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SMALL SUMSETS IN R : FULL CONTINUOUS 3k − 4 THEOREM,
CRITICAL SETS.

ANNE DE ROTON

Abstract. We prove a full continuous Freiman’s 3k− 4 theorem for small sumsets in
R by using some ideas from Ruzsa’s work on measure of sumsets in R as well as some
graphic representation of density functions of sets. We thereby get some structural
properties of A, B and A+B when λ(A+B) < λ(A)+2λ(B) and either λ(A) ≥ λ(B)
or A has larger diameter than B. We also give some structural information for sets
of large density according to the size of their sumset, a result so far unknown in the
discrete and the continuous setting. Finally, we characterize the critical sets for which
equality holds in the lower bounds for λ(A+B).

1. Introduction

Inverse problems for small sumsets study the structural properties of sets A and B
when their sumset A+B = {a+ b, a ∈ A, b ∈ B} is small (see [TV06] or [Nat96] for an
overview on this subject). In 1959, Freiman [Fre59] proved that a set A of integers such
that |A + A| ≤ 3|A| − 4, where |A| denotes the number of elements in A, is contained
in an arithmetic progression of length |A+ A| − |A|+ 1. This result is usually referred
to as Freiman’s (3k − 4) theorem. It has been refined in many ways and generalised to
finite sets in other groups or semi-groups. The most complete version of this theorem for
integers can be found in [Gry13], chapter 7. We shall call this theorem the full Freiman’s
(3k − 4) theorem.

In this paper, we consider the addition of two bounded sets A and B of real numbers.
We establish a continuous analogue of the full Freiman’s (3k − 4) theorem and study
the structures of the critical sets for which the lower bounds are attained. We also
prove some results on sets of real numbers so far unknown for sets of integers. Our
first main result can be read as follows (λ is the inner Lebesgue measure on R and
diam(A) = sup(A)− inf(A) is the diameter of A).

Theorem 1. Let A and B be bounded subsets of R such that λ(A), λ(B) ̸= 0. If

i) either λ(A+B) < λ(A) + λ(B) + min(λ(A), λ(B));
ii) or diam(B) ≤ diam(A) and λ(A+B) < λ(A) + 2λ(B);

then

(1) diam(A) ≤ λ(A+B)− λ(B),
(2) diam(B) ≤ λ(A+B)− λ(A),

Soutien de l’ANR Cæsar, ANR 12 - BS01 - 0011.
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2 ANNE DE ROTON

(3) there exists an interval I of length at least λ(A) + λ(B) included in A+B.

Remark 1. As a consequence of our proof, for A and B subsets of R such that 0 =
inf A = inf B and DA = diam(A), DB = diam(B) bounded, we can derive, as in the
discrete case, that the interval I included in A + B we found has lower bound b :=
sup{x ∈ [0, DA], x ̸∈ A+B} and upper bound c := inf{x ∈ [DA, DA +DB], x ̸∈ A+B}.
Furthermore we get that λ(A ∩ [0, x]) + λ(B ∩ [0, x]) > x for x > b and λ(A ∩ [0, x +
DA −DB]) + λ(B ∩ [0, x]) < x+ λ(A) + λ(B)−DB for x < c−DA.

Beyond the result themselves, what is noticeable is that the proof in the continuous
setting is much easier to understand than in the discrete setting. The first two statements
under hypothesis (i) are a straightforward application of Ruzsa’s results in [Ruz91]. This
nice paper of Ruzsa seems to have been overlooked whereas his ideas may lead to further
results in the continuous setting that may even yield some improvements in the discrete
one. This part of the theorem has already partially been proved by M. Christ in [Chr11]
(for A = B).
A much stronger and very nice result in the continuous setting was proved by Bilu in
[Bil98]. Bilu’s α + 2β theorem in Tr = (R/Z)r gives a desciption of subsets A and B
of Tr such that µ(A+B) < µ(A) + µ(B) + min(µ(A), µ(B)) where µ is the inner Haar
measure on Tr. More precisely, Bilu conjectured that if A,B are subsets of Tr such
that µ(A) ≥ µ(B) and µ(A + B) < min(1, µ(A) + 2µ(B)), then there exist a non zero
character χ : Tr → T and closed intervals I, J ⊂ T such that χ(A) ⊂ I, χ(B) ⊂ J , I
and J have length at most µ(A+B)− µ(B) and µ(A+B)− µ(A) correspondingly. He
proved this conjecture when µ(A) is small and close to µ(B). Working in the torus is
actually much more demanding than working in R and Bilu had to use some rectification
arguments and to restrict himself to small sets.
As notified to us by Bilu, The part (i) ⇒ (1) and (2) of Theorem 1 could be deduced
from his result. Nevertheless, we believe that the most interesting statement, and the
hardest to prove, in Theorem 1 is the third consequence. We also think that the main
interest of this theorem is the simplicity of our proof which does not make use of any
result from the discrete setting whereas Bilu’s proof consisted in transfering the problem
from the torus to the integers and to use Freiman’s theorem for integers.
Note also that Eberhard, Green and Manners obtained in [EGM14] a structural property
for subsets of R of doubling less than 4. They proved that these sets must have density
strictly larger than 1/2 on some not too small interval.

In [Ruz91], Ruzsa improved on the well-known lower bound

λ(A+B) ≥ λ(A) + λ(B)

and proved that, if λ(A) ≤ λ(B), this can be strengthened :

λ(A+B) ≥ λ(A) + min(diam(B), λ(A) + λ(B)).

