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Abstract. This paper addresses the problem of calibrating a compartmental model which describes
the postprandial distribution of dietary nitrogen in humans after the ingestion of a protein meal.
This type of problem (i.e., a classic inverse problem) requires optimization of an objective function
that measures the goodness-of-fit of the model predictions to a given set of experimental data. In
our particular case, traditional local, gradient-based optimization methods have failed to arrive at
satisfactory solutions of the inverse problem because of the large number of parameters to be estimated,
the high non-linearity of the objective function and the few experimental data accessible in humans. To
overcome these limitations, we have developed a calibration method that uses all available information
on the system behavior so as to divide the large inverse problem into many smaller sub-problems, on
which a variant of the Nelder-Mead (NM) simplex search procedure was proven to be successful. This
calibration method makes it possible to obtain solutions that are close to the optimal values of most
of the model parameters, even when noisy experimental data are introduced in the objective function.
Using these estimated parameters, it is now possible to correctly simulate the temporal evolution of all
compartments of the physiological model, which constitutes a useful, explanatory tool to describe the
different dynamic processes involved in the metabolic utilization of dietary proteins in humans.

Résumé. Nous abordons ici le problème de l’estimation des paramètres d’un modèle compartimental
qui décrit la distribution postprandiale de l’azote alimentaire chez l’homme après l’ingestion d’un repas
protéique. Un tel problème (i.e., un problème inverse classique) nécessite l’optimisation d’une fonc-
tionnelle de coût mesurant la qualité de l’ajustement des prédictions du modèle à un jeu de données
expérimentales. Dans notre cas particulier, les techniques classiques d’optimisation locale par méthodes
de gradient s’avèrent incapables de trouver une solution satisfaisante au problème inverse, en raison
du grand nombre de paramètres à estimer, de la forte non-linéarité de la fonctionnelle de coût et du
peu de données expérimentales accessibles chez l’homme. Dans ce contexte, notre stratégie a con-
sisté à développer une méthode de calibration qui utilise le maximum d’information disponible sur
le comportement du système, de manière à diviser le problème inverse de grande taille en plusieurs
sous-problèmes de taille plus réduite, pour lesquels une variante de la méthode du simplexe de Nelder-
Mead (NM) s’avère efficace. Cette méthode de calibration permet d’obtenir des valeurs proches des
valeurs optimales pour la plupart des paramètres du modèle, que les données expérimentales injectées
dans la fonction objectif soient bruitées ou non. A partir des valeurs de paramètres ainsi estimées,
il est désormais possible de simuler de manière satisfaisante l’évolution temporelle de tous les com-
partiments du modèle physiologique, lequel constitue un outil permettant de décrire et d’expliquer les
différents phénomenes dynamiques impliqués dans l’utilisation métabolique des protéines alimentaires
chez l’homme.
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Introduction

After ingestion of a meal, the assimilation of dietary protein is a complex process associated with a cascade
of transient and dynamic metabolic events involved in controlling the distribution and metabolism of dietary
amino acids (AA) and nitrogen (N) throughout the different N pools of the body (intestine, liver, muscles, etc.).
During the postprandial phase (i.e., during the first 8 hours after a meal), dietary proteins are subjected to the
following sequential metabolic processes. Ingested proteins entering the gastro-intestinal tract initially undergo
digestion, releasing dietary AA and small peptides into the intestinal lumen. These AA and di- and tri-peptides
are consecutively absorbed and transferred to the splanchnic organs, first the intestinal tissues and then the liver.
Dietary N is then submitted to splanchnic uptake and metabolism for both anabolic and catabolic purposes:
dietary AA are incorporated into the different intestinal and hepatic protein pools while they are concurrently
deaminated in the liver and subsequently transferred to urea and ammonia, firstly in body water and secondly
in urine. Dietary AA escaping to this splanchnic uptake are transferred via the blood circulation to periph-
eral organs such as muscles, where they also undergo metabolic uptake, either for oxidation or for anabolic
purposes (muscular protein synthesis). An understanding of the kinetics and magnitude of these successive
metabolic events is crucial to our knowledge of human nutrition. For example, it will allow the evaluation of
dietary protein quality as a function of regional metabolic use, as well as the development of clinical manage-
ment protocols for various health disorders through the application of specific nutritional strategies. However,
little is still known, particularly in humans, about dietary N distribution, metabolism and regional utilization
after protein ingestion, because of the dynamic nature of these physiological phenomena and the difficult or
impossible experimental access to the main N pools involved in these processes. The many studies carried out
in this field of research have mainly been based on isotopic methods enabling tracing of the metabolic fate of
proteins or single AA in the few body pools accessible to experimental measurement [5,10,24,33,37]. However,
these studies are generally conducted at steady state for practical reasons (i.e., during the fasting period when
no proteins are administered or in an artificial fed state, where steady-state is achieved through the constant
intragastric administration of a meal). Only a few studies have been conducted under physiological conditions
in the fed state (i.e., the meal being ingested as a bolus) and have thus provided a valuable insight into the
dynamic and adaptative features of protein metabolism [6, 20, 21].

In parallel with the increasing use of stable isotopes in human nutrition, the development of dynamic models to
predict AA fluxes throughout different body N pools has markedly improved over the past 20 years. Particular
attention has been paid to AA kinetics in the body, and numerous models have been developed to investigate
the kinetics of leucine (an essential AA), as reported by Cobelli et al. [11] and Wolfe [40]. However, although
some complex models have been proposed [7], they have only regarded the metabolism of one or a few AA. Only
a limited number of studies have actually addressed the problem of dietary N modeling in humans, because
of the broad, multiple exchange kinetics of N that make its study both practically and theoretically complex.
In this context, a multi-compartmental model was recently developed by Fouillet et al. [17, 18] to describe the
postprandial kinetics of the distribution and metabolism of dietary N in humans after the bolus ingestion of
various protein meals. Compartmental modeling seems particularly well-suited to investigating such a complex
system, because it entails reducing a markedly complex physiological system into a finite number of compart-
ments and pathways, thus restricting the number of model variables and parameters. This simplification reduces
mismatches between the complexity of the system and the limited data available from in vivo studies, especially
in humans [12, 13].

Compartmental modeling has been widely used and validated in many areas of biological sciences [1,2,8,27]. In
addition, there is a relatively complete analytic theory of linear compartmental systems [27], i.e., compartmental
models whose parameters are constant or functions only of time. The theory and applications of compartmental
modeling can be considered in terms of two main problems. The first is the development of plausible models for
the processes at work in a particular biological system. This requires considerable background research in the
field from which the problem arises: the structure and transfer pathways of the model should have meaning in
terms of the known processes and structure of the real system. The second problem is a classic inverse problem:
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given such plausible models of a biological system, what experimental data should be collected and how should
these data be used to determine the best model structure and estimate values for its parameters? The latter
problem is known to be difficult to solve, and curbs the development of dynamic models which would promote
functional understanding of the systems under consideration [31, 34, 42]. Calibration of the compartmental
model proposed by Fouillet et al. [18] is not an exception to the rule. The aim of the present study is therefore
to develop a robust calibration method able to estimate its parameter values with satisfactory precision.

This article is organized as follows: in the first part, we recall the main principles of compartmental modeling
and present the mathematical description of the physiological problem. In the second part, we detail the search
procedure that we have developed to estimate model parameters. In the last section, we present the numerical
results that allowed us to validate our calibration method.

1. Mathematical description of the physiological problem

1.1. Compartmental modeling

1.1.1. Definitions

A compartmental model is made up of a finite number of macroscopic subunits called compartments that
exchange material through different pathways.

A compartment is defined as a quantity of material acting kinetically as a homogeneous and distinct entity
[15,22,23]. It should be distinguished from a physical volume or space, although the amount of material in such
a volume may constitute a compartment. This amount of material can be expressed in terms of concentrations
or total amounts, or sizes, of the compartments. Some compartments can be observed: the amount of material
present in these compartments is measured at different points during an experiment. In our physiological
context, a compartment represents the total amount of dietary N present either in a particular area of the
human body (e.g. the dietary N present in the proximal intestinal lumen), or in a particular biochemical form
(e.g. the dietary N present in body urea), or both (e.g. the dietary N present in a free AA form in the splanchnic
area).

A transfer of material may represent a transformation (a chemical reaction, for instance) or a transport (a
physical displacement of material from a compartment to another) and is characterized by a transfer coefficient,
which can be constant or depend on time or the sizes of some compartments in the system [15]. In our
physiological context, a transfer of dietary N represents either a transport (e.g. the transfer of dietary N
through the compartments of the intestinal tract), or a biochemical transformation (e.g. the production of urea
from the catabolism of AA in the liver), or a combination of both (e.g. the synthesis of protein from splanchnic
free AA and its exportation into the blood circulation).

1.1.2. Formulation and general theory

Consider the jth and kth compartments of a model of n compartments (Figure 1). Let yj(t) be the size
of compartment j at time t and y(t) the vector

(
yj(t)

)
1≤j≤n

. Let Fjk(y, t) be the flow of material entering
compartment j from compartment k at time t, F0j(y, t) the direct flow of material out of the system from
compartment j at time t and Fj0(t) the flow of material entering compartment j from outside the system at
time t. It should be noted that, except in very special cases, Fj0 does not depend on the size of any model
compartments. A compartment is governed by the instantaneous mass conservation law [27]:

∀ j = 1, 2, ..., n, ∀ t ≥ 0,
dyj

dt
(t) =

n∑
k=1

(
Fjk(y, t)− Fkj(y, t)

)
+ Fj0(t)− F0j(y, t). (1)
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compartment j

yj(t)

Fkj(y,t)

Fjk(y,t)

F0j(y,t)

Fj0(t)

compartment k

yk(t)

Figure 1. Example of diagram of the jth and kth compartments of an n-compartment model
(using the notations described in section 1.1.2).

