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Training and Generalization Errors for Underparameterized Neural
Networks

Daniel Martin Xavier1, Ludovic Chamoin1, Laurent Fribourg2

Abstract— It has been theoretically explained, through the
notion of Neural Tangent Kernel, why the training error of
overparameterized networks converges linearly to 0. In this
work, we focus on the case of small (or underparameterized)
networks. An advantage of small networks is that they are faster
to train while retaining sufficient precision to perform useful
tasks in many applications. Our main theoretical contribution
is to prove that the training error of small networks converges
linearly to a (non-null) constant, of which we give a precise
estimate. We verify this result on a neural network of 10
neurons simulating a Model Predictive Controller. We also
observe that an upper bound of the generalization error follows
a double-peak curve as the number of training data increases.

I. INTRODUCTION

Recently, the notion of Neural Tangent Kernel (NTK)
matrix was introduced [1], and has provided an elegant
explanation of the linear convergence of the training error
towards 0 on overparameterized NNs (see [2], [3]). In this
type of network, the number m of parameters is much larger
than the number n of data (m ≫ n). The explanation of
the convergence lies in the fact that, during the Gradient
Descent (GD) procedure, the n× n NTK matrix stays close
to its infinite limit, with all eigenvalues positive.

In this context, Jerray et al. [4] proposed some general as-
sumptions ({C1, C2, C3}) for the convergence of the training
error to 0 without reference to the number of parameters m
or data n. In particular, Assumption C2 corresponds to the
property of positive-definiteness of the NTK matrix, which
is satisfied in the case of overparameterized networks.

In the present work, we relax Assumption C2 as As-
sumption C2’ which states that the NTK matrix is positive
semi-definite (and not positive definite): the nullspace N is
no longer reduced to 0, but is a space of dimension larger
than 1. Under Assumption C2, Jerray et al. [4] proved that
the training error ∥v(t)∥ converges to 0 (see Theorem 2).
In most cases, however, underparameterized NN do not
satisfy Assumption C2 but satisfy C2’. Under the weaker
Assumption C2’, Theorem 2 does not hold anymore, and we
prove in this work that the limit superior of ∥v(t)∥ is upper
bounded by a positive constant b (see Theorem 3).
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More precisely, the training error v(t) is now projected as
v2(t) onto V2(t) := N (t) and as v1(t) onto the orthogonal
space V1(t) := N⊥(t). We will show that the training error
converges linearly to a positive constant b = ∥v2(t0)∥ which
corresponds to the projection of the error ∥v(t0)∥ where t0
is a short time of stabilization of the error after initialization.

Contribution

We show that for underparameterized NNs:
1) The training error converges to a constant b =

∥v2(t0)∥ (see Theorem 3).
2) This theoretical result is illustrated by Example 1,

which shows that an underparameterized network accu-
rately simulates a Model Predictive Controller (MPC).

3) We also observe on Example 2 that an upper bound
of the generalization error (built upon some results of
[5]) follows a double-peak curve as n increases, in line
with with recent works on the shape of learning curves
(see [6], Fig. 1 (middle) and [7], Section 6.2).

Comparison with related work

The present work extends the analysis of Jerray et al. [4]
by considering the more general case where the NTK ma-
trix is positive semi-definite (Assumption C2’) instead of
positive-definite (Assumption C2). As mentioned above, we
propose a decomposition of the space of NTK eigenvectors
into two orthogonal spaces: the nullspace V2(t) := N (t) and
the space V1(t) := N⊥(t) of eigenvectors associated with
positive eigenvalues.

In the context of overparameterized NNs, the works [5],
[8], [9] perform a similar decomposition, but the eigenvalues
associated to the NTK matrix are always positive. Their
decomposition is made between a space associated with
high-value positive eigenvalues, and another space associated
with low-value positive eigenvalues. Both ranges of values
are separated by a “cutoff” value (a notion which is not
necessary in our work). In these works, the training error
converges to 0 (and not to a positive value equal to ∥v2(t0)∥
as in our work).

Furthermore, the theory of Rademacher complexity has
been used in connection with rules of early stopping in the
context of “kernel boosting” algorithms in [10], and in the
context of overparameterized NNs in [11], [12], [13]. The
results of these works are adapted here in the context of
underparameterized NNs.

Few studies are dedicated to the analysis of underparame-
terized NNs: Wang et al. [14] used the notion of “activation
patterns” to show that a loss of exponential type converges to



0 when the data is “well-separated”. Besides, Bowman et al.
[15] showed that the NN learns eigenfunctions of an integral
operator determined by the NTK at rates corresponding to
the eigenvalues (“spectral bias”).