The main idea of his proof is to transfer the sum in R in a sum in T = R/Z. Ruzsa
considers the sets A and B of real numbers as sets of numbers modulo DB, the diameter
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of B. In this setting, he can use a rescaled version of Raikov’s theorem [Rai39] as well
as the fact that if x ∈ [min(B),max(B)] belongs to A and if B is a closed set then
x, x+DB ∈ A+B.
Ruzsa’s result directly yields the first two statements of our theorem under condition
(i). To get these statements from condition (ii), we need to use Ruzsa’s arguments in a
slightly different way. This part is the continuous analogue of Freiman’s 3k− 4 theorem
in [Fre59] as generalised to the sum of two distinct sets by Freiman [Fre62], Lev and
Smeliansky [LS95] and Stanchescu [Sta96].
As far as we know, the third consequence (the existence of an interval I of length at
least λ(A) + λ(B) included in A + B) was not known in the continuous setting. The
discrete analogue of our third statement was proved by Freiman in [Fre09] in the special
case A = B. It has been generalised to the case A ̸= B by Bardaji and Grynkiewicz
in [BG10]. An exposition of these results can be found in [Gry13], chapter 7. We
could adapt their proof but a simpler proof follows from some density arguments in the
continuous setting. Actually, we think that the ideas are more natural in the continuous
setting where a graphic illustration leads to the result. We hope that this sheds some
new light on inverse results for integers too.
This third statement is a consequence of the simple remark that if the sum of the
densities of A and B on [0, x] is strictly larger than x, then x can be written as a sum
of an element in A and an element in B. This allows us to partition [0, DA] into three
sets : a subset Z1 of A + B, a subset Z3 of A + B − DA and their complementary set
Z2 included in both A+B and A+B −DA. To go from Z1 to Z3 and reciprocally, one
need to cross Z2. The proof relies on the fact that there is only one such crossing under
the hypothesis and on a lower bound for the measure of Z2.

The graphic interpretation also leads to a relaxed inverse Freiman theorem for sets of
large density with small sumset. Namely, we prove the following result.

Theorem 2. Let A and B be measurable bounded subsets of R such that DB :=
diam(B) ≤ DA := diam(A) and ∆ := λ(A) + λ(B)−DA > 0. Let m be a non negative
integer. If

λ(A+B) < DA + λ(B) + (m+ 1)(DA −DB +∆)

then the sum A+B contains a union of at most 2m+1 disjoint intervals K1, K2, · · ·K2n+1

(n ≤ m), each of length at least 2∆ +DA −DB, such that the measure of this union of
intervals is at least DA + (2n+ 1)∆ + n(DA −DB).

With the weak hypothesis in Theorem 2, a description of the sets A and B can be
given. This is nevertheless a rather vague description. On the contrary, we get a precise
description of critical sets A and B for which the lower bound for the measure of A+B
is attained.

Theorem 3. Let A and B be some bounded closed sets of real numbers such that DB ≤
DA and λ(A + B) = DB + λ(A) < λ(A) + 2λ(B). Then there exist two positive real
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numbers b and c such that b, c ≤ DB, the interval I = (b,DA − c) has size at least
λ(A)+λ(B)−DB = ∆+DA−DB and the sets A, B and A+B may each be partitioned
into three parts as follows

A = min(A) + (A1 ∪ AI ∪ (DA − A2)) , B = min(B) + (B1 ∪BI ∪ (DB −B2)) ,

A+B = min(A+B) + (S1 ∪ [b,DA +DB − c] ∪ (DA +DB − S2))

with A1, B1, S1 ⊂ [0, b], A2, B2, S2 ⊂ [0, c] and

i) A1 ⊂∼ S1; A2 ⊂∼ S2; AI ⊂∼ [b,DA − c];
ii) λ(B1 \ A1) = λ(B2 \ A2) = 0, BI ⊂ [b,DB − c];

Here we used the notation C ⊂∼ D for C ⊂ D and λ(D \ C) = 0 (thus C = D up to a
set of measure 0).

Remark 2. The hypothesis λ(A+B) = DB + λ(A) < λ(A) + 2λ(B) can be replaced by
λ(A+B) = DA + λ(B) < λ(A) + 2λ(B) and we get the same conclusions with the roles
of A and B interchanged.

This result is a consequence of our previous observations on function graphs.
Theorems 1, 2 and 3 describe the structure of sets A, B and A + B such that λ(A) +
λ(B) ≥ diam(B). If this last inequality does not hold, Ruzsa proved a lower bound (in
[Ruz91]) for the sum A + B in terms of the ratio λ(A)/λ(B). Precisely, Ruzsa proved
the following theorem [Ruz91]

Theorem 4 (Ruzsa). Let A and B be bounded subsets of R such that λ(B) ̸= 0. Write
DB = diam(B) and define K ∈ N∗ and δ ∈ R such that

λ(A)

λ(B)
=

K(K − 1)

2
+Kδ, 0 ≤ δ < 1.

Then we have
λ(A+B) ≥ λ(A) + min(diam(B), (K + δ)λ(B)).

A simple remark yields an improvement of this lower bound when diam(A)/diam(B) ≤
K and a partial result on sets B such that λ(A+B) < λ(A)+(K+δ)λ(B). The extremal
sets in this context can also be described, in a very precise way.

Theorem 5. Let A and B be bounded closed subsets of R such that λ(A), λ(B) ̸= 0.
Let K ∈ N and δ ∈ [0, 1) be such that

λ(A)

λ(B)
=

K(K − 1)

2
+Kδ and λ(A+B) = λ(A) + (K + δ)λ(B) < λ(A) +DB

where DB = diam(B). Then A and B are subsets of full measure in translates of sets
A′ and B′ of the form

B′ = [0, b+]∪ [DB−b−, DB]; A′ =
K⋃
k=1

[(k − 1)(DB − b−), (k − 1)DB + (K − k)b+ + δb]

with b+, b− ≥ 0 and b+ + b− = b = λ(B).
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In section 2, we recall and discuss Ruzsa’s results that we use in this paper. In section
3, we present the method of switches that leads to the third statement in Theorem 1
and to Theorem 2. We prove Theorem 1 in section 4 and Theorem 2 in section 5.
We describe in section 6 the large critical sets for which the lower bound in Ruzsa’s
inequality is attained. Finally, the last section is devoted to the characterisation of the
small critical sets for which the lower bound in Ruzsa’s inequality is attained.

We write λ for the inner Lebesgue measure on R and µ for the inner Haar measure
on T = R/Z. Given a bounded set S of real numbers, we define its diameter DS =
diam(S) = sup(S)− inf(S).