In most nutritional systems, the flow of material from a compartment k to a compartment j at time t is supposed
to be proportional to the amount of material present in the source compartment at that time [27]:

∀ j = 1, 2, ..., n, ∀ k = 1, 2, ..., n, ∀ t ≥ 0, ∃ ajk(y, t), Fjk(y, t) = ajk(y, t) yk(t).

Consequently, equation (1) can be written in the form:

∀ j = 1, 2, ..., n, ∀ t ≥ 0,
dyj

dt
(t) = −

(
a0j(y, t) +

n∑
k=1

ajk(y, t)
)

yj(t) +
n∑

k=1

ajk(y, t) yk(t) + Fj0(t). (2)

(
ajk

)
1≤j,k≤n

are the transfer coefficients of the system and can be constant or depend on y and/or on time.
If all transfer coefficients are constant or functions only of time, such systems are called linear compartmental
systems. If fjj(y, t) = −

(
f0j(y, t) +

∑n
k=1 fkj(y, t)

)
, we can now write (2) as equation (3):

∀ j = 1, 2, ..., n, ∀ t ≥ 0,
dyj

dt
(t) =

n∑
k=1

ajk(y, t) yk(t) + Fj0(t). (3)

Let A(y, t) be the matrix
(
ajk(y, t)

)
1≤j,k≤n

and F0 the vector
(
Fj0

)
1≤j≤n

, then:

∀ t ≥ 0,
dy

dt
(t) = A(y, t) y(t) + F0(t).

The compartmental system is thus described by a set of ordinary differential equations (ODEs), and knowing
A, y(0) and F0, it is possible to simulate the temporal evolution of each state variable of the system. This
is frequently called the ”forward problem”, i.e., the structure of the system is assumed to be known (number
of compartments and transfer pathways between them), as are the values of its parameters, and the aim is to
describe the kinetics of appearance and disappearance of material in each compartment of the model.

Of course, this is not the problem facing the biologist. The experimental scientist needs to design experiments
and obtain data on the system under investigation, which are observations of the ODEs solution and from which
one can deduce some structural properties of the model and estimate the values of its parameters. This inverse
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problem is difficult to solve and raises the following questions:
(i) which model structure is well adapted to both experimental data and our knowledge of the nutritional sys-
tem;
(ii) given the set of experimental data, how can a model be calibrated to reproduce the experimental results in
the best possible way?

1.1.3. Model structure and mathematical description

A 13-compartment model (Figure 2) has recently been developed to describe and simulate the postprandial
distribution of dietary N in humans after ingestion of a protein meal. The choice of its structure (i.e., the answer
to question (i) above) is detailed in [18].
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Figure 2. Compartmental model developped by Fouillet et al. [18], describing the postpran-
dial distribution of dietary N in humans after ingestion of a protein meal. Circles indicate
compartments representing kinetically distinct pools of dietary N, arrows between them repre-
sent transfer pathways, associated with transfer rate constants in min−1 (θi for i = 1, ..., 19).
Bullets indicate the sampled compartments. Samples s1 to s6 represent dietary N cumulative
ileal effluents (E), splanchnic exported proteins (SEP), plasma free AA (PL), body urea (BU),
cumulative urinary urea (UU) and cumulative urinary ammonia (UA), respectively. Data are
expressed in permil of ingested N.

This model consists of 13 compartments and 21 transfer pathways, associated with 19 transfer rate constants
(θi for i = 1, ..., 19). The gastro-intestinal tract subsystem comprises four compartments representing dietary
N in the stomach (G), in the lumen of the proximal (IL1) and distal (IL2) small intestine, and at entry into the
colon (E), respectively. Compartment E is experimentally monitored (sampling s1) every 30 minutes for eight
hours after meal ingestion (detailed in [18]). The retention subsystem comprises six compartments represent-
ing dietary N in splanchnic free AA (SA), dietary N in splanchnic constitutive proteins (SCP), dietary N in
splanchnic exported proteins (SEP), dietary N in plasma free AA (PL), dietary N in peripheral free AA (PA)
and dietary N in peripheral proteins (PP). Compartments SEP and PL are experimentally monitored (sampling
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s2 and s3, respectively) every 30 minutes for eight hours after meal ingestion (detailed in [18]). The deamination
subsystem consists of three compartments representing dietary N in body urea (BU), dietary N in urinary urea
(UU) and dietary N in urinary ammonia (UA). These three compartments are also experimentally monitored
(sampling s4, s5 and s6, respectively) every hour for eight hours after meal ingestion (detailed in [18]).

The model parameters θi are supposed to be constant for all i = 1, ..., 19, i.e., they do not depend neither on
time nor on the size of any compartment of the model. This means that the flow of material from a compartment
to another is directly proportional to the amount of material available in the source compartment. It should
be noted that the transfer rates from compartment IL1 to compartment IL2 and from compartment IL2 to
compartment E are supposed to be equal for both simplicity and physiological reasons. The same is true for the
transfer rates from compartment SA to compartments IL1 and IL2. Moreover, dietary N is assumed to enter
the system as a bolus: 100% of dietary N is located in the stomach at time t = 0, all the other compartments
being empty at that time.

Let θ be the vector of model parameters: θ = (θ1, ..., θ19). Let y(t, θ) be the vector of state variables (compart-
ment sizes) at time t and A(θ) the corresponding compartmental matrix, represented below (Figure 3).
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Figure 3. Compartmental matrix of the physiological model presented in Figure 2 and devel-
oped by Fouillet et al. [18].

The equation describing the temporal evolution of model compartments can be written as follows:{
∀ t ≥ 0, ∂y(t,θ)

∂t = A(θ) y(t, θ),
y(0, θ) =

(
1000, 0, ... , 0

)
,

(4)

since the amount of dietary N present in a compartment is expressed in permil of the ingested quantity. From
here, since y(0, θ) does not depend on the vector of parameters θ, it will be noted y(0). The solution of equation
(4) is therefore:

∀ t ≥ 0, y(t, θ) = exp
(
A(θ) t

)
y(0). (5)
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Equation (5) provides an analytical formula describing the temporal evolution of all compartments of the model,
which makes it possible to simulate the evolution of compartments that could not be observed experimentally,
despite their metabolic and nutritional importance. In this study, we take the model structure of Figure 2 for
granted and present a method to estimate its parameters (answer to the second question described above).

1.2. Model calibration

The calibration of a compartmental model consists in determining the parameter values that allow the fitting
of model predictions to the experimental data obtained for all sampled compartments [9, 14, 16, 19, 34]. This
constitutes an iterative process involving three steps:
(i) simulation of the model responses using a set of parameters from the search space;
(ii) evaluation of the quality of the model predictions (i.e., their ability to fit the experimental observations),
quantified by an objective function;
(iii) improvement of the objective function value (by iteratively processing the two previous steps) until satis-
factory performance is achieved or until further improvements become negligible.

1.2.1. Objective functions used in compartmental modeling

Let nc be the number of sampled compartments of the model and, for j = 1, 2, ..., nc, let nj
t be the total

number of sampling times for compartment j. The experimental error of measurement eij made on the size of
compartment j at time ti is defined as follows:

∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ..., nj
t , eij = zj(ti)− yj(ti, θ), (6)

where zj(ti) is the amount of material experimentally measured in the jth compartment at time ti and yj(ti, θ)
the size of compartment j at time ti that is predicted by the model using the set of parameters θ.

The objective function, which quantifies the quality of model predictions, is defined as a measure of the differ-
ences between predictions and observations [13, 19]:

F =
nc∑

j=1

nj
t∑

i=1

ω(εij , θ),

where F is the objective function, ω an arbitrary loss function (usually the square or absolute value [19]) and
εij an appropriately weighted residual:

∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ..., nj
t , εij =

zj(ti)− yj(ti, θ)
σij

,

where σij is a positive weighting coefficient often related to the measurement error (its standard deviation).

By far the most widely used method is the least squares method which determines the values of parameters
that minimize the sum of squares, generally weighted, of the differences between measured values and those
calculated from the model. Its use is sanctioned by a long history of applications in many different fields and
lengthy development of theory on linear parameter estimation (which means that the parameters appear linearly
in the objective function). The theoretical justification for using least squares in linear parameter estimation
was provided by the Gauss-Markov theorem [39]: assuming that the experimental errors are uncorrelated and
have common variance, the least squares estimator is the one with minimum variance among all unbiased,
linear estimators. This powerful background from linear estimation has strongly influenced work on nonlinear
parameter estimation, but while there is a relatively complete theory for linear parameter estimation, that is



8 TITLE WILL BE SET BY THE PUBLISHER

not the case for nonlinear parameter estimation. Nonlinear least squares methods are often simply pragmatic
methods sanctioned by long-standing use.

A more reliable theory for nonlinear parameter estimation is available: the maximum likelihood method [3,28].
This method consists in choosing the value of θ that maximizes the joint probability of having obtained the
experimental data for all sampled compartments. For j = 1, 2, ..., nc and i = 1, 2, ..., nj

t , let p(εij , θ) be the
probability density function that the model prediction matches the observation of the jth compartment at time
ti. Thus, under the hypothesis of independent measurement errors, the likelihood function (LF) can be written
as follows:

LF =
nc∏

j=1

nj
t∏

i=1

p (εij , θ).

