh(t)) + f (t, vh(t), h(t))
dλ

dν
dν-a.e

with dvh
dν ∈ KBE, where K is a positive generic constant so that ||vh(t)|| ≤ Kν([0, T]) :=

L, t ∈ [0, T]. Let us consider the closed convex subset X in the Banach space CE([0, T])
defined by

X := {u f : [0, T]→ E : u f (t) = u0 +
∫ t

0
f (s)ds, f ∈ S1

LBE
, t ∈ [0, T]},

where S1
LBE

denotes the set of all dt-integrable selections of the convex weakly compact-

valued constant multifunction LBE. Now for each h ∈ X let us consider the mapping

Φ(h)(t) := u0 +
∫ t

0
vh(s)ds, t ∈ [0, T].

Then it is clear that Φ(h) ∈ X . Further we have ||vh(t)|| ≤ L for all t ∈ [0, T] so that
the set Γ(t) := {x ∈ D(A(t)) : ||x|| ≤ L} is compact by (HA

2 ) and nonempty because
vh(t) ∈ D(A(t)), as consequence Φ(h)(t) ∈ u0 +

∫ t
0 co[Γ(s)]ds. Since s 7→ co[Γ(s)] is a

convex compact-valued and integrably bounded multifunction, the second member is
convex compact-valued [22]. Hence Φ(X ) is equicontinuous and relatively compact in the
Banach space CE([0, T]). Now we check that Φ is continuous. It is sufficient to show that if
(hn) converges uniformly to h in X , then the BVRC solution vhn associated with hn

vhn(0) = u0 ∈ D(A(0))

vhn(t) ∈ D(A(t)), ∀t ∈ [0, T]

−
dvhn

dν
(t) ∈ A(t, vhn(t)) + f (t, vhn(t), hn(t))

dλ

dν
(t) ν-a.e.

pointwise converges to the BVRC solution vh associated with h
vh(0) = u0 ∈ D(A(0))

vh(t) ∈ D(A(t)), ∀t ∈ [0, T]

−dvh
dν

(t) ∈ A(t, vh(t)) + f (t, vh(t), h(t))
dλ

dν
(t) dν-a.e.
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As (vhn(t)) is relatively compact, for each t ∈ [0, T] and (vhn) is uniformly bounded and
bounded in variation since ||vhn(t)− vhn(τ)|| ≤ K(ν(]τ, t]), τ ≤ t ∈ [0, T] , by the Helly
principle [14] we may assume that (vhn) pointwise converges to a BV mapping u. As

vhn = v0 +
∫
]0,t]

dvhn
dν dν, t ∈ [0, T] and dvhn

dr (s) ∈ KBH , s ∈ [0, T], we may assume that ( dvhn
dν )

converges weakly in L2
E([0, T], dν) to w ∈ L2

E([0, T], dν) with w(t) ∈ KBE, t ∈ [0, T] so that

weak- lim
n

vhn = u0 +
∫ t

0
w(s)dν(s) := z(t), t ∈ [0, T].

By identifying the limits, we obtain

u(t) = z(t) = u0 +
∫ t

0
w(s)dν(s)

with du
dν = w so that limn f (t, vhn(t), hn(t)) = f (t, u(t), h(t)), t ∈ [0, T]. As consequence

(
dvhn

dr + f (., vhn(.), hn(.)) dλ
dν (.)) weakly converges to dv

dν − f (., u(.), h(.)) dλ
dν (.) in L2

E([0, T], E, dν).
From the inclusion

−
dvhn

dν
(t)− f (t, vhn(t), hn(t))

dλ

dν
(t)) ∈ A(t, vhn(t)) ν a.e

we show, using the m-accretive extension A in L2
E([0, T], dν) defined by Lemma 4, the

inclusion − du
dν (t)− f (t, u(t), h(t)) dλ

dν (t) ∈ A(t, u(t)) ν a.e . Indeed, as −v̇n − zn ∈ A(vhn)
where−u̇n − zn ∈ L2

E(0, T], dν) with−u̇n − zn weakly converging in L2
E(0, T], dt) to−u̇− z

and vhn strongly convergent L2
E(0, T], dν) to u, and the the graph of A is strongly weakly

sequentially closed, we deduce the required inclusion

−du
dν

(t)− f (t, u(t), h(t))
dλ

dν
(t) ∈ A(t, u(t)) ν a.e

with u(0) = u0 ∈ D(A(0)) and u(t) ∈ D(A(t)) so that by uniqueness u = vh. Now let us
check that Φ : X → X is continuous. Let hn → h. We have

Φ(hn)(t)−Φ(h)(t) =
∫ t

0
vhn(s)ds−

∫ t

0
vh(s)ds =

∫ t

0
[vhn(s)− vh(s)]ds.

As ||vhn(.)− vh(.)|| → 0 pointwisely and is uniformly bounded : ||vhn(.)− vh(.)|| ≤ 2L,
we conclude that

sup
t∈[0,T]

||Φ(hn)(t)−Φ(h)(t)|| ≤ sup
t∈[0,T]

∫ t

0
||vhn(.)− vh(.)||ds→ 0

so that Φ(hn) − Φ(h) → 0 in CH([0, T]). Since Φ : X → X is continuous and Φ(X ) is
relatively compact in CE([0, T]), by Schauder theorem has a fixed point, say h = Φ(h) ∈ X ,
which means

h(t) = Φ(h)(t) = u0 +
∫ t

0
vh(s)ds, t ∈ [0, T]

vh(0) = u0 ∈ D(A(0))

−dvh
dν

(t) ∈ A(t, vh(t)) + f (t, vh(t), h(t)) ν-a.e

4.2. Second-Order Evolution Inclusion Driven by m-Accretive Operator. The AC Case

In the same spirit we present a new second-order evolution involving an integro-
differential Volterra equation with an m-accretive operator in a reflexive separable uniformly
convex space.
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Theorem 5. Assume that E is a separable reflexive uniformly convex space along with the dual E∗.
Let A : D(A)→ 2E, is an m-accretive operator satisfying (H1) and (H2).

Let f : [0, T]× [0, T]× E× E→ E be a Caratheodory mapping satisfying

(i) || f (t, s, x, y)|| ≤ M(1 + ||x||), ∀(t, s, x, y) ∈ [0, T × [0, T]]× E× E.
(ii) || f (t, s, x, z)− f (t, s, y, z)|| ≤ M||x− y||, ∀(t, s, x, y, z) ∈ [0, T]× [0, T]× E× E× E.