2. Ruzsa’s lower bound for sumsets in R

All along this paper, we shall use some results and some arguments from Ruzsa’s
paper [Ruz91]. In order to keep this paper self contained, we collect them here.
In [Ruz91], Ruzsa obtains lower bounds for the inner Lebesgue measure of the sum
A + B of two subsets A and B of real numbers in terms of λ(A), λ(B) and diam(B).
We state here one of his intermediate results and give its proof.

Lemma 1 (Ruzsa [Ruz91]). Let A and B be non empty bounded subsets of R. Write
DB = diam(B). Then we have either

(1) λ(A+B) ≥ λ(A) + diam(B)

or

(2) λ(A+B) ≥ k + 1

k
λ(A) +

k + 1

2
λ(B)

with k the positive integer defined by

k = max{k′ ∈ N : ∃x ∈ [0, DB) : #{n ∈ N : x+ nDB ∈ A} ≥ k′}.

Proof. DB = 0 yields (2), so we assume DB > 0. We can translate and rescale A and
B so that 0 = inf A = inf B and DB = 1. Working with the inner Lebesgue measure,
we can assume that A and B are closed sets. The case of general sets can be obtained
by applying the result to some sequences of closed sets An ⊂ A and Bn ⊂ B such that
limn→∞ λ(An) = λ(A), limn→∞ λ(Bn) = λ(B) and limn→∞ diam(Bn) = DB.
For any positive integer k and any subset E of R+, we define

Ẽk = {x ∈ [0, 1) : #{n ∈ N : x+ n ∈ E} ≥ k}
and KE = max{k ∈ N : Ẽk ̸= ∅}. Note that Ẽk+1 ⊂ Ẽk.

We write S = A+B. Since 0, 1 ∈ B, we have Ãk−1 ⊂ S̃k for k ≥ 2 thus

(3) µ(S̃k) ≥ µ(Ãk−1) (k ≥ 2)

and

λ(A+B) =

KS∑
k=1

µ(S̃k) ≥
KA∑
k=1

µ(Ãk) + µ(S̃1) = λ(A) + µ(S̃1)
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By Raikov’s theorem [Rai39], either µ(S̃1) = 1 and λ(A+B) ≥ λ(A) + 1 = λ(A) +DB,
or for all k ≥ 1, we have µ(S̃k) ≤ µ(S̃1) < 1 and

(4) µ(S̃k) ≥ µ(Ãk) + µ(B) (k ≤ KA).

If µ(S̃1) < 1, combining (3) and (4) leads to

µ(S̃k) ≥
k − 1

KA

µ(Ãk−1) +
KA + 1− k

KA

(µ(Ãk) + µ(B)) (1 ≤ k ≤ KA + 1)

and

(5) λ(A+B) ≥ KA + 1

KA

λ(A) +
KA + 1

2
λ(B),

which is Ruzsa’s lower bound. □

As a corollary, Ruzsa derives Theorem 4 stated in the introduction. In the following
theorem, we improve this result for small sets A and B such that DA/DB is small. This
gives a partial answer to one of the questions asked by Ruzsa in [Ruz91]. Namely Ruzsa
asked for a lower bound depending on the measures and the diameters of the two sets
A and B.

Theorem 6. Let A and B be bounded subsets of R such that λ(B) > 0. Write DB =
diam(B), DA = diam(A) and define K ∈ N∗ and δ ∈ R by

(6)
λ(A)

λ(B)
=

K(K − 1)

2
+Kδ, 0 ≤ δ < 1.

Then we have either

λ(A+B) ≥ λ(A) + diam(B)

or

(7) λ(A+B) ≥ λ(A) + (K + δ)λ(B).

Furthermore, if DA/DB ≤ K, then then (7) can be replaced by the better estimate

λ(A+B) ≥ ⌈DA/DB⌉+ 1

⌈DA/DB⌉
λ(A) +

⌈DA/DB⌉+ 1

2
λ(B).

Remark 3. This theorem is mostly due to Ruzsa in [Ruz91]. Our only contribution
consists in noticing that the lower bound can be improved in case DA/DB ≤ K. If
DA ≤ DB then this remark yields the lower bound

(8) λ(A+B) ≥ λ(A) + min(diam(B), λ(A) + λ(B)).

As noticed by Ruzsa in [Ruz91], when λ(A) ≤ λ(B), (7) also yields (8). Indeed, if
λ(A) ≤ λ(B), then in (6), we have either K = 1, in which case we have λ(A) = δλ(B)
and (7) yields λ(A+B) ≥ λ(A)+(1+δ)λ(B) = 2λ(A)+λ(B), or (K, δ) = (2, 0), in which
case we have λ(A) = λ(B) and (7) yields λ(A+B) ≥ λ(A) + 2λ(B) = 2λ(A) + λ(B).
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Proof. Let us assume that λ(A+B) < λ(A)+diam(B). Then by Lemma 1, λ(A+B) ≥
f(KA) holds with f(k) = k+1

k
λ(A) + k+1

2
λ(B) and

KA = max{k′ ∈ N : ∃x ∈ [0, DB) : #{n ∈ N : x+ nDB ∈ A} ≥ k′}.
As noticed by Ruzsa, the sequence (f(k))k≥1 is non increasing for k ≤ K and increasing
for k ≥ K with K the integer defined by (6). Therefore f(k) is minimal for k = K and
we get the lower bound

λ(A+B) ≥ f(KA) ≥ f(K) = λ(A) + (K + δ)λ(B).

On the other hand, it is clear that KA ≤ ⌈DA/DB⌉. Therefore, if DA/DB ≤ K then we
have the better estimate λ(A+B) ≥ f(⌈DA/DB⌉). □

3. Method of switches

In the next lemma, we prove that large density of A and B on [0, x] forces x to belong
to A+B. For integer sets, a discrete analogue of this lemma was used by Grynkiewicz
in [Gry13].