The experimental errors are supposed to be normally distributed. This assumption is fulfilled because the
experimental errors are often composed of many small errors arising from the different steps of data acquisition,
and according to the central limit theorem, the resulting error is normally distributed, even if contributing
errors themselves may not be [32]. As a result, it has become common practice to assume that the normal
distribution model is correct unless there is evidence to the contrary. The mathematical model that describes
this assumption (i.e., that experimental measurements result in values that are normally distributed around the
predicted value, with a standard deviation of σij) is the following:

∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ..., nj
t , p (zj(ti), θ, σij) =

1√
2π σij

exp

(
− 1

2

(
zj(ti)− yj(ti, θ)

σij

)2
)

,

where p (zj(ti), θ, σij) is the probability density function of having obtained the experimental value zj(ti) for
compartment j at time ti, which differs from the predicted value under

(
zj(ti)−yj(ti, θ)

)
. Using these notations,

the final form of the joint probability density function is given by:

LF =
nc∏

j=1

nj
t∏

i=1

p (zj(ti), θ, σij)

=
nc∏

j=1

nj
t∏

i=1

1√
2π σij

exp

(
− 1

2

(
zj(ti)− yj(ti, θ)

σij

)2
)

.

1.2.2. Choice of an objective function

In order to facilitate implementation, we decided to work with the logarithm of the likelihood function (LLF),
which leads to equation (7):

LLF = ln
(
LF
)

= −nc nj
t

2
ln(2π) −

nc∑
j=1

nj
t∑

i=1

ln(σij) − 1
2

nc∑
j=1

nj
t∑

i=1

(
zj(ti)− yj(ti, θ)

σij

)2

. (7)

If the standard deviations σij were known, the first two terms in equation (7) were known constants and
maximizing the logarithm of the likelihood function would be the same as minimizing the sum of squares of the
appropriately weighted differences between experimental data and model predictions. In this case, the maximum
likelihood method thus provides a theoretical basis for the least squares approach under the assumptions of
independence and normal distribution of the experimental errors.
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Parameter Value (min−1) Parameter Value (min−1)
θ�
10 0.00048372

θ�
1 0.01000170 θ�

11 0.17268261

θ�
2 0.00545349 θ�

12 0.00954823

θ�
3 0.01232039 θ�

13 0.01056087

θ�
4 0.01289907 θ�

14 0.00020175

θ�
5 0.00179097 θ�

15 0.04329578

θ�
6 0.05717149 θ�

16 0.00130912

θ�
7 0.00013830 θ�

17 0.00146295

θ�
8 0.01255922 θ�

18 0.00037141

θ�
9 0.03510541 θ�

19 0.00003931

Table 1. Values chosen for the 19 parameters of the compartmental model developed by
Fouillet et al. [18] and represented in Figure 2.

In this study, our aim is to develop a method to calibrate the compartmental model, whose structure is presented
in Figure 2. We thus chose a set of parameters θ� (reported in Table 1), which we knew to be physiologically
plausible [18], to simulate data in the six sampled compartments. Then, we developed a calibration method
able to find again this initial parameter set θ�, using the data previously simulated. Thanks to equation (5) and
knowing θ�, the model predictions are thus calculated every ∆t = 10 min until Tfinal = 480 min for all model
compartments, and especially for those that are experimentally monitored during the clinical experiment, i.e.,
the following values are calculated:

∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ...,
Tfinal

∆t
, yj(i∆t, θ�).

These model predictions, referred to as ”noise-free” data (d0), are represented in Figures 4, 5 and 6 for compart-
ments E and SEP, PL and UA, and BU and UU, respectively. Then, according to equation (6), ”experimental”
data are simulated as follows:

∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ...,
Tfinal

∆t
, zj(i∆t) = yj(i∆t, θ�) + eij ,

where ”experimental” errors eij are normally distributed with a mean of zero and a standard deviation of σij .
In this study, we consider the standard deviation σij to be known and proportional to the size of compartment
j at time i∆t, the constant of proportionality being at first the same for all sampled compartments:

∃ C, ∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ...,
Tfinal

∆t
, σij = C yj(i∆t, θ�). (8)

In fact, uniform weights (i.e., σij set to the same value for all j = 1, 2, ..., nc and i = 1, 2, ...,
Tfinal

∆t ) do not seem
to be appropriate, since the error variances probably differ for each sampled compartment. On the other hand,
constant relative errors seem to be a more correct hypothesis, according the same magnitude in the objective
function to all sampled compartments at all sampling times, which is of major interest to us since the sampled
compartments of our compartment model are of very different sizes (Figures 4, 5 and 6). For practical reasons,
σij is chosen to be proportional to the measured size of compartment j at time i∆t. Equation (8) thus becomes:

∀ j = 1, 2, ..., nc, ∀ i = 1, 2, ...,
Tfinal

∆t
, σij = C zj(i∆t).
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By eliminating the constant terms in equation (7), we obtain:

L̃LF = −
nc∑

j=1

Tfinal
∆t∑
i=1

(zj(i∆t)− yj(i∆t, θ)
zj(i∆t)

)2

. (9)

Here two levels of noise are tested: σij = 0.01 yj(i∆t, θ�) and σij = 0.05 yj(i∆t, θ�), which provides two kinds of
”experimental” data, referred to as ”low-noise” data (d1: experimental error of 1%) and ”high-noise” data (d2:
experimental error of 5%), respectively (in practice, the measurement errors are considered to be generally less
than 5% of the sampled compartment sizes). These data are represented in Figures 4, 5 and 6 for compartments
E and SEP, PL and UA, and BU and UU, respectively.
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Figure 4. ”Noise-free” (d0), ”low-noise” (d1) and ”high-noise” (d2) data simulated for com-
partments E and SEP of the physiological model represented in Figure 2, using the set of
parameters θ� reported in Table 1.

Finally, since maximizing expression (9) is equivalent to minimizing its opposite, our parameter estimation
problem becomes:

min
θ ∈ (R+)np

f(θ) where f(θ) =
nc∑

j=1

Tfinal
∆t∑
i=1

(zj(i∆t)− yj(i∆t, θ)
zj(i∆t)

)2

.

The search space is (R+)np since the model parameters need by definition to be positive. Our parameter estima-
tion problem thus amounts to minimizing the sum of squares of the differences between measured and predicted
values, with a weight corresponding to the measured size of the compartment under consideration.

1.2.3. Difficulties encountered

The problem we address here is one of the global optimization of a highly nonlinear function in a high
dimension. This kind of problem is known to be frequently ill-conditioned and multimodal. Traditional local,
gradient-based optimization methods fail to find satisfactory solutions because they are frequently trapped in
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Figure 5. ”Noise-free” (d0), ”low-noise” (d1) and ”high-noise” (d2) data simulated for com-
partments PL and UA of the physiological model represented in Figure 2, using the set of
parameters θ� reported in Table 1.
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Figure 6. ”Noise-free” (d0), ”low-noise” (d1) and ”high-noise” (d2) data simulated for com-
partments BU and UU of the physiological model represented in Figure 2, using the set of
parameters θ� reported in Table 1.

local optima instead of finding the global optimum. This problem even persists when the optimization method
is associated with a multistart strategy, i.e., when the local method is used repeatedly by starting – randomly
or not – from numerous initial sets of parameters, in order to visit the search space intensively. In the context
of our parameter estimation problem, we first tested three optimization methods, which all failed to find the
optimal set of parameters θ�:

(1) multistart + gradient-based method,
(2) multistart + simplex search method,
(3) genetic algorithm.
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We thus came to the conclusion that, in our particular case, the optimization problem is too complex to be
properly solved by classic methods. In this study, the strategy used to overcome these difficulties consists in
introducing as much information as possible about the physiological system in order to reduce the dimension of
the search space to a minimum. This strategy is handled by carrying out a sensitivity analysis, which allows to
quantitatively measure the sensitivity of system responses to changes in input parameters. We thus determine
the model parameters that have the strongest influence on the observed compartments and use this information
to break down the optimization problem into several simplier sub-problems of smaller dimensions, as described
below.

1.3. Sensitivity analysis

1.3.1. Theoretical sensitivity analysis

A classic method to quantify the sensitivity of system responses to changes in input parameters is to calculate
their sensitivity coefficients, that is the partial derivatives of the model state variables with respect to its
parameters. This can be expressed as follows:

∀ t ≥ 0, ∇θ y(t, θ) = lim
∆θ→0

y(t, θ + ∆θ)− y(t, θ)
∆θ

. (10)

Knowing that the vector of state variables for the physiological model is given by equation (5), if ∆θ is a small
perturbation in the vector of parameters θ, we have:

∀ t ≥ 0, y(t, θ + ∆θ) = exp
(
A(θ + ∆θ) t

)
y(0).

Since A is linear in the vector of parameter θ, then:

∀ t ≥ 0, y(t, θ + ∆θ) = exp
([

A(θ) + A(∆θ)
]
t
)

y(0).

Unfortunately, A(θ) and A(∆θ) do not commute and equation (10) can not be simplified. The sensitivity analy-
sis is therefore conducted in a more practical way.