Then for u0 ∈ D(A), x0 ∈ E, there is an AC mapping u: [0, T] → E, and an AC mapping w:
[0, T]→ H satisfying

w(t) = x0 +
∫ t

0 u(s)ds, t ∈ [0, T]
u(0) = u0 ∈ D(A)
u(t) ∈ D(A), ∀t ∈ [0, T]
du
dt (t) ∈ L∞

E ([0, T], dt)
− du

dt (t) ∈ Au(t) +
∫ t

0 f (t, s, u(s), w(s))ds, dt a.e.

Proof. For any continuous h: [0, T] → E, the mapping fh(t, s, x): = f (t, s, x, h(t)) is mea-
surable on [0, T] × [0, T], ∀x ∈ E, continuous on E, ∀(t, s) ∈ [0, T] × [0, T] and satisfies
|| fh(t, s, x)|| ≤ M(1 + ||x||), ∀(t, s, x) ∈ [0, T]× [0, T]× E and || fh(t, s, x)− fh(t, s, y))|| ≤
M||x − y||, ∀(t, s, x, y) ∈ [0, T] × [0, T] × E × E, so by Theorem 2 or ([20], Theorem 4.6)
there is a unique AC solution vh to the inclusion

vh(0) = u0 ∈ D(A)

vh(t) ∈ D(A), ∀t ∈ [0, T]

−dvh
dt

(t) ∈ Avh(t) +
∫ t

0
f (t, s, vh(s), h(s))ds dt-a.e

with vh uniformly bounded and equi-absolutely continuous: dvh
dt ∈ KBE, where K is a

positive generic constant so that ||vh(t)|| ≤ L, t ∈ [0, T]. Let consider the closed convex
subset X in the Banach space CE([0, T]) defined by

X := {u f : [0, T]→ E : u f (t) = u0 +
∫ t

0
g(s)ds, g ∈ S1

LBE
, t ∈ [0, T]},

where S1
LBE

denotes the set of all dt-integrable selections of the convex weakly compact-

valued constant multifunction LBE. Now for each h ∈ X let us consider the mapping

Φ(h)(t) := u0 +
∫ t

0
vh(s)ds, t ∈ [0, T].

Then it is clear that Φ(h) ∈ X . We have ||vh(t)|| ≤ L for all t ∈ [0, T] so that the set Γ:
= {x ∈ D(A) : ||x|| ≤ L} is compact by (H2) and nonempty because vh(t) ∈ Γ. As conse-
quence for any h ∈ X and for any t ∈ [0, T] the inclusion holds Φ(h)(t) ∈ u0 +

∫ t
0 co[Γ]ds

and since co[Γ] is a convex compact-valued and integrably bounded multifunction, the sec-
ond member is convex compact-valued [22]. Hence Φ(X ) is equicontinuous and relatively
compact in the Banach space CE([0, T]). Now we check that Φ is continuous. It is sufficient
to show that if (hn) converges uniformly to h in X , then the AC solution vhn associated
with hn 

vhn(0) = u0 ∈ D(A)

vhn(t) ∈ D(A), ∀t ∈ [0, T]

−
dvhn

dν
(t) ∈ Avhn(t) +

∫ t

0
f (t, s, vhn(s), hn(s)ds dt-a.e.
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pointwise converges to the AC solution vh associated with h
vh(0) = u0 ∈ D(A)

vh(t) ∈ D(A), ∀t ∈ [0, T]

−dvh
dν

(t) ∈ Avh(t) +
∫ t

0
f (t, s, vh(s), h(s))ds dt-a.e.

As (vhn(t)) is relatively compact and vhn is equi-absolutely continuous, we may assume that

(vhn) converge uniformly to a continuous mapping u. As vhn = v0 +
∫
]0,t]

dvhn
dt dt, t ∈ [0, T]

and dvhn
dt (s) ∈ KBE, s ∈ [0, T], we may assume that ( dvhn

dt ) converges weakly in L2
E([0, T], dt)

to w ∈ L2
E([0, T], dt) with w(t) ∈ KBE, t ∈ [0, T] so that

weak- lim
n

vhn = u0 +
∫ t

0
w(s)dν(s) := z(t), t ∈ [0, T].

By identifying the limits, we obtain

u(t) = z(t) = u0 +
∫ t

0
w(s)d(s),

with du
dt = w so that limn

∫ t
0 f (t, s, vhn(s), hn(s))ds =

∫ t
0 f (t, s, u(s), h(s))ds, t ∈ [0, T]. As

consequence zn(t) :=
∫ t

0 f (t, s, vhn(s), hn(s))ds → z(t) :=
∫ t

0 f (t, s, u(s), h(s))ds weakly in
L2

E([0, T], dt). From the inclusion

−
dvhn

dt
(t)− zn(t) ∈ Avhn(t) dt a.e ,

we show, using the m-accretiveA in L2
E([0, T], dt) defined by Lemma 4 (or [12], Lemma 1.4.2)),

the inclusion

−du
dt

(t)−
∫ t

0
f (t, s, u(s), h(s))ds ∈ Au(t) dt a.e

with u(0) = u0 ∈ D(A) and u(t) ∈ D(A) so that by uniqueness u = vh. Now let us check
that Φ: X → X is continuous. Let hn → h. We have

Φ(hn)(t)−Φ(h)(t) =
∫ t

0
vhn(s)dν(s)−

∫ t

0
vh(s)ds =

∫ t

0
[vhn(s)− vh(s)]ds.

As ||vhn(.)− vh(.)|| → 0 pointwise and is uniformly bounded: ||vhn(.)− vh(.)|| ≤ 2L, we
conclude that

sup
t∈[0,T]

||Φ(hn)(t)−Φ(h)(t)|| ≤
∫ T

0
||vhn(.)− vh(.)||ds→ 0.

So that Φ(hn) − Φ(h) → 0 in CH([0, T]). Since Φ: X → X is continuous and Φ(X ) is
relatively compact in CE([0, T]), by Schauder theorem Φ has a fixed point, say h = Φ(h) ∈
X , which means

h(t) = Φ(h)(t) = u0 +
∫ t

0
vh(s)ds, t ∈ [0, T]

vh(0) = u0 ∈ D(A)

−dvh
dt

(t) ∈ Avh(t) +
∫ t

0
f (t, s, vh(s), h(s))ds dt-a.e.