II. PRELIMINARIES

A. Notation

In this paper, we denote by R and N the set of real and
natural numbers, respectively. These symbols are annotated
with subscripts to restrict them in the usual way, e.g., R>0

denotes the positive real numbers. We also denote by Rn

an n-dimensional Euclidean space, and by Rn×m a space of
real matrices with n rows and m columns.

We use bold letters for vectors and bold capital letters
for matrices. Given a matrix A, let Ai,j be its (i, j)-th
entry, λmin(A) its minimal eigenvalue, and A⊤ its transpose.
The Euclidean norm is denoted by ∥ · ∥, the Frobenius
norm by ∥ · ∥F , and the inner product by ⟨·, ·⟩. Let In

be the n × n identity matrix, and σ(·) the ReLU function
σ(z) = max{z, 0}.

We denote by I{E} the indicator function for an event
E, by B ⊎ C the disjoint union of sets B and C, and by
V1 ⊕ V2 the direct sum of vector spaces V1 and V2. We
also use the abbreviation i.i.d. to indicate that a collection of
random variables is independent and identically distributed.
Finally, the time-discrete version of a time-continuous object
ξ is denoted as ξ̃.

B. One-hidden Layer Neural Networks

We consider a one-hidden layer neural network with m
neurons in the hidden layer and a ReLU activation function:

f(W ,a,x) =
1√
m

m∑
r=1

arσ(w
⊤
r x), (1)

where x ∈ Rd is the input, w1, . . . ,wm ∈ Rd are the
weight vectors of the first layer, a1, . . . , am ∈ R are the
weights of the second layer. For simplicity, we denote W =
(w1, . . . ,wm) ∈ Rd×m and a = (a1, . . . , am)⊤ ∈ Rm.

In this work, we focus on the empirical risk mini-
mization problem using a training dataset with n samples
S = {(xi, yi)}ni=1 drawn i.i.d. from an underlying data
distribution D over Rd × R. The NN is trained using a
gradient descent (GD) algorithm on the following training
loss function:

L(W ,a) =
1

2

n∑
i=1

(yi − f(W ,a,x))2. (2)

The parameters of the first layer are randomly initialized
using wr(0) ∼ N (0, I), while the parameters of the second
layer are uniformly sorted using ar ∼ unif({−1, 1}),∀r ∈
[m]. Similarly to other works on NTK [5], [2], we fix the
parameters of the second layer of the NN and we only apply
the GD algorithm over the weights of the first layer.

As the ReLU activation function used in the hidden layer
is not continuously differentiable at 0, we should a priori
consider the subgradient of σ(0) which can take any value

in [0, 1]. However, Theorems 1 and 2 of [16] assert formally
that the choice of σ′(0) = s with s arbitrarily chosen in
[0, 1] “does not affect” neither neural network training nor
backpropagation. This justifies the use of σ′(0) = 0, as in
PyTorch [17].

The gradient formula is then given by:

∂L(W ,a)

∂wr
=

ar√
m

n∑
i=1

(yi − f(W ,a,x))I{w⊤
r xi ≥ 0}xi.

(3)
The update rule is:

W̃ k+1 = W̃ k − η
∂L(W̃ k,a)

∂W
, (4)

where η is the learning rate and W̃ 0 = W (0). This update
rule corresponds to the Euler discretization of the set of
ordinary differential equations defined by:

dW (t)

dt
= −∂L(W (t),a)

∂W
. (5)

C. Gradient Descent for Neural Networks

According to Du et al. [2], the convergence of the GD
algorithm to a globally optimal solution comes down to
showing the convergence of the error (i.e. difference between
the prediction of the NN and the ground truth) to zero.
Their proof is based on the analysis of the error dynamics
v : R≥0 → Rn defined by:

v(t) = p(t)− y, (6)

where p(t) = (p1(t), . . . , pn(t))
⊤ ∈ Rn is a vector with all

n predictions pi(t) = f(W (t),a,xi) at time t, and y =
(y1, . . . , yn)

⊤ ∈ Rn.
As demonstrated in the proof of Theorem 3.2 by Du et al.

[2], the continuous dynamics of the error v can be written
in a compact way:

d

dt
v(t) = −H[W (t)]v(t), v(0) = v0, (7)

where H[W (t)] : R≥0 → Rn×n is the Gram matrix from a
kernel associated with the ReLU function, being symmetric
positive semi-definite as follows:

Hij [W (t)] =

〈
∂f(W (t),a,xi)

∂W
,
∂f(W (t),a,xj)

∂W

〉
=

1

m
x⊤
i xj

m∑
r=1

I{x⊤
i wr(t) ≥ 0,x⊤

j wr(t) ≥ 0}.