1.3.2. Practical sensitivity analysis

In this section, we define two criteria to evaluate the sensitivity coefficients of the physiological system. Let
∆θ = θ

100 be a minor perturbation to the parameters and ∆t = 10 min the time interval between two calcula-
tions of model responses.

a. Sensitivity analysis at the optimum set of parameters.
To measure the sensitivity of system responses to changes in parameter values from the optimum θ�, we calculate
the following quantities:

∀ i = 1, 2, ...,
Tfinal

∆t
, ∀ j = 1, 2, ..., nc, S�

i,j =

∣∣∣∣∣yj(i∆t , θ� + ∆θ�)− yj(i∆t , θ�)
∆θ�

∣∣∣∣∣.
These quantities allow us to quantify the influence on model responses of a small shift (1%) of parameters from
their optimum values. We can then evaluate the influence of each parameter, near the optimum, on the sampled
compartments involved in calculating the objective function.
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b. Average sensitivity analysis.
To measure the average sensitivity of system responses to changes in input parameters, we randomly choose
N (N = 1000) different sets of parameters

(
θ(k)

)
1≤k≤N

in the interval
[

θ�

10 , 10 θ�
]

and calculate the following
quantities:

∀ i = 1, 2, ...,
Tfinal

∆t
, ∀ j = 1, 2, ..., nc, Si,j =

1
N

N∑
k=1

∣∣∣∣∣yj(i∆t , θ(k) + ∆θ(k))− yj(i∆t , θ(k))
∆θ(k)

∣∣∣∣∣.
These quantities allow us to evaluate the influence on model responses of a minor perturbation of parameters
from different sets of parameters, randomly chosen in the interval

[
θ�

10 , 10 θ�
]
. We can thus quantify the average

and also variability of the influence of each parameter on the sampled compartments involved in calculating the
objective function.

1.3.3. Results of the sensitivity analysis

In this section, we detail the sensitivity analysis compartment by compartment, in order to specify the pa-
rameters with the strongest influence on each of the sampled compartments of the model. The results of the
sensitivity analysis for compartment E and SEP are reported in Figure 7. They reveal that only four parameters
(θ1, θ2, θ3 and θ4) have a major influence on compartment E, the other parameters being about 10 times less
influential. Let θ(1) be defined as follows: θ(1) = (θ1, θ2, θ3, θ4). Besides the parameter set θ(1), four parameters
(θ6, θ8, θ9 and θ15) have a major influence on compartment SEP, the other parameters being about 10 times
less influential. Among these parameters, θ8 clearly stands out. Let θ(2) be defined as follows: θ(2) = (θ8).
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Figure 7. Sensitivity of model parameters to compartments E (ileal Effluents) and SEP
(Splanchnic Exported Protein): sensitivity coefficients S�

i,1 and S�
i,2 calculated at the optimum

θ� for i = 1, 2, ...,
Tfinal

∆t , and their variability calculated from N different sets of parameters in
the interval

[
θ�

10 , 10 θ�
]
, using the notations defined in section 1.3.2.

The results of the sensitivity analysis for compartment BU and UU are reported in Figure 8. They reveal
that, besides the previous sets of parameters (θ(1), θ(2)), five parameters (θ6, θ9, θ15, θ16 and θ17) have a major
influence on compartment BU. Among these parameters, θ15 clearly stands out. θ(3) is thus defined as follows:
θ(3) = (θ15). Then, besides the previous sets of parameters (θ(1), θ(2), θ(3)), only two parameters (θ6 and θ17)
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Figure 8. Sensitivity of model parameters to compartments BU (Body Urea) and UU (Urinary
Urea): sensitivity coefficients S�

i,4 and S�
i,5 calculated at the optimum θ� for i = 1, 2, ...,

Tfinal

∆t ,
and their variability calculated from N different sets of parameters in the interval

[
θ�

10 , 10 θ�
]
,

using the notations defined in section 1.3.2.

have a major influence on compartment UU. Among these parameters, θ17 clearly stands out. Let θ(4) be
defined as follows: θ(4) = (θ17).

The results of the sensitivity analysis for compartment PL and UA are reported in Figure 9.
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Figure 9. Sensitivity of model parameters to compartments PL (Plasma AA) and UA
(Urinary Ammonia): sensitivity coefficients S�

i,3 and S�
i,6 calculated at the optimum θ� for

i = 1, 2, ...,
Tfinal

∆t , and their variability calculated from N different sets of parameters in the
interval

[
θ�

10 , 10 θ�
]
, using the notations defined in section 1.3.2.

Besides the previous sets of parameters (θ(1), θ(2), θ(3), θ(4)), five parameters (θ6, θ9, θ11, θ12 and θ13) have a
major influence on compartment PL. θ(5) is thus defined as follows: θ(5) = (θ9, θ11, θ12, θ13). Finally, besides the
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previous sets of parameters (θ(1), θ(2), θ(3), θ(4), θ(5)), three parameters (θ6, θ18 and θ19) have a major influence
on compartment UA. Let θ(6) be defined as follows: θ(6) = (θ18, θ19). Despite its influence on most of the
sampled compartments, θ6 does not appear in the list of selected parameters (this will be explained below). Let
θ(7) denote the vector (θ5, θ6, θ7, θ10, θ14, θ16) of the remaining parameters, which, except for θ6, exert a minor
influence on the sampled compartments.

2. Description of the algorithm

As previously explained, the calibration method that we developed consists in breaking down the whole opti-
mization problem into several simplier sub-problems of smaller dimensions to be solved successively. By analogy
with gradient-based optimization methods, our algorithm is designed to search the directions that ensure the
most significant decrease of the objective functions associated with each sub-problem. The sensitivity analysis
previously conducted allows us to focus only on the model parameters that lead to the greatest variations of the
objective function values during the successive fitting processes, before estimating all parameters simultaneously
during the final phase of the algorithm.

2.1. Global description

Using the previous notations, for j = 1, 2, ..., nc and θ a set of parameters, define fj(θ) as:

fj(θ) =

Tfinal
∆t∑

i=1

(zj(i∆t)− yj(i∆t, θ)
zj(i∆t)

)2

.

In our physiological problem, nc = 6 and f1, f2, f3, f4, f5 and f6 represent the sums over all sampling times of
the relative errors between the ”experimental” data and the model predictions for compartments E, SEP, BU,
UU, PL and UA, respectively. The objective function thus becomes:

f(θ) =
nc∑

j=1

fj(θ) =
nc∑

j=1

Tfinal
∆t∑
i=1

(zj(i∆t)− yj(i∆t, θ)
zj(i∆t)

)2

.

As shown in the previous section, each fj(θ) can be written as follows:

fj(θ) = fj (θ(1), ..., θ(j), θ(j+1), ..., θ(nc+1)),

where the sets of parameters (θ(1), ... , θ(j)) have a major influence on fj , whereas the other parameters (θ(j+1),
... , θ(nc+1)) are about 10 times less influential on this part of the objective function.

Since all the optimization methods previously tested failed to minimize f , we decided to introduce this in-
formation in our calibration method. The idea was to proceed as follows:

(1) Start by minimizing f1, allowing only θ(1) to vary (the other parameters being set at values randomly
chosen within intervals of physiological values). f1 is minimized using a multistart strategy: a local
optimization algorithm (described below) is started from many initial values of θ(1) randomly chosen in
a large interval I1, since we have no a priori idea of its optimum value. This provides many acceptable
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values for θ(1), in particular a minimum and a maximum value for each model parameter included in
θ(1), which allows to markedly reduce the initial parameter space I1 to a smaller search interval Ĩ1.

(2) Continue by minimizing f1 + f2, using the same multistart strategy and allowing only (θ(1), θ(2)) to
vary, in a search space (Ĩ1 × I2) that has been significantly restricted for the set of parameters θ(1)

in the course of step (1) of the algorithm (the other parameters being set at values randomly chosen
within intervals of physiological values);

(3) Pursue by minimizing
∑j

k=1 fk, with 2 < j ≤ nc, using the same multistart strategy and allowing only
(θ(1), ... , θ(j)) to vary, in a search space (Ĩ1 × ... × Ĩj−1 × Ij) that has been significantly restricted
for the sets of parameters (θ(1), ... , θ(j−1)) in the course of the previous (j − 1) steps of the algorithm
(the other parameters being set at values randomly chosen within intervals of physiological values);

(4) End by minimizing the complete objective function f , using the same multistart strategy and allowing
all parameters to vary in a search space (Ĩ1 × ... × Ĩnc) that has been significantly restricted in the
course of the previous nc steps of the algorithm for all influential model parameters, i.e., for the sets of
parameters (θ(1), ... , θ(nc)).

At intermediate step j of this algorithm, the aim is to obtain values for (θ(1), ... , θ(j)) that are not too
far from the optimum values, so that they can be used in subsequent steps of the algorithm as good starting
points for the optimization procedure. During steps (2) and (3) of the algorithm, θ6 plays a particular role.
Despite its non-negligeable influence on most of the sampled compartments, it can not be handled like any of
the other influential parameters: in fact, when integrated in the optimization process and allowed to vary, this
parameter makes the algorithm fail because of its strong correlation with other parameters such as θ8, θ9, θ15

and θ18, which are the main transfer rates around the central compartment SA. This affects the ability of our
algorithm to find the optimum, and θ6 is therefore set at different values chosen in a narrow grid of the interval
[10−3, 10−1] (interval of physiologically plausible values) during steps (2) and (3) of the algorithm. The last
step of the algorithm is crucial and consists in minimizing f on (R+)np , from starting points that are already
close to the optimum values for most of the model parameters, so that any local optimizer should be succesfull
in its optimization process. The optimization method used at each step of the algorithm is a variant of the
Nelder-Mead (NM) simplex search procedure and is described below.

2.2. Development of a variant of the Nelder-Mead simplex search procedure

The NM simplex search procedure is one of the most popular direct search method aimed at minimizing un-
constrained real functions [29,35]. It is a derivative-free algorithm (i.e., that neither computes nor approximates
the derivatives of the objective function), which is of particular interest when information on the gradient of the
objective function is either unavailable or unreliable [30]. The simplex search method is based on geometrical
principles: an initial simplex, that is a set of n + 1 points of Rn (a triangle in R2, a tetrahedron in R3, etc.),
is computed near an initial point specified by the user and new simplexes are iteratively generated through the
geometrical operations of reflection, expansion, contraction and shrinkage [35] in order to find a point improving
the objective function value.