Mathematics 2022, 10, 317 20 of 32

4.3. Optimal Control Problem Governed by an Integro-Differential Volterra Accretive Operator

Let E be a separable reflexive uniformly convex space along with the dual E∗. Let
us consider a convex weakly compact-valued mapping C : I ⇒ BE with bounded right
continuous retraction in the sense, there is a bounded and right continuous function
ρ : I → R+ such that dH(C(t), C(τ)) ≤ ρ(τ)− ρ(t), ∀t ≤ τ ∈ I and such that its graph is
Borel, i.e., Graph(C) ∈ B(I)⊗B(E). We consider the control sets given by

SBVRC
C := {u : I → E, u is BVRC, u(t) ∈ C(t), ∀t ∈ I},

S∞
C := {u ∈ L∞(I, E, dλ), u(t) ∈ C(t), ∀t ∈ I}.

By J.J. Moreau ([23], Prop.5 d, p. 198) and Valadier [24] these sets are nonempty and
clSBVRC

C = S∞
C , where cl denotes the closure with respect to the σ(L∞

E , L1
E∗)-topology.

Shortly SBVRC
C is dense in S∞

C with respect to this topology. Then we have the following
relaxation results in a control problem governed by an integro-differential Volterra m-
accretive operator given above.

Theorem 6. Assume that E and E∗ are reflexive separable and uniformly convex spaces. Let
I = [0, T] and A : D(A)→ 2E, is an m-accretive operator satisfying (H1) and (H2).

Let a : I × I × E→ R be a Caratheodory mapping

(i) |a(t, s, x)| ≤ M, ∀(t, s, x ∈ I × I × E,
(ii) |a(t, s, x)− a(t, s, y)| ≤ M||x− y||, ∀t, s ∈ I × I, ∀x, y ∈ E× E.

Then the following hold:

(a) the AC solution set SV∞
C

to the inclusion


u(0) = u0 ∈ D(A)
u(t) ∈ D(A), ∀t ∈ I
du
dt (t) ∈ L∞

E (I, λ)

− du
dt (t) ∈ Au(t) +

∫ t
0 a(t, s, u(s))h(s)ds, λ a.e. t ∈ [0, T], h ∈ V∞

C

is nonempty and compact in CE(I).
(b) The AC solution set SVC to the inclusion

u(0) = u0 ∈ D(A)
u(t) ∈ D(A), ∀t ∈ I
du
dt (t) ∈ L∞

E (I, λ)

− du
dt (t) ∈ Au(t) +

∫ t
0 a(t, s, u(s))h(s)ds, λ a.e. t ∈ I, h ∈ VC

is nonempty and is dense in the compact set SV∞
C

.

Proof. We first note that for each Borel measurable selection h of C, the function fh(t, s, x) :=
a(t, s, x)h(s) satisfies to the conditions: || fh(t, s, x)|| ≤ M, || fh(t, s, x) − fh(t, s, y)|| ≤
M(||x − y||, ∀(t, s ∈ I × I, ∀x, y ∈ E × E, and (t, s) → fh(t, s, x) is Lebesgue measur-
able on I × I, in particular if h is a BVRC selection of C and if v : I → E is AC ,
then (t, s) 7→ a(t, s, v(s))h(s) is Lebesgue measurable and bounded. By Theorem 2 or
(Theorem 4.6, [20]) for each Borel measurable selection h of C, there is a unique AC solution
vh to the inclusion

vh(0) = u0 ∈ D(A)
vh(t) ∈ D(A), ∀t ∈ I
dvh
dt (t) ∈ L∞

E (I, λ)

− dvh
dt (t) ∈ Avh(t) +

∫ t
0 a(t, s, vh(s))h(s)ds, λ a.e.
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So, the set of solutions are given by: SV∞
C
= {vh : h ∈ V∞

C } and SVC = {vh : h ∈ VC}. Let
{hn ∈ V∞

C } σ(L∞
E (I, λ), L1

E∗(I, λ)) converging to h ∈ V∞
C . As shown in the proof of Theorem

4.6 in [20], the sequence of AC solution (vhn) is equi-absolutely continuous with {vhn(t)}
relatively compact. Namely

(vhn) ⊂ X := {v : I → E : v(t) = u0 +
∫ t

0

dv
ds

(s)ds, t ∈ I, ||dv
ds

(s)|| ≤ K},

where K is a positive generic constant which depends only on u0, A and M. Since {vhn(t)}
relatively compact, we may assume that vhn converges uniformly to an AC mapping

v : I → E with dvhn
dt →

dv
dt weakly in L2

E(I, λ). Further it is clear that a(t, s, vhn(s)) →
a(t, s, v(s)) pointwise. Let zn(t) :=

∫ t
0 a(t, s, vhn(s))hn(s)ds, z(t) :=

∫ t
0 a(t, s, vh(s))h(s)ds.

We assert the main fact : zn → z weakly in L2
E(I, λ). It is clear that zn and z are Lebesgue

measurable by Fubini–Lebesgue integral and the separability of the space E. A crucial
fact is a(t, ., vhn(.))− (a(t, ., vh(.)) converge to 0, it converges to 0 uniformly on uniformly
integrable sets, alias Mackey converges to 0. As consequence, the assertion follows. Indeed,
let g ∈ L2

E(I). Then we have by integration

lim
n

∫ T

0
〈g(t), zn(t)〉dt = lim

n

∫ T

0
〈g(t),

∫ t

0
a(t, s, vhn(s))hn(s)ds〉dt

= lim
n

∫ T

0
[
∫ t

0
a(t, s, vhn(s)), 〈g(t), hn(s)〉ds]dt

=
∫ T

0
lim

n
[
∫ t

0
a(t, s, vhn(s)), 〈g(t), hn(s)〉ds]dt =

∫ T

0
[
∫ t

0
a(t, s, vh(s)), 〈g(t), h(s)〉ds]dt

=
∫ T

0
〈g(t), z(t)〉dt.

From dvhn
dt + zn → dv

dt + z weakly L2
E(I, λ) and the inclusion

−
dvhn

dt
(t)−

∫ t

0
a(t, s, vh(s))h(s)ds ∈ Avhn(t) λ a.e ,

we deduce

−dv
dt

(t)−
∫ t

0
a(t, s, vh(s))h(s)ds ∈ Av(t) λ a.e ,

by repeating the convergence limit involving the accretive argument given in the proof of
([20], Theorem 4.6) via Lemma 4 (or [12], Lemma 1.4.2). By uniqueness we have v = vh. We
conclude that the mapping φ : h 7→ vh from the compact metrizable set V∞

C ⊂ L∞
E (I, λ) to

CE(I) is continuous. Hence {vh : h ∈ VC} is compact in CE(I), since VC is dense in V∞
C , the

latter {vh : h ∈ VC} is dense in the first {vh : h ∈ V∞
C }.