Lemma 2. Let A and B be two non empty subsets of R such that inf(A) = inf(B) = 0.
Let x be a real number.

• If x ̸∈ A+B and x ≥ 0 then

λ([0, x] ∩ A) + λ([0, x] ∩B) ≤ x.

• If x ̸∈ A+B and x ≤ DA +DB then

λ([x−DB, DA] ∩ A) + λ([x−DA, DB] ∩B) ≤ DA +DB − x.

Proof. • If x ̸∈ A + B, then for all b ∈ [0, x], we have either b ̸∈ B or x − b ̸∈ A
thus [0, x] ⊂ ([0, x] \B) ∪ ([0, x] \ (x− A)). This yields
x ≤ x− λ([0, x] ∩B) + x− λ([0, x] ∩ A) and the first inequality.

• We write A′ = DA−A, B′ = DB −B and x′ = DA+DB −x. If x ̸∈ A+B, then
x′ ̸∈ A′ +B′ and an application of the first inequality yields the second one.

□

We now present a method to get some structure for sets of large density.
Let A and B be two non empty sets of real numbers satisfying inf(A) = inf(B) = 0.
Recall that DA = diam(A) and DB = diam(B) and assume that DA ≥ DB. For any
non negative real number x, we define

gA(x) = λ(A ∩ [0, x]), gB(x) = λ(B ∩ [0, x]),

g(x) = gA(x) + gB(x) and h(x) = gA(x+DA −DB) + gB(x).

By contraposition, Lemma 2 can be rephrased as follows :

(9) (g(x) > x, x ≥ 0) ⇒ x ∈ A+B,

(10) (h(y) < y + λ(A) + λ(B)−DB, 0 ≤ y ≤ DB) ⇒ y +DA ∈ A+B.
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The statement (9) is straightforward. Let us explain (10). By Lemma 2, if x ≤ DA+DB

and λ([x−DB, DA]∩A)+λ([x−DA, DB]∩B) > DA+DB−x, then x ∈ A+B. Writing
x = y +DA, this leads to

(λ([y+DA−DB, DA]∩A)+λ([y,DB]∩B) > DB−y, 0 ≤ y ≤ DB) ⇒ y+DA ∈ A+B.

Since

λ([y +DA −DB, DA] ∩ A) + λ([y,DB] ∩B) = λ(A)− λ([0, y +DA −DB] ∩ A) + λ(B)− λ([0, y] ∩B)

= λ(A) + λ(B)− h(y),

the statement (10) holds.

We notice that g and h are non decreasing continuous positive functions. They are
also 2-Lipschitz functions and satisfy the inequalities

(11) 0 ≤ g(x) ≤ h(x) ≤ g(x) +DA −DB (x ≥ 0).

From now on, we assume that λ(A) + λ(B) > DA and define ∆ = λ(A) + λ(B)−DA.
The region [0, DB]× [0, λ(A)+λ(B)] of the plane can be partitioned into three regions

delimited by the lines L1 and L2 respectively defined by the equations y = x and
y = x+DA −DB +∆. It leads to a partition of [0, DB] into three regions:

• Z1 = {x ∈ [0, DB] : g(x) ≤ x} is the closed set of real numbers in [0, DB] for
which the function g is under the line L1,

• Z3 = {x ∈ [0, DB] : h(x) ≥ x+DA −DB +∆} is the closed set of real numbers
in [0, DB] for which the function h is above L2,

• Z2 = {x ∈ [0, DB] : x < g(x) ≤ h(x) < x + DA − DB + ∆} is the remaining
open set.

Lemma 3. Let A and B be two non empty sets of real numbers satisfying inf(A) =
inf(B) = 0. If DB ≤ DA and ∆ = λ(A) + λ(B)−DA > 0, the family {Z1, Z2, Z3} form
a partition of [0, DB]. Furthermore, DA+Z1 ⊂ A+B, Z3 ⊂ A+B and [DB, DA], Z2, DA+
Z2 ⊂ A+B.

Remark 4. In particular, we have [0, DA] ⊂ (A+B)∪(A+B−DA) under the hypothesis
of the lemma.

Proof. By (11), (g(x) ≤ x ⇒ h(x) ≤ x+DA −DB < x+DA −DB +∆) thus
(h(x) ≥ x+DA −DB +∆ ⇒ g(x) > x) and Z1 and Z3 are disjoint subsets, which im-
plies that Z1, Z2 and Z3 are disjoint subsets. Now 0 ∈ Z1, DB ∈ Z3, so by continuity of
g and h, the family {Z1, Z2, Z3} form a partition of [0, DB].
By the previous implications and (10), if x ∈ Z1 ∪Z2, then x+DA ∈ A+B and by (9),
if x ∈ Z2 ∪ Z3, then x ∈ A+B. For x ∈ [DB, DA],

g(x) ≥ λ(B) + λ(A)− (DA − x) = x+∆ > x,

thus by (9) again, [DB, DA] ⊂ A+B. □
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Now, to switch from Z1 to Z3 or reciprocally, one has to cross Z2. We shall call
the crossings from Z1 to Z3 the ”up crossings” and the crossings from Z3 to Z1 the
”down crossings” (although the functions g and h remain nondecreasing functions). By
continuity, since 0 is in Z1, DB in Z3, there is at least one up crossing and if there are m
down crossings, then there are m+ 1 up crossings and up crossings and down crossings
alternate. Therefore, if m is the number of down crossings, we can partition [0, DA] as
a union of 4m+ 3 consecutive intervals and the interval (DB, DA] as follows:

(12) [0, DA] = I
(1)
0 ∪ I

(2)
0 ∪ I

(3)
0 ∪

m⋃
k=1

(
Jk ∪ I

(1)
k ∪ I

(2)
k ∪ I

(3)
k

)
∪ (DB, DA]

with I
(1)
k , I

(3)
k closed intervals such that Z1 ⊂

⋃m
k=0 I

(1)
k ⊂ Z1 ∪ Z2, Z3 ⊂

⋃m
k=0 I

(3)
k ⊂

Z3 ∪ Z2 and I
(2)
k , Jk open intervals such that

⋃m
k=0 I

(2)
k ∪

⋃m
k=1 Jk ⊂ Z2. The intervals

I
(2)
k correspond to up crossings whereas the intervals Jk correspond down crossings.
We illustrate this by the following picture. For simplicity, we chose DA = DB so that

g = h and only one down crossing (m = 1).