In this study, the original NM simplex search algorithm [35] is used as a basis and made more complex by
incorporating many of its desirable properties while avoiding some of its weaknesses – in particular, its sensi-
tivity to starting values, its premature termination at a local minimum, and its lack of robustness against noisy
responses [25]. Moreover, since the parameters of our metabolic system are bounded, the NM search procedure,
originally conceived for unconstrained optimization, is here modified in order to take these constraints into
account. From now on, this Variant of the NM search procedure is referred to as VNM algorithm.
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2.2.1. Description of the VNM algorithm

The main difference between the NM and VNM algorithms is that the new procedure operates in P successive
phases (instead of one for the NM simplex search). A previous study showed that restarting the NM procedure
twice significantly improves the performances of the optimization algorithm [26]. In this study, we determine
the largest integer P that significantly improves some convergence properties of the simplex search procedure,
when applied to our specific physiological purpose. Moreover, some parameters of the NM algorithm (size of
the initial simplex, shrinkage coefficient) are modified at each phase of the VNM algorithm, which significantly
improves its speed of converge, as described in [25].

The VNM algorithm operates in P phases indexed by a phase counter ϕ. Let np be the number of parameters
to be estimated during optimization, then a simplex is a set of np + 1 points of Rnp , or vertices. At the very
beginning of the search procedure, the user provides an initial point that is the starting point for the overall
search procedure as it becomes one vertex of the initial simplex and is used to construct the other vertices.
At iteration q, within phase ϕ, the objective function is evaluated at each vertex θ

(ϕ,q)
i of the current simplex,

yielding the values f
(ϕ,q)
i = f(θ(ϕ,q)

i ), for i = 1, ..., np, which are sorted in increasing order. Let θ
(ϕ,q)
min denote

the vertex of the current simplex yielding:

f
(ϕ,q)
min = f(θ(ϕ,q)

min ) = min {f (ϕ,q)
i : 1 ≤ i ≤ np + 1 }.

Each iteration q of the search procedure consists in generating a new simplex from the current one via the
geometrical operations of reflection, expansion, contraction, or shrinkage [26, 35], in order to find new points
improving the objective function value, until a termination criterion is satisfied:

max
1≤ i≤np+1

||θ(ϕ,q)
i − θ

(ϕ,q)
min || ≤ η1,

max
1≤ i≤np+1

||f (ϕ,q)
i − f

(ϕ,q)
min || ≤ η2,

(11)

where η1 et η2 are user-specified tolerances. If condition (11) is satisfied, the termination point of the current
phase is recorded. Let θ̂(ϕ) be the final estimate of the optimal solution delivered at the end of phase ϕ. At
the end of the algorithm, the final estimated optimum θ̂(P ), also referred to as θ̂, is the set of parameters which
yields the best value for the objective function over the successive P phases.

2.2.2. Handling of constraints

The NM search procedure is adapted so that it can take the parameter bounds into account. We first tested
a variable change to force our parameters to stay positive. As it modified the configuration of the search space,
we then prefered to penalize the objective function, as described below.

For all j = 1, 2, ..., np, let θinf,j (θsup,j) be the inferior (superior) bound of the jth parameter to be estimated
and θmean the parameter set defined as follows:

∀ j = 1, 2, ..., np, θmean,j =
θinf,j + θsup,j

2
.

The objective function is penalized to make it explode when any vertex of the simplex gets over the parameter
bounds. This is implemented as follows:

∀ j = 1, 2, ..., np,

{
if θ

(ϕ,q)
i,j < θinf,j , then: f

(ϕ,q)
i ← f

(ϕ,q)
i + 10000,

if θ
(ϕ,q)
i,j > θsup,j , then: f

(ϕ,q)
i ← f

(ϕ,q)
i + 10000,
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considering the ith of the current simplex and using the notations previously defined. Thus, a parameter set
that violates one of its bounds will never be selected in the course of the search procedure since it is associated
to a poor value of the objective function.

However, if there is an attractive basin outside the feasible domain, this way of penalizing the objective function
will not prevent the algorithm from being trapped near the frontier inside the domain. To compensate for this
drawback, the algorithm is reorientated towards a feasible region every time that a parameter bound is violated.
This is made possible by projection:

∀ j = 1, 2, ..., np,

{
if θ

(ϕ,q)
i,j < θinf,j , then, set: θ

(ϕ,q)
i,j = θmean,j ,

if θ
(ϕ,q)
i,j > θsup,j , then, set: θ

(ϕ,q)
i,j = θmean,j .

Finally, in order to make sure that the algorithm will not loop indefinitely, this operation is allowed to occur
only a limited number of times.

2.3. Validation of the VNM search procedure

In this section, we describe the main criteria and optimization test problems used to evaluate and compare
the VNM search procedure with the original NM algorithm, when applied to our specific physiological purpose.
The results of both procedures are statistically analysed, as described below, in order to determine which mod-
ifications of the standard algorithm significantly improve its performances.

2.3.1. Performance criteria

Four criteria are defined to test and compare the performances of both NM and VNM procedures for each
optimization test problem: (i) the number of function evaluations; (ii) the relative error on the objective func-
tion between its estimated and optimal values; (iii) the maximum relative error on parameters between their
estimated and optimal values; (iv) the average relative error on parameters between their estimated and optimal
values. No single criterion is sufficient to evaluate and compare the performances of both search procedures,
but a combination of the four would provide a good idea of the respective merits of each algorithm.

a. Computational work.
To measure the computational work of both NM and VNM procedures, we calculate the number of function
evaluations required by each procedure before it terminates and delivers the final estimates f(θ̂) and θ̂:

FE = number of function evaluations before termination.

The quantity FE is a measure of the computational time necessary for each search procedure before termination.

b. Ability to converge to the optimum value of the objective function.
To measure the accuracy of the final result delivered by each simplex search procedure on the estimation of the
optimal value of the objective function, we define the following quantity:

REf =
∣∣∣f(θ̂)− f�

f�

∣∣∣, (12)

since we constructed the tested functions so that f� �= 0. Each tested function is optimized a large number of
times from different starting points (as detailed below). When averaged over all these replications, the quantity
REf provides a measure of the ability of both algorithms to find a solution to the optimization problem under
consideration, independently of the starting point.
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c. Ability to converge to the optimum parameter values.
Let d be the dimension of the test problem under consideration, i.e., the search space dimension. To measure
the accuracy of the final result delivered by each simplex search procedure on the estimate θ̂j of the optimum
value θ�

j , we define two criteria:

- RE θ
max = max

1≤ j≤ d

∣∣∣ θ̂j − θ�
j

θ�
j

∣∣∣, (13)

- RE θ
mean =

1
d

d∑
j=1

∣∣∣ θ̂j − θ�
j

θ�
j

∣∣∣,
since we constructed the tested functions so that θ�

j �= 0, for all 1 ≤ j ≤ d. When averaged over all the
replications of the optimization procedures, the quantities RE θ

max and RE θ
mean give an idea of the ability of

both algorithms to find the global optimum of the function under consideration, independently of the starting
point.

2.3.2. Description of the tested functions

The optimization test problems used to examine the performances of the NM and VNM search procedures
were chosen among standard optimization benchmarks and compartmental-type functions in order to:

(1) check on some standard optimization benchmarks (parabolas, exponentials, Rosenbrock, Shekel) that
the number of function evaluations FE is not too greatly increased when a VNM procedure is used as
the search algorithm;

(2) show that the VNM procedure significantly improves the performance criteria REf , RE θ
max and RE θ

mean

on compartmental-type functions.

In the next section, we describe some of these tested functions as well as the starting points used, the optimum
value of the function under consideration and the point at which the optimum is achieved.

a. Example of standard optimization benchmarks tested: parabolas.
Here we present one of the standard optimization benchmarks that we tested: parabolas. We chose three
levels of dimension for this function: d = 4, d = 12 and d = 24, referred to as ”low”, ”medium” and ”high”
dimensions, respectively. This choice is justified by the fact that, according to the literature, the simplex search
procedure tends to perform well up to about dimension 10 [35]: the ”low” and ”medium” dimensions thus allow
us to test the ability of the VNM procedure to minimize functions on search spaces of ”low” (very inferior
to 10) and ”medium” (just above 10) dimensions. We also wanted to test its performances on a function of
”high” dimension in order to move closer to the characteristics of our physiological problem (19 parameters to
be estimated).

The parabolas are defined as follows:

f(θ) =
d∑

i=1

(
fi(θ)

)2 + 1 where fi(θ) = 1.5 d/2 (θi − 1). (14)

In each case, the optimum function value of f is f� = 1 and is achieved at θ� = (1, ..., 1). Figure 10 depicts the
parabola of ”low” dimension in two directions (e1, e4). The parabolas have been optimized many times, from
different starting points randomly chosen within the interval [−5, 5]d.
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Figure 10. Plot of the parabola described in section 2.3.2 for d = 4 in two directions (e1, e4).

b. Compartmental-type function.
In this study, we tested both search procedures on the objective function of step (2) of the algorithm presented
in section 2.1, in which we introduced different levels of gaussian noise by using the ”experimental” data d0, d1

et d2, defined in section 1.2.2. We chose to present the results obtained for this objective function because it
is representative of the main difficulties we could encounter at the course of the calibration process (size of the
search space, noise in data). Using the notations defined in section 2.1, the objective function to be minimized
is as follows:

2∑
j=1

fj (θ(1), θ(2), θ(3), ... , θ(nc+1)).