Theorem 7. Assume that E and E∗ are reflexive separable and uniformly convex spaces. Let
A : D(A)→ 2E, is an m-accretive operator satisfying (H1) and (H2).
Let BE be the closed unit ball in E and let Ext(BE) the set of extreme points of BE and

MBE
:= {u ∈ L∞

E ([0, T], λ), u(t) ∈ BE, ∀t ∈ [0, T]},

MExt(BE)
:= {u ∈ L∞

E ([0, T], λ), u(t) ∈ Ext(BE), ∀t ∈ [0, T]}.

Then the following hold:
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(a) the AC solution set SMBE
to the inclusion

u(0) = u0 ∈ D(A)
u(t) ∈ D(A), ∀t ∈ [0, T]
du
dt (t) ∈ L∞

E ([0, T], λ)

− du
dt (t) ∈ Au(t) +

∫ t
0 a(t, s, u(s))h(s)ds, λ , λ a.e. t ∈ [0, T], h ∈ MBE

is nonempty and compact in C(I, E).
(b) The AC solution set SMExt(BE)

to the inclusion
u(0) = u0 ∈ D(A)
u(t) ∈ D(A), ∀t ∈ [0, T]
du
dt (t) ∈ L∞([0, T], E; λ)

− du
dt (t) ∈ Au(t) +

∫ t
0 a(t, s, u(s))h(s)ds, λ a.e. t ∈ [0, T], h ∈ MExt(BE)

is nonempty and is dense in the compact set SMBE
.

Proof. We use the same tool as in the proof of Theorem 5 by noting thatMExt(BE)
is dense in

MBE
with respect to the σ(L∞

E ([0, T], λ), L1
E∗([0, T], λ)) by virtue of Ljapunov theorem.

Theorems 5–7 are new applications of the above results and tools. There is a sharp
similarity with the inclusion driven with an m-accretive operator A of the form m(t) ∈
u̇(t) + Au(t) where m ∈ W1,1([0, T], E) and E is a reflexive Banach space, see Barbu
([10], Theorem 2.2, p. 131) and the inclusion f (t) ∈ u̇(t) + Au(t) where f is function of
bounded variation, see [25], Corollary 1 of Proposition 6). Taking account of these facts, we
develop in this spirit some related results dealing with mild solution. It is well-known that
given an m-accretive operator A : D(A) ⇒ E, for each x0 ∈ D(A) and f ∈ L1

E[0, T], λ) there
exists a unique mild solution to the inclusion − du

dt (t) ∈ Au(t) + f (t), u(0) = x0 ∈ D(A).
That is a celebrated result due to Benilan–Crandall–Evans–Kobayashi ([12], Theorem 1.7.4).
Further let u f , ug be two mild solutions with u f (0) = ug(0) = x0 ∈ D(A) corresponding to
f , g ∈ L1

E[0, T], λ), then we have the estimation ([12], Theorem 1.7.5)

||u f (t)− ug(t)|| ≤ 2
∫ t

0
〈u f (s)− ug(s), f (s)− g(s)〉+ds = 2

∫ t

0
〈j(u f (s)− ug(s)), f (s)− g(s)〉ds

where j : E→ E∗ is the single-valued duality mapping, taking account of the dual space E∗

is uniformly convex and reflexive. LetH be a weakly compact subset in L1
E[0, T], λ). We are

concerned with the solution set {u f : f ∈ H} and the property f → u f fromH to CE([0, T]
related to the above inclusion. For this purpose, we produce a fairly useful lemma.

Lemma 5. Let E be a reflexive separable space such that its dual is uniformly convex. Let (un),
(vn) be two sequences in CE([0, T]) and ( fn), (gn) two sequences in L1

E([0, T], dt). If limn un =
u, limn vn = v strongly in CE([0, T]) and limn fn = f , limn gn = g weakly in L1

E([0, T], dt),
then

lim
n

∫ T

0
〈un(s)− vn(s), fn(s)− gn(s)〉+ds =

∫ T

0
〈u(s)− v(s), f (s)− g(s)〉+ds.

Proof. We have

|
∫ T

0
〈un(s)− vn(s), fn(s)− gn(s)〉+ds−

∫ T

0
〈u(s)− v(s), f (s)− g(s)〉+ds|

= |
∫ T

0
j(un(s)− vn(s)), fn(s)− gn(s)〉ds−

∫ T

0
j(u(s)− v(s)), f (s)− g(s)〉ds|
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≤ |
∫ T

0
j(un(s)− vn(s)), fn(s)− gn(s)〉ds−

∫ T

0
j(u(s)− v(s)), fn(s)− gn(s)〉ds|

+|
∫ T

0
j(u(s)− v(s)), fn(s)− gn(s)〉ds−

∫ T

0
j(u(s)− v(s)), f (s)− g(s)〉ds|.

As j(u(.)− v(.)) ∈ L∞
E∗([0, T], dt), and fn− gn → 0 weakly in L1

E([0, T], dt), it is obvious that∫ T
0 j(u(s) − v(s)), fn(s) − gn(s)〉ds −

∫ T
0 j(u(s) − v(s)), f (s) − g(s)〉ds → 0. As j(un(.) −

vn(.)− j(u(.)− v(.)) is uniformly bounded and pointwise converges in measure to 0, it
converges to 0 uniformly on uniformly integrable sets of L1

E([0, T], dt), In other terms
its converges to 0 with respect to the Mackey topology τ(L∞

E∗([0, T], dt), L1
E([0, T], dt)) (If

E = Rd, one may invoke a classical fact that on bounded subsets of L∞([0, T], E; dt) the
topology of convergence in measure coincides with the topology of uniform convergence
on uniformly integrable sets, i.e., on relatively weakly compact subsets, alias the Mackey
topology. This is a lemma due to Grothendieck [26] [Ch.5 §4 no 1 Prop. 1 and exercise]),
therefore

lim
n

∫ T

0
〈j(un(s)− vn(s))− j(u(s)− v(s)), fn(s)〉ds = 0

and so is

lim
n

∫ T

0
〈j(un(s)− vn(s))− j(u(s)− v(s)), gn(s)〉ds = 0

because{ fn} and {gn} is uniformly integrable in L1
E([0, T], dt).

The preceding lemma with its tool occurs in several applications when dealing with
mild solutions for m-accretive operators. See e.g., Crandall and Nohel [25,27], Bothe [17,18],
Tolstonogov [19] and Wrabie [12]. However, we do not go to this direction that is out of the
scope of the work.

4.4. An Application to Fractional Equation Coupled with a Volterra Integro-Differential Evolution

We are interested in the following fractional-order boundary problem involving an
evolution governed by an m-accretive operator A: D(A)→ E with perturbation.