0 DA

m = 1
∆

g

I
(1)
0 I

(1)
1I

(2)
0 I

(2)
1

J1 I
(3)
1I

(3)
0

A+ ADA

2DADA

0
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According to Lemma 3, the set A+B contains the folowing union of 2m+1 intervals
m⋃
k=1

(
I
(2)
k−1 ∪ I

(3)
k−1 ∪ Jk

)
∪
(
I(2)m ∪ I(3)m ∪ (DB, DA] ∪ (DA + I

(1)
0 ) ∪ (DA + I

(2)
0 )

)
(13)

∪
m⋃
k=1

(
DA +

(
Jk ∪ I

(1)
k ∪ I

(2)
k

))
.

Here each set in brackets is a single interval as a union of consecutive intervals.

One of the key points in the proof of the continuous 3k−4 theorem consists in proving
that while we switch from Z1 to Z3 or from Z3 to Z1, there is a not too small interval
included in Z2 in the meanwhile. We make this precise in the following lemma.

Lemma 4. Let A and B be two non empty sets of real numbers satisfying inf(A) =
inf(B) = 0, DA ≥ DB and ∆ := λ(A) + λ(B) − DA > 0. Let x and y be two real
numbers in [0, DB] such that x ∈ Z1 and y ∈ Z3.

• If x < y then the interval (x, y) contains an open subinterval I which is in Z2

and has length at least ∆.
• If x > y then the interval (y, x) contains an open subinterval J which is in Z2

and satisfies λ(J ∩Bc) ≥ ∆+DA −DB.

Remark 5. This implies that the intervals
(
I
(2)
k−1 ∪ I

(3)
k−1 ∪ Jk

)
,
(
Jk ∪ I

(1)
k ∪ I

(2)
k

)
and(

I
(2)
m ∪ I

(3)
m ∪ (DB, DA] ∪ (DA + I

(1)
0 ) ∪ (DA + I

(2)
0 )

)
in (13) each have length at least

2∆ +DA −DB.

Proof. • Assume x < y. Define b1 = sup(Z1 ∩ [x, y)) and b2 = inf(Z3 ∩ (b1, y]). We
have x ≤ b1 < b2 ≤ y and I = (b1, b2) ⊂ Z2 since z ∈ (b1, b2) implies z ̸∈ Z1 and
z ̸∈ Z3.
By continuity of g and h, h(b2) = b2 + ∆ + DA − DB and g(b1) = b1. Since
g(b2) ≥ h(b2)− (DA −DB) and since g is a 2-Lipschitz function, we get

2(b2 − b1) ≥ g(b2)− g(b1) ≥ h(b2)− (DA −DB)− g(b1) = b2 +∆− b1,

thus λ(I) = b2 − b1 ≥ ∆.
• Assume y < x. Define b1 = supZ3 ∩ [y, x) and b2 = inf Z1 ∩ (b1, y]. As in the
previous case, we have J = (b1, b2) ⊂ Z2, g(b2) = b2 and h(b1) = b1+∆+DA−DB.
By definition of h and g, this yields

gA(b1 +DA −DB)− gA(b2) + gB(b1)− gB(b2) = b1 − b2 + (DA −DB) + ∆.

In case b2 ≤ b1 + DA − DB, since b2 > b1, gB is a non decreasing function and
∆ > 0, this would lead to

λ([b2, b1 +DA −DB] ∩ A) > λ([b2, b1 +DA −DB]),

a contradiction. Thus we must have b2 > b1 +DA −DB.
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g
h

(b2, b2)

b2

(b1, b1 +∆+DA −DB)

b1 b1 +DA −DB

∆

DA −DB

Since b2 > b1 +DA −DB, we have

gB(b2)− gB(b1) ≤ gA(b2)− gA(b1 +DA −DB) + gB(b2)− gB(b1)

≤ b2 − b1 − (DA −DB)−∆

which yields λ(J ∩Bc) = (b2 − b1)− (gB(b2)− gB(b1)) ≥ ∆+DA −DB.
□

4. Proof of the continuous Freiman 3k − 4 theorem

We can now prove Theorem 1. As before, we can assume that A and B are closed
bounded subsets of R such that min(A) = min(B) = 0.

We first prove that each hypothesis yields the first two points. This is a consequence of
Ruzsa’s lower bound and our remark 3. The proof of the third item is more demanding
and will require the use of the switches method introduced in the previous section.

• Let us assume that we have hypothesis (i) and that λ(A) ≤ λ(B), say. Then by
Remark 3, λ(A+B) < 2λ(A) + λ(B) implies diam(B) ≤ λ(A+B)− λ(A).
On the other hand

λ(B)

λ(A)
=

K ′(K ′ − 1)

2
+K ′δ′

withK ′ ≥ 2 and 0 ≤ δ′ < 1 thus λ(A+B) < 2λ(A)+λ(B) ≤ λ(B)+(K ′+δ′)λ(A)
and Theorem 6 with (B,A) instead of (A,B) yields diam(A) ≤ λ(A+B)−λ(B).
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• If diam(B) ≤ diam(A), then by (8) with (B,A) in place of (A,B), hypothesis
(ii) gives diam(A) ≤ λ(A+B)− λ(B).
If λ(A) ≤ λ(B) then diam(B) ≤ diam(A) ≤ λ(A+B)−λ(B) ≤ λ(A+B)−λ(A)
and we are done.
If λ(A) > λ(B) then we have λ(A + B) < λ(A) + λ(B) + min(λ(A), λ(B)) and
the first part of this proof gives the result.