For j > 2, we set θ(j) to its optimum value θ� (j) and consider the following minimization problem:

min
θ

f(θ) with f(θ) = 1 +
2∑

j=1

fj (θ(1), θ(2), θ� (3), ... , θ� (nc+1)),

and fj(θ) =

Tfinal
∆t∑
i=1

(zj(i∆t)− yj(i∆t, θ)
zj(i∆t)

)2

,

where the ”experimental” data zj are either d0, d1 or d2. The optimal function value of f is f� = 1,
f� = 1.008086186369 or f� = 1.10796668076, when the ”experimental” data injected into the objective function
are d0, d1 or d2, respectively. In each case, the optimum function value is achieved at θ� = (θ�

1 , θ
�
2 , θ�

3 , θ
�
4 , θ�

8),
whose values are reported in Table 1. Figure 11 depicts this function in two directions (e1, e8) for data d0.
This objective function has been optimized a large number of times, from different starting points chosen on a
grid of the interval [10−3, 5.10−2]5. Here is tested the ability of both search algorithms to minimize the objec-
tive function of step (2) of the algorithm, knowing the exact values of the parameters not estimated at that step.
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Figure 11. Plot of the compartmental-type function described in section 2.3.2 in the case of
”noise-free” data (d0) in two directions (e1, e8).

2.3.3. Statistical analysis

a. Statistical analysis on FE.
Results for FE values obtained with both procedures in the case of the standard optimization benchmarks are
statistically tested in order to determine if FE is significantly affected by the search procedure used as the
optimization algorithm. Each search procedure gives different results for FE depending on three factors of
variation:

(i) Ai, the ith level of optimization algorithm (NM for i = 1 and VNM for i = 2, ..., 10 where i represents the
number of phases P of the search algorithm)
(ii) Dj , the jth level of dimension (4 for j = 1, 12 for j = 2 and 24 for j = 3)
(iii) IPk, the kth replication of the treatment (Ai, Dj), for k = 1, ..., 1000 (multi-start).

A linear mixed model is postulated:

∀i, 1 ≤ i ≤ 10, ∀j, 1 ≤ j ≤ 3, ∀k, 1 ≤ k ≤ 1000,

FE ijk = α0 + αAi + αDj + αAiDj + αIPk
+ αDjIPk

+ εijk, (15)

where αAi , αDj and αAiDj are the contributions on FE of the fixed effects of the chosen algorithm, of the
dimension of the objective function and of the interaction between both, respectively, whereas αIPk

and αDjIPk

are the contributions of the random effects of the initial starting point and of the interaction between the level
of dimension and the initial starting point, respectively. The statistical analysis of model (15) was performed
using SAS software [36].

b. Statistical analysis on REf , RE θ
max and RE θ

mean.
Similarly, results for REf , RE θ

max and RE θ
mean values obtained for the compartmental-type functions are statis-

tically tested in order to determine if these criteria are significantly affected by the search procedure used as the
optimization algorithm. Each search procedure gives different results for REf , RE θ

max and RE θ
mean depending

on three factors of variation:

(i) Ai, the ith level of optimization algorithm (NM for i = 1 and VNM for i = 2, ..., 10 where i represents the
number of phases P of the search algorithm)
(ii) Nj , the jth level of noise (”noise-free” for j = 1, ”low-noise” for j = 2 and ”high-noise” for j = 3)
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(iii) IPk, the kth replication of the treatment (Ai, Nj), for k = 1, ..., 1000 (multi-start).

A linear mixed model is postulated:

∀i, 1 ≤ i ≤ 10, ∀j, 1 ≤ j ≤ 3, ∀k, 1 ≤ k ≤ 1000,

Cr ijk = α0 + αAi + αNj + αAiNj + αIPk
+ αNjIPk

+ εijk, (16)

where Cr is one of the criteria REf , RE θ
max and RE θ

mean, and αAi , αNj and αAiNj are the contributions of the
fixed effects of the chosen algorithm, of the noise introduced in the data injected into the objective function and
of the interaction between both, respectively, whereas αIPk

and αNjIPk
are the contributions of the random

effects of the initial starting point and of the interaction between the level of noise and the initial starting point,
respectively. The statistical analysis of model (16) was performed using SAS software [36] on the logarithm of
each criterion. This transformation is made necessary for numerical reasons, since the values of REf , RE θ

max

and RE θ
mean are too small to be distinguished by the software.

3. Results

3.1. Comparison between NM and VNM search procedures and choice of the optimization
method

The statistical results obtained regarding the different performance criteria are summarized in Table 2 and
Table 3 and analysed in the following sections.

3.1.1. Computational work (FE criterion)

The results of the statistical tests performed on the performance criterion FE are presented in Table 2 for
the parabolas, all levels of dimension taken together.

Procedure FE Gr�

NM 20779 1

VNM (P = 2) 44880 2

VNM (P = 3) 40901 3
VNM (P = 4) 38669 3

VNM (P = 5) 39923 3

VNM (P = 6) 39380 3

VNM (P = 7) 39014 3

VNM (P = 8) 38732 3

VNM (P = 9) 40299 3

VNM (P = 10) 42502 3

Table 2. Comparison between NM and VNM search procedures for performance criterion
FE on the parabolas, all levels of dimension taken together. �Grouping of procedures with
non-significant differences in performance (mixed models, p value < 0.05).

In terms of the number of function evaluations performed by each search algorithm before delivering its final
estimates, Table 2 shows that, in general, the NM procedure requires significantly less computational work than
the VNM procedures. In fact, the number of function evaluations FE is doubled at the very worst when a
VNM procedure is used as the optimization algorithm. On the other hand, there are generally no significant
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differences between the VNM procedures depending on their number of phases P . This means in particular
that the computational work they require is not significantly increased with P , and thus an improvement in
their performance is not to the detriment of their speed of convergence. Furthermore, the performance criterion
FE can decrease with the number of phases P : in the case of the parabolas, the number of function evaluations
significantly decreases when the VNM procedure operates in 3 versus 2 phases. These results can be explained
by the choice of the size of the initial simplex at the beginning of each phase of the search procedure. In a VNM
procedure, the initial simplex computed at the very beginning of the first phase is quite large (50%-increase in
the initial value of each parameter) in order to make the algorithm visit a large domain of the search space,
whereas the initial simplex computed at the very beginning of the last phase is quite small (5%-increase in the
initial value of each parameter) in order to refine the search and make the algorithm act like a local optimizer
at this final stage. The size of the initial simplex then decreases linearly over successive phases so that the
algorithm searches progressively less and less globally and more and more locally in the search space. In the
case of the parabolas, increasing the number of phases of the VNM procedure, and thus computing simplices of
intermediate sizes, seem to improve the speed of convergence of the algorithm. The results are similar in the
case of the other standard optimization benchmarks (exponentials, Rosenbrock, Shekel) that we tested.

3.1.2. Ability to converge to the optimum value of the objective function (REf criterion)

The results of statistical tests performed on the performance criterion REf are presented in Table 3 for
the compartmental-type function, whatever the noise level (i.e., for all levels of noise taken together). These
results make it possible to both determine which procedure (NM or VNM) better converges to the optimum
value of the objective function (i.e., provides the lower values of REf ), and which value for P is the minimum
number of phases of the VNM procedure providing the lower values of REf versus higher values of P that do
not significantly improve this performance criterion. In fact, VNM procedures provide values of REf that are
always significantly smaller (and thus better) than those produced by the NM algorithm. In addition, VNM
procedures yield values for REf that decrease with the number of phases P , this reduction being statistically
significant up to P = 4: for P > 4, there is no significant improvement in the ability of the VNM procedure to
converge to the optimum value of the compartmental-type function.

3.1.3. Ability to converge to the optimum values of the parameters (RE θ
max and RE θ

mean criteria)

Similarly, the results of statistical tests performed on performance criteria RE θ
max and RE θ

mean are presented
in Table 3 for the compartmental-type function, for all levels of noise taken together.

Procedure Log(REf) Gr� Procedure Log(RE θ
max) Gr� Log(RE θ

mean) Gr�

NM -5.283 1 NM -3.157 1 -3.420 1

VNM (P = 2) -5.377 2 VNM (P = 2) -3.198 2 -3.464 2
VNM (P = 3) -5.399 3 VNM (P = 3) -3.202 2 -3.467 2

VNM (P = 4) -5.420 4 VNM (P = 4) -3.218 2 -3.483 2

VNM (P = 5) -5.431 4 VNM (P = 5) -3.217 2 -3.481 2

VNM (P = 6) -5.436 4 VNM (P = 6) -3.229 2 -3.494 2

VNM (P = 7) -5.445 4 VNM (P = 7) -3.219 2 -3.484 2

VNM (P = 8) -5.458 4 VNM (P = 8) -3.225 2 -3.489 2

VNM (P = 9) -5.452 4 VNM (P = 9) -3.228 2 -3.492 2

VNM (P = 10) -5.460 4 VNM (P = 10) -3.236 2 -3.500 2

Table 3. Comparison between NM and VNM search procedures for performance criteria
Log(REf), Log(RE θ

max) and Log(RE θ
mean) on the compartmental-type function, all levels of

noise taken together. �Grouping of procedures with non-significant differences in performance
(mixed models, p value < 0.05).
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These results make it possible to both determine which procedure (NM or VNM) better converges to the opti-
mum (i.e., provides the lower values of RE θ

max and RE θ
mean) and which value for P is the minimum number of

phases of the VNM procedure providing the lower values of RE θ
max and RE θ

mean versus higher values of P that
do not significantly improve these performance criteria. VNM procedures provide values for RE θ

max and RE θ
mean

that are significantly smaller (and thus better) than those produced by the NM algorithm. On the other hand,
increasing the number of phases P in the VNM procedure does not significantly improve these performance
criteria. In fact, for P > 2, there is no significant improvement in the ability of the VNM procedure to converge
to the optimum set of parameters of the compartmental-type objective function.