The discrete version resulting from the Euler discretization
of (7) reads:

ṽk+1 − ṽk = −ηH[W̃ k]ṽk, (8)

where η is the step size, and ṽ(0) = ṽ0.
We are now ready to formalize the problem:
Problem 1: Given the discrete time system in (8), provide

conditions on the matrix H[W (t)] : R≥0 → Rn×n, the
training loss function L : Rd×m → R≥0, and the step size



η to ensure the convergence of the training error ṽk to zero,
together with an explicit bound on its convergence rate.

Let us recall the assumptions provided by Jerray et al. [4]
to derive a solution for Problem 1:

Assumption C1: The GD algorithm for the update of the
weights of the neural network in (4) converges to a local
minimum W ∗, i.e. ∂L(W̃ k,a)

∂W converges to 0 as k goes to
infinity.

Assumption C2: There exist λ∗ > 0 and t0 ≥ 0 such that,
for all t ≥ t0: λmin(H[W (t)]) ≥ λ∗, where the time-varying
matrix H[W (t)] is given in (7).

Assumption C3: The loss function L is locally strongly
convex around every local minimizer W ∗ of L, thus for
every local minimizer W ∗, there is a neighborhood around
W ∗ on which L is strongly convex.

As mentioned in Jerray et al. [4], Assumption C1 is
satisfied when the gradient descent algorithm reaches a local
minimum. This condition is satisfied almost surely with a
random initialization of the algorithm [18], when the step
size η is chosen such that η < 1

L where L is the Lipschitz
constant of the loss function L.

Furthermore, Assumption C3 is satisfied when the loss
function L is strongly convex in the neighborhood of each
minimizer. This condition can be always verified by ini-
tializing the parameters so that they fall into the basin of
the local strong convexity region. In the case of the ReLU
activation function, Zhong et al. [19] demonstrated that it
satisfies certain mathematical properties, leading to local
strong convexity (see Properties 3.1, 3.2, 3.3, Section 3).

Jerray et al. [4] then used Assumptions C1 and C3 to
derive:

Theorem 1: (Theorem 1 of [4]) Under assumptions C1
and C3, if the step size η satisfies η < 2

L , where L is the
Lipschitz constant of the loss function L, then the sequence
∥W̃ k − W (kη)∥, k ∈ N, converges to 0, where W̃ k is
defined by (4) and W (kη) = [w1(kη), . . . ,wm(kη)] with
W (t) defined by (5).

Since ∥W̃ k−W (kη)∥ converges to 0 according to Theo-
rem 1, it follows by continuity that for all i ∈ {0, . . . , n−1}:

lim
k→∞

∥λ̃i(kη)− λi(kη)∥ = 0, (9)

where λ̃i (resp. λi) is the i-th eigenvalue of H[W̃ k] (resp.
H[W (t)]).

On the other hand, the authors used Assumption C2 to
derive the following statement:

Theorem 2: (Theorem 2 of [4]) Under assumptions C1,
C2 and C3, if the step size η satisfies η < 2

L , where L is the
Lipschitz constant of the training loss function L, then there
exists k0 ∈ N such that, for all k ≥ k0:

∥ṽk∥ ≤ (1− 1

2
λ∗η)k−k0∥ṽk0∥.

Assumption C2 only holds in the case of overparameter-
ized NNs, in which all eigenvalues of the NTK are larger
than some λ∗ > 0 (see [4]). The present work considers the
more general case where the eigenvalues λi(t) of H[W (t)]
are divided into: one part always larger than λ∗, and another
part always equal to zero (corresponding to the nullspace N ).

III. TRAINING ERROR

In underparameterized networks, Assumption C2 does not
hold and, without loss of generality, we suppose that the
space V(t) of eigenvectors of H[W (t)] decomposes as
V1(t) ⊕ V2(t), where V1(t) (resp. V2(t)) is the cluster of
eigenvectors associated to eigenvalues λ(t) greater than 0
(resp. equal to 0). Formally, we replace C2 by:

Assumption C2’: There exist λ∗ ∈ R>0, I1 =
{0, . . . , n1 − 1} and I2 = {n1, . . . , n1 + n2 − 1} with
n1 + n2 = n such that the eigenvalues can be divided into:

• λi(t) ≥ λ∗ for all i ∈ I1, t ≥ 0,
• λi(t) = 0 for all i ∈ I2, t ≥ 0.

where {λi(t)}i∈I1⊎I2 is the eigenvalues set of the NTK ma-
trix H[W (t)], and I1 (resp. I2) the index set of eigenvectors
spanning V1(t) (resp. V2(t)).

If we assume C2’ instead of C2 , the result of Theorem 2
becomes:

Theorem 3: Under assumptions C1, C2’ and C3, there
exists α ∈ (0, λ∗) such that, if the step size η satisfies η < 2

L
and η < 1

α , where L is the Lipschitz constant of the loss
function L, then there exists k0 such that for all k ≥ k0:

∥ṽk∥ ≤
√
(1− αη)2(k−k0)∥ṽ1

k0
∥2 + ∥ṽ2

k0
∥2, (10)

where ṽi
k (i = 1, 2) is the projection of the vector ṽk on the

span Ṽi
k of the ni eigenvectors of H[W̃ k]. It follows that

lim supk→∞ ∥ṽk∥ ≤ b := ∥ṽ2
k0
∥.