We now turn to the end of the proof and prove that under one of the two hypotheses of
Theorem 1 there exists an interval I of length at least λ(A) + λ(B) included in A+B.
We assume without loss of generality that DA ≥ DB.
Hypothesis (i) yields λ(A+B) < λ(A) + λ(B) + min(λ(A), λ(B)) ≤ λ(A) + 2λ(B) and
hypothesis (ii) yields λ(A+B) < λ(A) + 2λ(B), so in any case we assume λ(A+B) <
λ(A) + 2λ(B). The part of the theorem already proven imply that DA ≤ λ(A + B) −
λ(B) < λ(A) + λ(B). We write ∆ = λ(A) + λ(B)−DA. By hypothesis ∆ > 0.
Reasoning modulo DA as Ruzsa does in [Ruz91], we write

λ(A+B) = µA(A+B) + µA ({x ∈ [0, DB] : x, x+DA ∈ A+B}) ,

where µA denotes the inner Haar mesure modulo DA. Since 0, DA ∈ A, we have

B ⊂ {x ∈ [0, DB] : x, x+DA ∈ A+B} .

Therefore

(14) λ(A+B) ≥ µA(A+B) + µA ({x ∈ [0, DB] ∩Bc : x, x+DA ∈ A+B}) + µA(B).

As in the previous section, we define the functions gA, gB, g and h and partition [0, DA]
into three regions Z1, Z2 and Z3. In the following picture, we draw two functions gA
and gB, the corresponding functions g and h and the corresponding regions Z1, Z2 and
Z3. The main part of the proof will consist in showing that with our hypothesis this
drawing covers the possible configurations of the curves. More precisely, we shall prove
that there is no down crossing, thus only one up crossing.
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0 DADB

∆

DA −DB

gA(x)

gB(x)

b1

g(x)

b2

h(x)

Z1 Z3Z2

0 DA

DA +DBDA

Since [0, DB] = Z1 ∪ Z2 ∪ Z3, (DB, DA] ⊂ A + B and Zi ⊂ A + B mod DA for
i = 1, 2, 3 (which we proved in Lemma 3), we have µA(A + B) = DA and Z2 ⊂
{x ∈ [0, DB] : x, x+DA ∈ A+B}.
With (14) this yields

λ(A+B) ≥ DA + λ(B) + λ(Z2 ∩Bc) = λ(A) + 2λ(B) + λ(Z2 ∩Bc)−∆.(15)

If there exist x, y ∈ [0, DB] such that y < x, x ∈ Z1, y ∈ Z3, by Lemma 4 and (15), we
get λ(A+B) ≥ λ(A) + 2λ(B) +DA −DB which contradicts the hypothesis. Therefore
there is no down crossing (i.e. for x, y ∈ [0, DB], x ∈ Z1 and y ∈ Z3 imply x < y).
Since 0 ∈ Z1 and DB ∈ Z3, there is a unique up crossing. We apply the first part of

Lemma 4 and get an interval I2 = (b1, b2) ⊂ Z2 of length at least ∆ such that g(b1) = b1,
h(b2) = b2 +∆+DA −DB. We write I1 = [0, b1] and I3 = [b2, DA].

Then I = (b1, DA+b2) is a subinterval of A+B of size at least DA+∆ = λ(A)+λ(B).
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5. Some observation on sets with large density

Our graphic interpretation for large sets of real numbers with small sumset gives rise
to further comments, especially Theorem 2.

For this section, let A and B be some bounded closed subsets of real numbers such
that minA = minB = 0, DB ≤ DA and ∆ := λ(A) + λ(B) − DA > 0. We define the
functions g and h as in section 3.

Proof of Theorem 2. As explained in section 3, we can partition [0, DB]×[0, λ(A)+λ(B)]
into three regions Z1, Z2 and Z3. Let m be the number of down crossings from Z3 to
Z1. In Lemma 4, we proved that for each down crossing, we gain a subset of Bc ∩Z2 of
measure at least ∆ +DA −DB. By use of (15), it yields

λ(A+B) ≥ λ(B) +DA + λ(Bc ∩ Z2) ≥ λ(B) +DA +m(∆ +DA −DB).

Furthermore, [0, DA] can be writen as a union of 4m+4 consecutive intervals as in (12)
and by (13) the set A+ B contains a union of 2m+ 1 intervals, each of length at least
2∆+DA −DB by Remark 5. Furthermore the sum of the length of these intervals is at
least

DA+
n∑

k=0

λ(I
(2)
k )+

n∑
k=1

λ(Jk) ≥ DA+(n+1)∆+n(∆+DA−DB) ≥ DA+(2n+1)∆+n(DA−DB).

Here we used that [0, DA] mod DA is covered by these intervals and that each I
(2)
k and

Jk appear twice in the sum A+B modulo DA. This yields the result. □

Note that even in the case m = 0, this theorem gives a new information. In case
DB < DA, Theorem 1 needed λ(A + B) < λ(A) + 2λ(B) to conclude that A + B
contained an interval of size at least λ(A) + λ(B) whereas Theorem 2 only needs
λ(A+B) < λ(A)+2λ(B)+DA−DB and λ(A)+λ(B) > DA to get the same conclusion.

Some more elements on the structure of the sets A and B could be derived from the
graphic interpretation we gave. For simplicity A = B and λ(A) ≥ 1

2
DA. In this

case, we write λ(A) = 1
2
DA + δ. The hypothesis of Theorem 2 becomes λ(A + A) <

DA + λ(A) + 2(m + 1)δ. Since λ(A + A) ≤ 2DA this hypothesis is fulfilled as soon as
δ > 1

2
DA

2m+3
.