Dαh(t) + λDα−1h(t) = u(t), t ∈ [0, 1], (18)

Iβ
0+h(t)|t=0 := lim

t→0

∫ t

0

(t− s)β−1

Γ(β)
h(s)ds = 0, (19)

h(1) = Iγ
0+h(1) =

1∫
0

(1− s)γ−1

Γ(γ)
h(s)ds, (20)

−du
dt

(t) ∈ Au(t) + f (t, h(t), u(t)) a.e. t ∈ I,

where α ∈]1, 2], β ∈ [0, 2 − α], λ ≥ 0, γ > 0 are given constants, Dα is the standard
Riemann–Liouville fractional derivative, Γ is the gamma function and f : [0, 1]× E× E→ E
is a single-valued mapping.

Definition 1 (Fractional Bochner integral). Let f : [0, 1]→ H. The fractional Bochner integral
of order α > 0 of the function f is defined by

Iα
a+ f (t) :=

∫ t

a

(t− s)α−1

Γ(α)
f (s)ds, t > a.

We refer to [28–30], for the general theory of Fractional Calculus and Fractional
Differential Equations.
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We denote by Wα,1
B,E([0, 1]) the space of all continuous functions in CE([0, 1]) such

that their Riemann–Liouville fractional derivative of order α− 1 are continuous and their
Riemann–Liouville fractional derivative of order α are Bochner integrable.

For the proof of our theorems, we will need some elementary lemmas and theorems
taken from reference [31].

Green function and its properties. Let α ∈]1, 2], β ∈ [0, 2 − α], λ ≥ 0, γ > 0 and
G : [0, 1]× [0, 1]→ R be a function defined by

G(t, s) = ϕ(s)Iα−1
0+ (exp(−λt)) +


exp(λs)Iα−1

s+ (exp(−λt)), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,

where

ϕ(s) =
exp(λs)

µ0

[(
Iα−1+γ
s+ (exp(−λt))

)
(1)−

(
Iα−1
s+ (exp(−λt))

)
(1)
]

with
µ0 =

(
Iα−1
0+ (exp(−λt))

)
(1)−

(
Iα−1+γ
0+ (exp(−λt))

)
(1).

Lemma 6. Let G be the function defined above.

(i) G(·, ·) satisfies the following estimate

|G(t, s)| ≤ 1
Γ(α)

(
1 + Γ(γ + 1)
|µ0|Γ(α)Γ(γ + 1)

+ 1
)
= MG.

(ii) If u ∈Wα,1
B,E([0, 1]) satisfies boundary conditions equations(18), (19), (20), then

u(t) =
1∫

0

G(t, s)
(

Dαu(s) + λDα−1u(s)
)

ds for every t ∈ [0, 1].

(iii) Let f ∈ L1
E([0, 1]) and let u f : [0, 1]→ H be the function defined by

u f (t) :=
1∫

0

G(t, s) f (s)ds for t ∈ [0, 1].

Then
Iβ
0+u f (t)|t=0 = 0 and u f (1) =

(
Iγ
0+u f

)
(1).

Moreover, u f ∈Wα,1
B,E([0, 1]) and we have(

Dαu f

)
(t) + λ

(
Dα−1u f

)
(t) = f (t) for all t ∈ [0, 1].

The following theorem characterizes the topological structure of the solutions set.

Theorem 8. Let I = [0, 1] and X : I ⇒ E be a convex compact-valued measurable set-valued
map such that X(t) ⊂ γBH for all t ∈ I, where γ is a positive constant and S1

X be the set of all
measurable selections of X. Then the Wα,1

B,E(I)-solutions set of problem{
Dαu(t) + λDα−1u(t) = f (t), f ∈ S1

X , a.e. t ∈ I
Iβ
0+u(t)|t=0 = 0, u(1) = Iγ

0+u(1)
(21)

is a convex compact subset in CE(I).



Mathematics 2022, 10, 317 25 of 32

The following extends Theorem 5 in [32] into the m-accretive setting.

Theorem 9. Let I = [0, 1]. Assume that E and E∗ are reflexive separable and uniformly convex.
A: D(A)→ 2E, is an m-accretive operator satisfying (H1) and (H2).

Let f : I × I × H × H → H such that

(i) f (., ., x, y) is Lebesgue measurable on I × I for all (x, y) ∈ H × H
(ii) f (t, τ, ., .) is continuous on H × H for all (t, τ) ∈ I × I.
(iii) || f (t, τ, x, y)|| ≤ M(1 + ||y||) for all (t, τ, x, y) ∈ I × I × H × H,
(iv) || f (t, τ, x, y)− f (t, τ, x, z)|| ≤ M||y− z||, for all (t, τ, x, y, z) ∈ I × I × E× E× E for

some positive constant M.

Then there is a Wα,1
B,E(I) mapping x : I → E and an absolutely continuous mapping v : I → H

satisfying 
Dαx(t) + λDα−1x(t) = v(t), t ∈ I
Iβ
0+x(t)|t=0 = 0, x(1) = Iγ

0+x(1)
v(t) ∈ D(A), t ∈ I
− dv

dt (t) ∈ Av(t) +
∫ t

0 f (t, τ, x(τ), v(τ))dτ a.e. t ∈ I.

Proof. For any continuous h : I → E, the mapping fh(t, s, x) := f (t, s, x, h(t)) is measurable
on I × I, ∀x ∈ E, continuous on E, ∀(t, s) ∈ I × I and satisfies || fh(t, s, x)|| ≤ M(1 +
||x||), ∀(t, s, x) ∈ I × I × E and || fh(t, s, x)− fh(t, s, y))|| ≤ M||x− y||, ∀(t, s, x, y) ∈ I ×
I × E× E, so by Theorem 2 or (Theorem 4.6, [20]) there is a unique AC solution vh to the
inclusion 

vh(0) = u0 ∈ D(A)

vh(t) ∈ D(A), ∀t ∈ I

−dvh
dt

(t) ∈ Avh(t) +
∫ t

0
f (t, s, vh(s), h(s))ds dt-a.e

with vh uniformly bounded and equi-absolutely continuous: dvh
dt ∈ KBE, where K is a

positive generic constant so that ||vh(t)|| ≤ L, t ∈ I. Let us consider the multivalued
mapping defined by

X := {u f : [0, 1]→ E : u f (t) =
∫ 1

0
G(t, s) f (s)ds, f ∈ S1

LBE
, t ∈ I}.