In view of all these statistical results on the different performance criteria tested, we decided to choose a VNM
search procedure operating in 4 phases as the optimization algorithm for our calibration method.

3.2. Performance of the calibration method

3.2.1. Noise-free data (d0)

The results of the calibration method obtained when ”noise-free” data are injected into the objective function,
are presented in Table 4.

Parameter Optimum value (min−1) Estimated value (min−1) Relative Error (%)
θ1 0.01000170 0.01000184 0.00138

θ2 0.00545349 0.00545346 0.00047

θ3 0.01232039 0.01232027 0.00097

θ4 0.01289907 0.01289880 0.00213

θ5 0.00179097 0.00179033 0.03540

θ6 0.05717149 0.05717368 0.00384

θ7 0.00013830 0.00013830 0.00306

θ8 0.01255922 0.01255919 0.00023

θ9 0.03510541 0.03510549 0.00022

θ10 0.00048372 0.00048949 1.19333

θ11 0.17268261 0.17267806 0.00263

θ12 0.00954823 0.00954861 0.00403

θ13 0.01056087 0.01056054 0.00309

θ14 0.00020175 0.00020175 0.00243

θ15 0.04329578 0.04329567 0.00026

θ16 0.00130912 0.00130912 0.00029

θ17 0.00146295 0.00146295 0.00003

θ18 0.00037141 0.00037141 0.00072

θ19 0.00003931 0.00003931 0.00030

Table 4. Comparison between optimum and estimated sets of parameters when ”noise-free”
data (d0) are injected into the objective function.

They show that our algorithm is able to find again the optimum set of parameters used to simulate the noise-
free data, with very high precision: the average and maximum relative errors between the 19 optimum and
estimated parameters are about 0.07% and 1.2%, respectively (expressed in absolute values). Furthermore, all
model parameters, except θ10, are estimated with a precision lower than 0.05%.

The evolution kinetics of model compartments simulated using estimated versus optimum parameter values are
presented in Figure 12 (sampled compartments) and Figure 13 (non-sampled compartments).
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Figure 12. Predictions of the evolution kinetics for sampled compartments calculated using
either the optimum set of parameters (black curve) or the estimated set of parameters (grey
curve) when ”noise-free” data (d0) are injected into the objective function.
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Figure 13. Predictions of the evolution kinetics for non-sampled compartments calculated
using either the optimum set of parameters (black curve) or the estimated set of parameters
(grey curve) when ”noise-free” data (d0) are injected into the objective function.
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They show that the model predictions calculated using the estimated set of parameters are satisfactorily
superimposed on those calculated with the optimum set of parameters, and this applies for both sampled and
non-sampled compartments of the model. This means that, in the ideal context of noise-free data, our cali-
bration method succeeds in estimating all model parameters with very high degree of precision, and thus in
providing satisfactory predictions of the sizes of all model compartments.

3.2.2. Noisy data (d1 and d2)

The results of the calibration method when ”low-noise” (d1) or ”high-noise” (d2) data are injected into the
objective function, are presented in Table 5.

d1 d2

Parameter Optimum value Estimated value Relative Error Estimated value Relative Error
(min−1) (min−1) (%) (min−1) (%)

θ1 0.01000170 0.01003368 0.32 0.00954457 4.57

θ2 0.00545349 0.00546366 0.19 0.00555255 1.82

θ3 0.01232039 0.01214851 1.40 0.01267226 2.86

θ4 0.01289907 0.01281316 0.67 0.01318219 2.19

θ5 0.00179097 0.00120250 32.86 0.00240708 34.40

θ6 0.05717149 0.05814667 1.71 0.06270203 9.67

θ7 0.00013830 0.00013250 4.19 0.00012229 11.57

θ8 0.01255922 0.01272895 1.35 0.01365536 8.72

θ9 0.03510541 0.03525330 0.42 0.03586055 2.15

θ10 0.00048372 0.00025500 47.28 0.00025500 47.28

θ11 0.17268261 0.16929332 1.96 0.15755942 8.76

θ12 0.00954823 0.00907060 5.00 0.00840858 11.94

θ13 0.01056087 0.00992134 6.06 0.00994375 5.84

θ14 0.00020175 0.00012025 40.40 0.00018558 8.01

θ15 0.04329578 0.04383942 1.26 0.04633971 7.03

θ16 0.00130912 0.00130375 0.41 0.00117112 10.54

θ17 0.00146295 0.00146455 0.11 0.00147691 0.95

θ18 0.00037141 0.00037806 1.79 0.00039746 7.01

θ19 0.00003931 0.00003870 1.55 0.00004289 9.10

Table 5. Comparison between optimum and estimated sets of parameters when ”low-noise”
(d1) and ”high-noise” (d2) data are injected into the objective function.

They show that our algorithm is able to find again the optimum set of parameters used to simulate noisy data
d1 and d2 with satisfactory precision. In fact, the average over the 19 coordinates of the relative error between
the optimum and estimated sets of parameters is about 8% and 10% for d1 and d2, respectively (expressed
in absolute values). Furthermore, with the exception of parameters θ5, θ7, θ10 and θ14, all model parameters
are estimated with very satisfactory precision, the average over the 15 remaining coordinates of the relative
error between optimum and estimated values being inferior to 2% and 6% for d1 and d2, respectively. In fact,
we could not hope that our calibration method would estimate the model parameters with better precision
than the experimental error introduced in the data injected into the objective function. The experimental
error introduced in data d1 and d2 being supposed to follow a gaussian distribution of standard deviations
σij = 1

100 yj(i∆t, θ�) and σij = 5
100 yj(i∆t, θ�), respectively (using the notations defined in section 1.2.2), this
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implies in particular that 95% of noisy data zj(ti) should fall within 2 standard deviations of the mean, that is
the predicted value yj(i∆t, θ�). We therefore consider it satisfactory that most of the relative errors between the
optimum and estimated parameters are found to be of the order of 2 × 1 = 2% and 2 × 5 = 10%, respectively.
The cases of parameters θ5, θ7, θ10 and θ14 are particular. As previously shown in section 1.3.3, these parameters
have almost no influence on the sampled compartments, and thus on the objective function. This can also be
seen in Figure 14, with respect to parameter θ7 for instance: the representation of the objective function in three
dimensions (θ6 and θ7 varying, the other parameters being set at their optimum values) indicates that small
changes in θ7 will never lead to significant variations in the objective function value. The objective function
surface is similar for parameters θ5, θ10 and θ14. This may explain the difficulties encountered when trying to
estimate these parameters with satisfactory precision.

Figure 14. Plot of the objective function in case of ”noise-free” data in two directions (e6, e7).

The evolution kinetics of model compartments are presented in Figure 15 (sampled compartments) and Figure
16 (non-sampled compartments) when ”low-noise” data (d1) are injected into the objective function, and in
Figure 17 (sampled compartments) and Figure 18 (non-sampled compartments) when ”high-noise” data (d2)
are injected into the objective function.

Figures 15 and 17 show that the model predictions for the sampled compartments calculated using the estimated
set of parameters are satisfactorily superimposed on those calculated with the optimum set of parameters,
whatever the ”experimental” data injected into the objective function (d1 or d2). The results are also very
satisfactory regarding the non-sampled compartments, when ”low-noise” data (d1) are injected into the objective
function (Figure 16). In the case of ”high-noise” data (d2), two compartments, SA and PP, seem to be more
sensitive to noise than the others (Figure 18). In fact, the relative error between the optimum and estimated
sizes of compartment SA at the peak of the curve is about 9% (expressed in absolute value), whereas the
relative error between the optimum and estimated sizes of compartment PP at the last sampling point is about
8% (expressed in absolute value). Once again, errors in model predictions are found to be of the order of the
”experimental” error introduced in data d2. Compartments SA and PP are the most affected compartments
in the model, mainly because SA is a central compartment that depends on parameters with the strongest
influence on the system and PP is at the end of a catenary structure and, is therefore affected by all the errors
accumulated upstream.
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Figure 15. Predictions of the evolution kinetics for sampled compartments calculated using
either the optimum set of parameters (black curve) or the estimated set of parameters (grey
curve) when ”low-noise” data (d1) are injected into the objective function.
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Figure 16. Predictions of the evolution kinetics for non-sampled compartments calculated
using either the optimum set of parameters (black curve) or the estimated set of parameters
(grey curve) when ”low-noise” data (d1) are injected into the objective function.
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Figure 17. Predictions of the evolution kinetics for sampled compartments calculated using
either the optimum set of parameters (black curve) or the estimated set of parameters (grey
curve) when ”high-noise” data (d2) are injected into the objective function.
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Figure 18. Predictions of the evolution kinetics for non-sampled compartments calculated
using either the optimum set of parameters (black curve) or the estimated set of parameters
(grey curve) when ”high-noise” data (d2) are injected into the objective function.
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4. Conclusion