The set [0, DA] may be partitioned into the union of some disjoint intervals as follows

[0, DA] = I
(1)
0 ∪ I

(2)
0 ∪ I

(3)
0 ∪

n⋃
k=1

(
Jk ∪ I

(1)
k ∪ I

(2)
k ∪ I

(3)
k

)
,

On endpoints of I
(1)
k , thus on right endpoints of Jk and left endpoints of I

(2)
k , we have

g(x) = x whereas on endpoints of I
(3)
k , thus on left endpoints of Jk and right endpoints

of I
(2)
k , we have h(x) = g(x) = x+∆. Therefore A has density 1/2 of each interval I

(1)
k

and I
(3)
k , λ(A ∩ I

(2)
k ) = 1

2
λ(I

(2)
k ) + δ and λ(A ∩ Jk) =

1
2
λ(Jk)− δ. Furthermore, there is
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a connection in the structures of A and A+A. This connection is easier to explicate in
the special case of extremal sets. This shall be the purpose of the next section.

6. Small sumset and large densities: structure of the extremal sets

In [Fre09], Freiman exhibits a strong connection in the description of A and A + A
and reveals the structures of these sets of integers in case the size of A + A is as small
as it can be. In Theorem 3 we give a similar result in the continuous setting. Our result
also applies to sets A and B with A ̸= B. As far as we know, no discrete analogue of
this result can be found in the literature.

Proof of Theorem 3. We use the same notation as in the proof of Theorem 1 and we
assume that A and B are closed bounded subsets of R such that 0 = minA = minB,
DB ≤ DA and λ(A + B) = DB + λ(A) < λ(A) + 2λ(B). We proved already that
there exists I2 = (b,DB − c) with g(b) = b, h(DB − c) = DA − c + ∆, where ∆ :=
λ(A) + λ(B)−DA > 0 and (b,DA +DB − c) ⊂ (A+B).
Write A1 = A∩ [0, b], B1 = B∩ [0, b], S1 = (A+B)∩ [0, b] and A2 = (DA−A)∩ [0, c] (i.e
DA−A2 = A∩[DA−c,DA]), B2 = (DB−B)∩[0, c], S2 = ((DA +DB)− (A+B))∩[0, c].
Then A1 ⊂ S1 (since 0 ∈ B) and A2 ⊂ S2 (since DB ∈ B). Furthermore we have on the
one side

A+B = S1 ∪ (b,DA +DB − c) ∪ (DA +DB − S2)

and on the other side

λ(A+B) = DB + λ(A) = DB + λ(A1) + λ (A ∩ (b,DA − c)) + λ(A2).

Therefore we get A1 ⊂∼ S1, A2 ⊂∼ S2 and AI = A ∩ (b,DA − c) ⊂∼ (b,DA − c).
Since 0, DA ∈ A, this in particular implies, up to a set of measure 0, that B1 ⊂ A1 and
B2 ⊂ A2.

□

7. Small sets with small sumset: the extremal case.

We now characterise the sets A and B such that equality holds in (7), thus λ(A+B) =
λ(A) + (K + δ)λ(B) with K and δ defined in (6). In [Ruz91], Ruzsa gives an example
of such sets A and B. Theorem 5 states that his example is essentially the only kind of
sets for which this equality holds. Extremal sets will have the following shape (In this
example, K = 3 and DB = 1).

0 1 2

Set B

0 1 2

Set A
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Proof of Theorem 5. We assume without loss of generality that A and B are closed
sets of R+ such that 0 = minA = minB, DB = 1, λ(B) ̸= 0 and λ(A + B) =
λ(A) + (K + δ)λ(B) < 1 + λ(A) where K and δ are defined by (6).
Given two subsets C and D of T or R, we introduce the notation C ⊂∼ D when C ⊂ D
and µ(C) = µ(D) in case C,D ⊂ T, λ(C) = λ(D) in case C,D ⊂ R.
We need to prove that

B ⊂∼ [0, b+] ∪ [1− b−, 1] and A ⊂∼
K−1⋃
ℓ=0

[(ℓ− ℓb−, ℓ+ δb+ (K − 1− ℓ)b+],

with b = b+ + b−.
We use the notation introduced in the proof of Lemma 1. The proof will be divided into
three steps. We first prove that B, Ãk and S̃k are unions of at most m intervals in T,
then we prove that m = 1. Finaly, we determine the precise shape of A and B.

The first step consists in determining the shape of B, Ãk and S̃k for positive integers
k. To this aim, we shall follow Ruzsa’s arguments in [Ruz91] and use Kneser’s theorem
on critical sets in T [Kne56].
Following the argumentation of the proof of Lemma 1, the equality

λ(A+B) = λ(A) + (K + δ)λ(B) =
K + 1

K
λ(A) +

K + 1

2
λ(B) < λ(A) + 1

implies µ(S̃1) < 1, KA = K, and

(16)


µ(S̃k) = µ(Ãk−1) (2 ≤ k ≤ K + 1)

µ(S̃k) = µ(Ãk) + µ(B) (1 ≤ k ≤ K)

µ(S̃k) = 0 (k ≥ K + 2)

For 1 ≤ k ≤ K, we have Ãk +B ⊂ S̃k thus the second line in (16) implies that we have
equality in Raikov’s inequality, meaning µ(Ãk + B) = µ(Ãk) + µ(B) and by Kneser’s
theorem on critical sets in T [Kne56] there exists mk ∈ N, there exist two closed intervals
Ik and Jk of T such that mkÃk ⊂ Ik, mkB ⊂ Jk and µ(Ik) = µ(Ãk), µ(Jk) = µ(B).
Now mkB ⊂ Jk with µ(Jk) = µ(B) and mℓB ⊂ Jℓ with µ(Jℓ) = µ(B) implies mk = mℓ

and Jk = Jℓ. Let us write J = Jk and m = mk. We thus have for some m ∈ N,

(17)


mÃk ⊂∼ Ik, mB ⊂∼ J,

Ãk−1 ⊂∼ S̃k (2 ≤ k ≤ K + 1),

Ãk +B ⊂∼ S̃k (1 ≤ k ≤ K),

∅ ⊂∼ S̃k (k ≥ K + 2).

This implies Ik−1 = Ik + J for 2 ≤ k ≤ K thus Ik = IK + (K − k)J for 1 ≤ k ≤ K.
Since

λ(A) =
K∑
k=1

µ(Ãk) =
K∑
k=1

µ(Ik),
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we get, using µ(J) = µ(B) and the definition of K and δ, that

µ(IK) =
1

K
λ(A)− K − 1

2
λ(B) = δλ(B).