We note that X closed convex and equi-Lipschitz ([32], Theorem 4.1). Now for each h ∈ X ,
let us consider the unique absolutely continuous solution uh to −u̇h(t) ∈ Auh(t) +

∫ t
0 f (t, τ, h(τ), uh(τ))dτ a.e. t ∈ I

uh(t) ∈ D(A), ∀t ∈ I
uh(0) = u0 ∈ D(A).

For each h ∈ X let us set

Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds, t ∈ I.

Then it is clear that Φ(h) ∈ X . We have ||uh(t)|| ≤ L for all t ∈ I so that the set Γ := {x ∈
D(A) : ||x|| ≤ L} is compact by (H2) and nonempty because vh(t) ∈ Γ. As consequence
for any h ∈ X and for any t ∈ I, the inclusion holds

Φ(h) ∈ Y := {u f : I → E : u f (t) =
∫ 1

0
G(t, s) f (t)ds, f ∈ S1

co[Γ], t ∈ I}.

By ([32], Theorem 4.1) Y convex compact and equi-Lipschitz. Hence Φ(X ) is equicontin-
uous and relatively compact in the Banach space CE([0, T]) because Φ(X ) ⊂ Y . Now we
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check that Φ is continuous. It is sufficient to show that if (hn) converges uniformly to h in
X , then the absolutely continuous solution uhn associated with hn

uhn(0) = u0 ∈ D(A)

uhn(t) ∈ D(A), ∀t ∈ I

−u̇hn(t) ∈ Auhn(t) +
∫ t

0
f (t, τ, hn(τ), uhn(τ))dτ a.e. t ∈ I

uniformly converges to the absolutely solution uh associated with h
uh(0) = u0 ∈ D(A)

uh(t) ∈ D(A), ∀t ∈ I

−u̇h(t) ∈ Auh(t) +
∫ t

0
f (t, τ, h(τ), uh(τ))dτ a.e. t ∈ I.

This needs a careful look. We note that uhn is equicontinuous with ||u̇hn(t)|| ≤ K for almost
all t ∈ I and for all n ∈ N and relatively compact. So, by extracting subsequence, we
may assume that uhn(t)→ v(t) = v(0) +

∫ t
0 v̇(s)ds uniformly with u̇hn weakly converging

in L2
H(I) to v̇ with ||v̇(t)|| ≤ K for a.e t ∈ I. Please note that f (t, τ, hn(τ), uhn(τ)) →

f (t, τ, hn(τ), uhn(τ)) for all t, τ ∈ I × I. For simplicity, note

zn(t) =
∫ t

0
f (t, τ, hn(τ), uhn(τ)), ∀t ∈ I,

z(t) =
∫ t

0
f (t, τ, h(τ), uh(τ)), ∀t ∈ I.

We mention at first that these mappings are Lebesgue measurable by the Fubini-Bochner
property and the separability of the space E. Second, by the growth condition and the
boundedness of uhn and uh, zn and z are uniformly bounded, say ||zn(t)|| ≤ κ ||z(t)|| ≤
κ, ∀n ∈ N, ∀t ∈ I. As consequence zn is uniformly bounded measurable and pointwise
converge to the measurable mapping z. Hence u̇hn(t) + zn(t) → v̇(t) + z(t) weakly in
L2

E(I). Applying the accretive extension of A (cf Lemma 4) gives − dv
dt (t) ∈ Av(t) + z(t) a.e.

with v(t) ∈ D(A) for all t ∈ I so that by uniqueness v = uh. Since hn → h, we have

Φ(hn)(t)−Φ(h)(t) =
∫ 1

0
G(t, s)uhn(s)ds−

∫ 1

0
G(t, s)uh(s)ds

=
∫ 1

0
G(t, s)[uhn(s)− uh(s)]ds

≤
∫ 1

0
MG||uhn(s)− uh(s)||ds.

As ||uhn(·)− uh(·)|| → 0 uniformly we conclude that

sup
t∈I
||Φ(hn)(t)−Φ(h)(t)|| ≤

∫ 1

0
MG||uhn(·)− uh(·)||ds→ 0

so that Φ(hn) → Φ(h) in CE(I). Since Φ : X → X is continuous with Φ(X ) relatively
compact in CE([0, T]) by Schauder theorem Φ has a fixed point, say h = Φ(h) ∈ X . This
means that

h(t) = Φ(h)(t) =
∫ 1

0
G(t, s)uh(s)ds,
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with 
uh(0) ∈ D(A)

uh(t) ∈ D(A), ∀t ∈ I

−u̇h(t) ∈ Auh(t) +
∫ t

0
f (t, τ, h(τ), uh(τ))dτ a.e. t ∈ I.

This means that we have just shown that there exists a mapping h ∈Wα,∞
B,E (I) satisfying

Dαh(t) + λDα−1h(t) = uh(t),

Iβ
0+h(t)|t=0 = 0, h(1) = Iγ

0+h(1)

uh(0) ∈ D(A)

uh(t) ∈ D(A), ∀t ∈ I

−u̇h(t) ∈ Auh(t) +
∫ t

0
f (t, τ, h(τ), uh(τ))dτ a.e. t ∈ I.

Several variants are available by considering time-dependent m-accretive operator e.g.,
Theorems 1–3 and other type of fractional equations, e.g., the Caputo fractional equation
with Caputo fractional derivatives.

4.5. Skorohod Problem Driven by Operator

To finish the paper, we provide some new versions of Skorohod problem for an evolution
inclusion driven by time dependent operator At in the vein of Castaing et al. [33], Falkowski
and Słominski [34], Rascanu [35], and Maticiuc, Rascanu, Slominski and Topolewski [36].

We begin by recalling some notations which are used in next proofs (See [37] Definition 1.5).
Let D([s, t]) be the set of all dissections D = {s = t0 < t1 < . . . < tn = t} of [s, t] of

[0, T].
If z : [0, T]→ E, for 0 ≤ s ≤ t ≤ T, the 1-variation of z on [s, t] is defined as

|z|1−var:[s,t] = sup
(ti)∈D([s,t])

Σ‖z(ti+1)− z(ti)‖

If |z|1−var:[s,t] < +∞, z is bounded variation or finite 1-variation on [s, t]. C1−var([0, T], E) is
the space of continuous maps of bounded variation on [0, T].