This paper introduces and validates a parameter estimation method that enables proper calibration of the
metabolic model proposed by Fouillet et al. [18]. During this study, we worked either in the ideal context
of noise-free data, or within a more realistic framework of noisy data, the noise component being known and
controlled. The next step to validate our calibration method will thus be to test its behavior in the case of
experimental data obtained from clinical experiments and associated with unknown noise. It will then probably
be necessary to refine the error model used in this study, since it is well known that the success of a parameter
estimation process is strongly dependent on the weight chosen for each sample point [13, 27]. Considerable
efforts should therefore be made to determine the sample variances at the different experimental points. In our
experimental context, it is not possible to deduce experimentally (even roughly) the variations in error variances
as a function of sampling times and sampled compartments, since we can not produce numerous replicates of
our samples from the same individual for both ethical and financial reasons. To overcome this limitation, two
main strategies can be adopted. The first consists in reducing the level of noise contained in the experimental
data as much as possible, firstly during the clinical experiment and secondly during compartmental analysis
(by smoothing the data before injecting them into the objective function). The second strategy consists in
postulating a general error model characterized by a certain number of parameters that should be estimated
alongside the model parameters during the calibration process. This latter strategy is more satisfactory from
a theoretical point of view, but the first is easier to implement because the number of model parameters to
be estimated is already quite large. By injecting smoothed data into the objective function, one could reduce
the error made on estimated values of the model parameters, and therefore on the evolution kinetics of model
compartments. Although our calibration method still needs to be perfected, it represents an important step
towards the development of a dynamic model enabling the simulation of postprandial dietary N distribution in
humans. Such a model constitutes a predictive and non-invasive tool that could highlight the acute postprandial
mechanisms occurring in tissues and regulating the dynamic transfer of dietary N between organs. It may provide
us with a deeper insight into the cascade of transient and dynamic metabolic processes involved in controlling
dietary N distribution throughout the body, which plays an important role in replenishing protein stores during
the postprandial phase. It may also enable determination of the organ-specific valorization of dietary protein in
the non-steady state in humans, allowing further definition of the notion of protein quality. Moreover, it may
in particular provide an opportunity to compare dietary N regional valorization and metabolism under different
conditions (nature and quantity of proteins, lipids, carbohydrates and other nutrients in the meal, etc.), in
order to optimize food composition as a function of physiological and nutritional status. Such a model will thus
provide valuable insight into the dynamics and adaptative features of protein metabolism in humans.
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the École Nationale Supérieure (Paris, France).

References

[1] Anderson D.H., Compartmental modeling and tracer kinetics, Lecture notes in biomathematics, vol. 50, Springer-Verlag, Berlin
(1983).

[2] Anderson R.M. and May R.M., Infectious diseases of humans, Oxford: Oxford University Press (1991).
[3] Bard Y., Nonlinear parameter estimation, Academic Press, N.Y. (1974).
[4] Barton R.R. and Ivey J.S., Nelder-Mead simplex modifications for simplex optimization, Management Science 42 (1996): 954-

973.
[5] Biolo G., Tessari P., Inchiostro S., Bruttomesso D., Fongher C., Sabadin L., Fratton M.G., Valerio A. and Tiengo A., Leucine

and phenylalanine kinetics during mixed meal ingestion: a multiple tracer approach, Am J Physiol 262 (1992): E455-63.



TITLE WILL BE SET BY THE PUBLISHER 31

[6] Bos C., Mahe S., Gaudichon C., Benamouzig R., Gausseres N., Luengo C., Ferriere F., Rautureau J. and Tome D., Assessment
of net postprandial protein utilization of [15N]-labelled milk nitrogen in humans, Br J Nutr 81 (1999): 221-226.

[7] Carraro F., Rosenblatt J. and Wolfe R.R., Isotopic determination of fibronectin synthesis in humans. Metabolism 40 (1991):
553-561.

[8] Carson Y. and Cobelli C., Modeling methodology for physiology and medicine, Academic Press, San Diego, CA, USA (2001).
[9] Carson Y. and Maria A., Simulation optimization: methods and applications, Proceedings of the 1997 Winter Simulation

Conference.
[10] Castillo L., Chapman T.E., Yu Y.M., Ajami A., Burke J.F. and Young V.R., Dietary arginine uptake by the splanchnic region

in adult humans, Am J Physiol 265 (1993): E532-9.
[11] Cobelli C., Saccomani M.P., Tessari P., Biolo G., Luzi L. and Matthews D.E., Compartmental model of leucine kinetics in

humans, Am J Physiol Endocrinol Metab 261 (1991): E539-E550.
[12] Cobelli C., Carson E.R., Finkelstein L. and Leaning M.S., Validation of simple and complex models in physiology and medicine,

Am J Physiol Regulatory Integrative Comp Physiol 246 (1984): R259-R266.
[13] Cobelli C. and Caumo A., Using what is accessible to measure that which is not: necessity of model of system, Met 47 (1998):

1009-1035.
[14] Cobelli C. and Foster D.M., Compartmental models: theory and practice using the SAAMII software system, Math Model

Exp Nutr (1998): 79-101.
[15] DiStephano J.J. and Landaw E.M., Multiexponential, multicompartimental, and noncompartimental modeling. I. Methodolog-

ical limitations and physiological interpretations, Am J Physiol 246 (1984): R651-664.
[16] Esposito W.R. and Floudas C.A., Global optimization in parameter estimation of nonlinear algebraic models via the error-in-

variables approach. Ind Eng Chem Res 37 (1998): 1841-1858.

[17] Fouillet H., Gaudichon C., Mariotti F., Mahe S., Lescoat P., Huneau J.F. and Tome D., Compartmental modeling of post-
prandial dietary nitrogen distribution in humans, Am J Physiol Endocrinol Metab 279 (2000): E161-E175.

[18] Fouillet H., Gaudichon C., Bos C., Mariotti F. and Tome D., Contribution of plasma proteins to splanchnic and total anabolic
utilization of dietary nitrogen in humans, Am J Physiol Endocrinol Metab 279 (2003): E88-97.

[19] Finsterle S. and Najita J., Robust estimation of hydrogeologic model parameters, Water Resour Res 34 (1998): 2939-2947.
[20] Gaudichon C., Mahe S., Benamouzig R., Luengo C., Fouillet H., Dare S., Van Oycke M., Ferriere F., Rautureau J. and Tome

D., Net postprandial protein utilization of [15N]-labelled milk protein nitrogen is influenced by diet composition in humans, J
Nutr 124 (1999).

[21] Gausseres N., Mahe S., Benamouzig R., Luengo C., Ferriere F., Rautureau J. and Tome D., [15N]-labeled pea flour protein
nitrogen exhibits good ileal digestibility and postprandial retention in humans, J Nutr 127 (1997): 1160-1165.

[22] Green M.H. and Green J.B., The application of compartmental analysis to research in nutrition, Annu Rev Nutr 10 (1990):
41-61.

[23] Green M.H., Introduction to modeling, J Nutr 122 (1992): 690-694.
[24] Hoerr R.A., Matthews D.E., Bier D.M. and Young V.R., Effects of protein restriction and acute refeeding on leucine and lysine

kinetics in young men, Am J Physiol 264 (1993): E567-75.
[25] Humphrey D.G. and Wilson J.R., A revised simplex search procedure for stochastic simulation response surface optimization,

Proceedings of the 1998 Winter Simulation Conference, (1998): 751-759.
[26] Humphrey D.G. and Wilson J.R., A revised simplex search procedure for stochastic simulation response surface optimization,

Informs J Computing, Vol. 12 (2000), no 4: 272-283.
[27] Jacquez J.A., Compartmental analysis in biology and medicine (3 ed), BioMedware, Ann Arbor, MI, USA (1996).
[28] Kendall M.G. and Stuart A., The advanced theory of statistics, Vol. 2, Charles Griffin and Co., Ltd, London (1961).
[29] Lagarias J.C., Reeds J.A., Wright M.H. and Wright P.E., Convergence properties of the Nelder-Mead simplex method in low

dimensions, SIAM J Optim, Vol. 9 (1998), no. 1: 112-147.
[30] Lewis R.M., Torczon V. and Trosset M.W., Direct search methods: then and now, NASA-CR-2000-210125, ICASE Report no.

2000-26.
[31] Mendes P. and Kell D.B., Non-linear optimization of biochemical pathways: applications to metabolic engineering and para-

meter estimation, BioInformatics, Vol.14 (1998), no. 14: 869-883.
[32] Miller J.C. and Miller J.N., Statistics for Analytical Chemistry, Ellis Horwood Series in Analytical Chemistry, ed. R.A.

Chalmers and M. Masson, Chichester (1984): 56.
[33] Millward D.J., Fereday A., Gibson N.R. and Pacy P.J., Human adult amino acid requirements: [1-13C]leucine balance evalua-

tion of the efficiency of utilization and apparent requirements for wheat protein and lysine compared with those for milk protein
in healthy adults, Am J Clin Nutr 72 (2000): 112-21.

[34] Moles C.G., Mendes P. and Banga J.R., Parameter estimation in biochemical pathways: a comparison of global optimization
methods, Genome Research 13 (2003): 2467-2474.

[35] Nelder J.A. and Mead R., A simplex method for function minimization, Computer J 7 (1965): 308-313.
[36] SAS/STAT 6.03, SAS Institute, Cary, NC.
[37] Volpi E., Mittendorfer B., Wolf S.E. and Wolfe R.R., Oral amino acids stimulate muscle protein anabolism in the elderly

despite higher first-pass splanchnic extraction, Am J Physiol 277 (1999): E513-E520.



32 TITLE WILL BE SET BY THE PUBLISHER

[38] Waterlow J.C., 15N end-product methods for the study of whole body protein turnover, Proc Nutr Soc 40 (1981): 317-320.
[39] Wilks S.S., Mathematical Statistics, John Wiley and Sons, N.Y. (1962).
[40] Wolfe R.R., Radioactive and stable isotope tracers in biomedicine, New York, NY: Wiley-Liss (1992).
[41] Wutzke K., Heine W., Drescher U., Richter I. and Plath C., 15N-labelled yeast protein – a valid tracer for calculating whole-

body protein parameters in infants: a comparison between [15N]-yeast protein and [15N]-glycine. Hum Nutr Clin Nutr 37
(1983): 317-327.

[42] Yen J, Liao J.C., Lee B. and Randolph D., A Hybrid Approach to Modeling Metabolic System Using Genetic Algorithm and
Simplex Method, to appear in IEEE Transactions on Systems, Man, and Cybernetics (1995).