Now, we write b = λ(B). We proved that we have

mÃk ⊂∼ Ik = IK + (K − k)J, with µ(IK) = δb and µ(J) = b.

As a second step, we prove that m = 1.
Write J = J+ ∪ J− with J− a closed interval in (−1, 0] and J+ a closed interval in [0, 1)
and b+ = λ(J+), b− = λ(J−).
Assume for contradiction that m ≥ 2. Then, since 0 ∈ B,

B =
m⋃
ℓ=0

Bℓ with B0 =
J+
m

, Bm = 1 +
J−
m

, and Bℓ =
ℓ+ J

m
if 1 ≤ ℓ ≤ m− 1.

In particular λ(Bℓ) =
b
m

for 1 ≤ ℓ ≤ m− 1 and
∑m

ℓ=0 λ(Bℓ) = b. Similarly,

A =
L⋃

ℓ=0

Aℓ with Aℓ = A ∩ ℓ+ I1
m

and L = max{ℓ : Aℓ ̸= ∅}

and

A+B =
L+m⋃
ℓ=0

Sℓ with Sℓ = (A+B) ∩ ℓ+ I1 + J

m
.

We write L = {ℓ ≥ 0 : Aℓ ̸= ∅}. We have on the one hand, for i ∈ L, Ai + Bj ⊂ Si+j,
thus

λ(A) + (K + δ)b = λ(A+B) =
L+m∑
ℓ=0

λ(Sℓ)

= λ(S0) +
L∑

ℓ=0

λ(Sℓ+1) +
m∑
ℓ=2

λ(SL+ℓ)

≥ λ(A0) + λ(B0) +
∑
ℓ∈L

(λ(Aℓ) + λ(B1)) +
m∑
ℓ=2

(λ(AL) + λ(Bℓ))

≥ λ(A) + λ(A0) + (m− 1)λ(AL) + b− b

m
+

b

m
#{ℓ : Aℓ ̸= ∅}(*)

≥ λ(A) + b− b

m
+

b

m
#L,

therefore #L ≤ (K + δ − 1)m+ 1 < Km+ 1.
On the other hand #L =

∑m−1
ℓ=0 #{k : Aℓ+km ̸= ∅}. Since mÃK ⊂∼ IK , for each

ℓ ∈ {0, · · · ,m− 1}, #{k : Aℓ+km ̸= ∅} ≥ K. This yields #L = Km. Since mÃK ⊂∼ IK ,

this implies that for any ℓ ∈ L, up to a set of measure 0, we have 1
m
(ℓ+ IK) ⊂ Aℓ which
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yields λ(Aℓ) ≥ 1
m
λ(IK). Since 0, L ∈ L, this gives λ(A0) + (m− 1)λ(AL) ≥ λ(IK) = δb.

With (∗), we obtain

(K + δ)b ≥ δb+ b− b

m
+

b

m
#L = δb+ b− b

m
+Kb.

Therefore we must have m = 1 and B = J+ ∪ (1 + J−).

We now prove that Aℓ = A ∩ (ℓ+ I1) satisfies Aℓ ⊂∼ [ℓ− ℓb−, ℓ+ δb+ (K − 1− ℓ)b+].
We have for 0 ≤ ℓ ≤ L, Aℓ + B0 ⊂ Sℓ and for 1 ≤ ℓ ≤ L + 1, Aℓ−1 + B1 ⊂ Sℓ, thus for
any ℓ ∈ {0, · · · , L+ 1},

λ(Sℓ) ≥
L+ 1− ℓ

L+ 1
(λ(Aℓ) + b+) +

ℓ

L+ 1
(λ(Aℓ−1) + b−).

Therefore

λ(A+B) =
L+1∑
ℓ=0

λ(Sℓ)

≥
L+1∑
ℓ=0

(
L+ 1− ℓ

L+ 1
(λ(Aℓ) + b+) +

ℓ

L+ 1
(λ(Aℓ−1) + b−)

)

≥
L∑

ℓ=0

(
L+ 1− ℓ

L+ 1
(λ(Aℓ) + b+)

)
+

L∑
ℓ=0

(
ℓ+ 1

L+ 1
(λ(Aℓ) + b−)

)

≥
L∑

ℓ=0

L+ 2

L+ 1
λ(Aℓ) + b

L+ 2

2

≥ L+ 2

L+ 1
λ(A) +

L+ 2

2
b.

Writing f(k) = k+1
k
λ(A) + k+1

2
b as in the proof of Theorem 6 we get f(K) ≥ f(L+ 1).

As noticed before, f is increasing for k ≥ K thus, L being at least K − 1, we must have
L = K − 1 and the above inequalities are indeed equalities. In particular we must have
λ(Aℓ) + b+ = λ(Sℓ) for 0 ≤ ℓ ≤ K − 1, and λ(Aℓ−1) + b− = λ(Sℓ) for 1 ≤ ℓ ≤ L + 1.
Since we had for 0 ≤ ℓ ≤ L, Aℓ + B0 ⊂ Sℓ and for 1 ≤ ℓ ≤ L+ 1, Aℓ−1 + B1 ⊂ Sℓ, this
implies that for any ℓ, Aℓ has full measure in an interval. Furthermore Aℓ+1+B0 ⊂∼ Sℓ+1

and Aℓ +B1 ⊂∼ Sℓ+1, thus Aℓ+1 + J+ = 1 + Aℓ + J−.
Writing A0 ⊂∼ [0, a], we get Aℓ ⊂∼ [ℓ− ℓb−, ℓ+ a− ℓb+].

To compute a, we write λ(A) in two different forms. On the one side λ(A) =
∑K−1

ℓ=0 λ(Aℓ) =
Ka + 1

2
(K − 1)K(b− − b+) and on the other side λ(A) = 1

2
(K − 1)Kb + Kδb, thus

a = (K − 1)b+ + δb. This concludes the third step and the theorem. □
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