Theorem 10. Let I = [0, 1] and E = Re. Let t 7→ A(t) : D(A(t))→ ccl(E) be a time-dependent
m-accretive operator satisfying
(HA

1 ) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖) for t ∈ I, x ∈ D(A(t)),

(HA
2 ) t 7→ D(A(t)) has closed graph, Gr(D(A)),

(HA
3 ) (t, x) 7→ A(t, x) : Gr(D(A)) → ccl(E) is scalar upper semicontinuous: for tn → t, for

xn → x with xn ∈ D(A(tn)) and x ∈ D(A(t)),

∀x∗ ∈ E∗, lim sup
n

δ∗(x∗, A(tn, xn)) ≤ δ∗(x∗, A(t, x)),

(HA
4 )
′ There exists a nondecreasing and absolutely continuous function β : I → [0, ∞[ with

β̇ ∈ L2, such that for t < τ ⊂ I, for λ > 0 and x ∈ D(A(t))

‖x− JA(τ)
λ (x)‖ ≤ (β(τ)− β(t))(1 + ||A0(t, x)||).
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Let z ∈ C1−var(I, Rd) the space of continuous functions of bounded variation defined on I with
values in Rd. Let L(Rd, Re) the space of linear mappings f from Rd to Re endowed with the
operator norm

| f | := sup
x∈Rd ,||x||Rd=1

| f (x)|Re .

Let us consider a class of continuous integrand operator b : I × Re → L(Rd, Re) satisfying

(a) |b(t, x)| ≤ M, ∀(t, x) ∈ I × Re,
(b) |b(t, x)− b(t, y)| ≤ M||x− y||Re , ∀(t, x, y) ∈ I × Re × Re,

where M is a positive constant and
∫ t

0 b(τ, x(τ))dzτ is the Riemann-Stieltjes integral defined on
x ∈ C(I, Re).

Let g : I × Re → Re be a continuous mapping satisfying:

(i) ||g(t, x)|| ≤ M for all (t, x) ∈ I × Re,
(ii) ‖g(t, x)− g(t, y)‖ ≤ M(||x− y||) for all (t, x, y) ∈ I ×Re ×Re for some constant M > 0.

Let a ∈ D(A(0)). Then there exist a BVC function x : I → Re and BVC function h : I → Re

and AC functions k : I → Re, u : I → Re satisfying

x(0) = u(0) = a
x(t) = h(t) + k(t) + u(t), ∀t ∈ I
h(t) =

∫ t
0 b(τ, x(τ))dzτ , ∀t ∈ I

k(t) =
∫ t

0 g(s, x(s))ds, ∀t ∈ I
u(t) ∈ D(A(t)), ∀t ∈ I
− du

dt (t) ∈ A(t, u(t)) + k(t), a.e., t ∈ I.

Proof. Let a ∈ D(A(0)). Let us set for all t ∈ I

x0(t) = a, h1(t) =
∫ t

0
b(τ, a)dzτ .

Then by Proposition 2.2 in Friz-Victoir [37], we have

|
∫ t

0
b(τ, a)dzτ | ≤ |b(., a)|∞:I |z|1−var:[0,t]. (22)

Moreover ∫ t

0
b(τ, a)dzτ −

∫ s

0
b(τ, a)dzτ =

∫ t

s
b(τ, a)dzτ

so that by condition (a)
||h1(t)− h1(s)|| ≤ M|z|1−var:[s,t], (23)

for all 0 ≤ s ≤ t ≤ 1 and in particular

||h1(t)|| ≤ M|z|1−var:[0,t] ≤ M|z|1−var:I

for all t ∈ I. Let us set for all t ∈ I = [0, 1],

x0(t) = a, k1(t) =
∫ t

0
g(s, x0(s))ds,

then k1 is continuous with ‖k1(t)‖ ≤ M for all t ∈ I. By an easy computation, using
conditions (i) and (ii) we have the estimate ||k1(t)− k1(τ)|| ≤ M|t− τ|, for all τ, t ∈ I. By
Theorem 3 there is a unique AC solution u1 : I → E to the problem u1(0) = a, u1(t) ∈ D(A(t)), ∀t ∈ I;

−du1

dt
(t) ∈ A(t, u1(t)) + k1(t), a.e.
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with

u1(t) = a +
∫
]0,t]

du1

ds
(s)ds, ∀t ∈ I

and
∥∥ du1

dt

∥∥
L2

E
≤ L, where L is a positive constant depending on the data. Set

x1(t) = h1(t) + k1(t) + u1(t) =
∫ t

0
b(τ, x0(τ)dzτ +

∫ t

0
g(s, x0(s))ds + u1(t).

Then x1 is BVC with x1(0) = a. Now we construct xn by induction as follows. Let for all
t ∈ I,

hn(t) =
∫ t

0
b(τ, xn−1(τ))dzτ ,

kn(t) =
∫ t

0
g
(
s, xn−1(s)

)
ds.

Then kn is equi-Lipschitz: ||kn(t)− kn(τ)|| ≤ M|t− τ|, for all τ, t ∈ I with ‖kn(t)‖ ≤ M
for all t ∈ I. By Proposition 2.2 in Friz-Victoir [37] we have the estimate

||hn(t)− hn(s)|| ≤ M|z|1−var:[s,t]

for all 0 ≤ s ≤ t ≤ 1 and in particular,

||hn(t)|| ≤ M|z|1−var:[0,t] ≤ M|z|1−var:I ,

for all 0 ≤ t ≤ 1. By Theorem 3 there is a unique AC solution un : I → E to the problem un(0) = a, un(t) ∈ D(A(t)), ∀t ∈ I,

−dun

dt
(t) ∈ A(t, un(t)) + kn(t), a.e.

with
un(t) = a +

∫
]0,t]

dun

ds
(s) ds, ∀t ∈ I

and
∥∥ dun

dt

∥∥
L2

E
≤ L where L is a positive constant depending on the data. Set for all t ∈ I,

xn(t) = hn(t) + kn(t) + un(t) =
∫ t

0
b(τ, xn−1(τ))dzτ +

∫ t

0
g
(
s, xn−1(s)

)
ds + un(t),

so that xn is BVC, and

− dun

dt
(t) ∈ A(t, un(t)) + kn(t), a.e. (24)

As (un) is equi-absolutely continuous and for all t ∈ I un(t) ∈ D(A(t)), we may assume
that (un) converges uniformly to an AC mapping u : I → H with u(t) ∈ D(A(t)), ∀t ∈ I,
using the estimate ‖ dun

dt (t)‖L2
E
≤ L, we may also assume that ( dun

dt ) weakly converges in

L2
H(I, dt) to du

dt , and by Ascoli theorem we may assume that kn converges uniformly to a
continuous mapping k : I → H. Now, recall that

||hn(t)− hn(s)|| ≤ M|z|1−var:[s,t]

for all 0 ≤ s ≤ t ≤ T using Proposition 2.2 in Friz-Victoir [37], and our assumption (a) on
the mapping b. So hn is bounded and equicontinuous. By Ascoli theorem, we may assume
that hn converge uniformly to a continuous mapping h. Similarly, kn is bounded and equi-
Lipschitz. By Ascoli theorem, we may assume that kn converge uniformly to a continuous
mapping k. Hence xn(t) = hn(t) + kn(t) + un(t) converge uniformly to x(t) := h(t) +
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k(t) + u(t), and b(., xn−1(.)) converges uniformly to b(., x(.)) using the Lipschitz condition
(b). Then by Friz-Victoir [37] (Proposition 2.7)

∫ t
0 b(τ, xn−1(τ))dzτ converges uniformly to∫ t

0 b(τ, x(τ))dzτ . By hypothesis (i), g(s, xn−1(s)) pointwise converge to g(s, x(s)). Hence∫ t
0 g(s, xn−1(s))ds→

∫ t
0 g(s, x(s))ds for each t ∈ I by Lebesgue theorem. So, by identifying

the limit

lim
n→∞

xn(t) = lim
n→∞

∫ t

0
b(τ, xn−1(τ))dzτ + lim

n→∞

∫ t

0
g(s, xn−1(s))ds + lim

n→∞
un(t)

=
∫ t

0
b(τ, x(τ))dzτ +

∫ t

0
g(s, x(s))ds + u(t) = x(t).

Now, by (HA
3 ) it is easily seen that Jλ is continuous on I × E. From equation (24), applying

the m-accretive (equivalent maximal monotone) extension (cf Lemma 4) we obtain

−du
dt

(t) ∈ A(t, u(t)) + k(t), a.e. t ∈ I.

The proof is therefore complete.

In Theorems 5-9 we have provided existence results of solution for a class of integral
equation of Volterra type coupled with a m-accretive operator. Our tools allow the statement
of several variants of Theorem 10 according to the nature of the control z, the perturbation
and the operator, e.g., A is an m-accretive operator satisfying (H1) and (H2) with Volterra
integral perturbation (Cf Theorem 2). It is a challenge to obtain the uniqueness. In this
setting, our result is quite new by comparison with the sole classical integral equation
x(t) =

∫ t
0 g(t, s, x(s))ds +

∫ t
0 b(τ, x(τ))dzτ .

In this vein we provide below some application in the problem of Optimal Control.
In the following E = Re and dxt = V(xt)dzt, t ∈ [0, T], x0 = ψ ∈ Re denotes rough
differential equation ([37], Theorem 3.4) with V : Re → L(Rd, Re) bounded continuous.

Proposition 1. Let A be an m-accretive operator A : D(A) ⊂ Re ⇒ Re satisfying (H1)
||A0x|| ≤ c(1 + ||x||) for all x ∈ D(A) where c is a positive constant. Let f : [0, T]× [0, T]×
Re × Re → Re satisfying to the conditions
(H3) (t, s)→ f (t, s, x, y) is Lebesgue measurable on [0, T]× [0, T], ∀(x, y) ∈ Re × Re,
(H4) (x, y)→ f (t, s, x, y) is continuous, ∀(t, s) ∈ [0, T]× [0, T],
(H5) ‖ f (t, s, z, x)− f (t, s, z, y)‖ ≤ M||x− y||, ∀t, s ∈ [0, T], ∀x, y, z,∈ Re,
(H6)|| f (t, s, x, y)|| ≤ M(1 + ||x||), ∀t, s, x, y ∈ [0, T]× [0, T]× Re × Re,
where M is positive constant.
Let L : [0, T]× Re × Re × Re → [0, ∞[ be a lower semicontinuous integrand such that L(t, x, y, .)
is convex on Re for every (t, x, y) ∈ [0, T]× Re × Re. Then the problem of minimizing the cost
function

∫ T
0 L(t, x(t), y(t), ẏ(t))dt subject to{

(4.1.1) : x0 = ψ ∈ Re, dxt = V(xt)dzt, t ∈ [0, T]
(4.1.2) : y(0) = y0 ∈ D(A),−ẏ(t) ∈ Ay(t) +

∫ t
0 f (t, s, x(s), y(s))ds, a.e. t ∈ [0, T].

has an optimal solution.

Proof. Let us consider a minimizing sequence (xn, yn) that is

lim
n→∞

∫ T

0
L(t, xn(t), yn(t), ẏn(t))dt = inf

(u,v)∈X

∫ T

0
L(t, u(t), v(t), v̇(t))dt

whereX is the solutions set (u, v) to the above dynamical system. First by ([37], Theorem 3.4)
we assert that the C1−var([0, T], Re)-solution set to (4.1.1) is compact in C([0, T], Re) and so
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is the W1,∞([0, T], Re)-solution set to (4.1.2) (cf Theorem 2) or ([20], Theorem 4.6). We may
ensure that

(i) xn → x ∈ C1−var([0, T], Re) with xt = ψ +
∫ t

0 V(xs)dzs.
(ii) yn → y ∈W1,∞([0, T], Re) and ẏn → ẏ weakly in L1

Re([0, T]).

Applying the lower semicontinuity of the integral functional ([38] , Theorem 8.1.6) gives

lim inf
n

∫ T

0
L(t, xn(t), yn(t), ẏn(t))dt ≥

∫ T

0
L(t, x(t), y(t), ẏ(t))dt.

From the inclusion

−ẏn(t) ∈ Ayn(t) +
∫ t

0
f (t, s, xn(s), yn(s))ds

and (i) and (ii), we conclude by repeating the limit argument via the m-accretive extension
A of A that

−ẏ(t) ∈ Ay(t) +
∫ t

0
f (t, s, x(s), y(s))ds a.e.

5. Conclusions

In this paper, we present several existences of BV and AC (absolutely continuous)
solutions to some class of evolution inclusion with various perturbations governed by
m-accretive operators. Several applications such as the Skorohod problem, fractional
differential equation, optimal control problem, and relaxation are provided. Our results
contain novelties. However, there remain several issues that need development.

C.1 Our techniques have some importance in further applications such as the periodic
solution (in the line of Theorem 3).

C.2 We can deal with optimal control theory involving the dynamics under considera-
tion in the same vein as [38]. In such a new setting, we will study evolution inclusions with
time- and state-dependent maximal monotone/m-accretive operators and Young measure
control

−u̇(t) ∈ A(t, x(t))u(t) +
∫

Z
f (t, x(t), u(t), z)λt(dz)

C.3 In this spirit, the asymptotic behavior of solutions in these dynamics is an open problem.
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