Proof: By Theorem 1, which relies on C1 and C3, but
not C2, we know that for η < 2

L , ∥W̃ k−W (kη)∥ converges
to 0 as k → ∞. Let λ̃i(kη) (i ∈ {0, . . . , n− 1}) denote the
eigenvalues of the matrix H[W̃ k]. Recall that C2’ specifies
that the eigenvalues λi(t) of H[W (t)] with i ∈ I1 are in
[λ∗,∞), and those with i ∈ I2 are null. It follows from (9),
that there exists α ∈ (0, λ∗) such that:

lim
k→∞

λ̃i(kη) > α for all i ∈ I1, (11)

lim
k→∞

λ̃i(kη) = 0 for all i ∈ I2. (12)

So there exists k0 such that for all k ≥ k0:

λ̃i(kη) ≥ α for all i ∈ I1, (13)

λ̃i(kη) < α for all i ∈ I2. (14)

It follows that for all k ≥ k0, Ṽ1
k and Ṽ2

k are orthogonal
(since each eigenvalue λ̃i(kη) with i ∈ I1 is different
from each eigenvalue λ̃j(kη) with j ∈ I2). The discretized
dynamics of the error in (8) then writes:

ṽk+1 = (In − ηH[W̃ k])ṽk. (15)

We also know that the NTK matrix H[W̃ k] can be
decomposed as:

H[W̃ k] = P kDkP
⊤
k , (16)

where P k is the transition matrix whose columns are the
eigenvectors of H[W̃ k], and Dk is the diagonal eigenvalue



matrix with first n1 elements in [α,∞), and last n2 elements
in [0, α). From (15), it follows:

ṽk+1 = P k(In − ηDk)P
⊤
k ṽk. (17)

The n×n matrix P k is made of an upper n1×n matrix P 1
k

and a lower n2×n matrix P 2
k. The rows of the matrix P 1

k are
the n1 eigenvectors of H[W̃ k] associated with eigenvalues
in [α,∞), and those of P 2

k are the n2 other eigenvectors.
Hence, for a vector v, P i

k

⊤
v (i = 1, 2) corresponds to the

projection ṽi
k of v on the span Ṽi

k of the ni eigenvectors of
H[W̃ k]. Equation (17) thus decomposes as:

ṽ1
k+1 = P 1

k(In1
− ηD1

k)P
1
k

⊤
ṽ1
k, (18)

ṽ2
k+1 = P 2

k(In2
− ηD2

k)P
2
k

⊤
ṽ2
k, (19)

where D1
k is the n1 ×n1 top left submatrix of Dk, and D2

k

the n2 ×n2 bottom right submatrix. For k ≥ k0 and η < 1
α ,

equations (18) and (19) lead to:

∥ṽ1
k+1∥ ≤ ∥In1

− ηD1
k∥∥ṽ1

k∥ ≤ (1− αη)∥ṽ1
k∥, (20)

∥ṽ2
k+1∥ ≤ ∥In2

− ηD2
k∥∥ṽ2

k∥ ≤ ∥ṽ2
k∥. (21)

It follows from (20) and (21) that there exists k0 such that
for all k ≥ k0 and η < 1

α :

∥ṽ1
k∥ ≤ (1− αη)k−k0∥ṽ1

k0
∥,

∥ṽ2
k∥ ≤ ∥ṽ2

k0
∥.

Finally, using the fact that Ṽ1
k and Ṽ2

k are orthogonal:

∥ṽk∥2 = ∥ṽ1
k∥2 + ∥ṽ2

k∥2,
≤ (1− αη)2(k−k0)∥ṽ1

k0
∥2 + ∥ṽ2

k0
∥2.

(22)

Remark 1: In practice k0 is small, which means that ∥ṽ2
k∥

is rapidly constant from t0 = k0η. The training error ∥ṽk∥
is thus asymptotically equal to b = ∥ṽ2

k0
∥. The constant b

depends on the initial value W (0) of the NN parameters.
When b = ∥ṽ2

k0
∥ is deemed too important, one can stop the

GD procedure early (at t = k0η) and reinitialize it. Note
that, apart from the choice of initial weight W (0), the GD
procedure considered here is deterministic.

Example 1: In order to verify that the training error con-
verges linearly to a non-zero constant on underparametrized
NNs, we consider a toy example using the Van der Pol
oscillator (see e.g. [20]). The system possesses 2 states
x = (x1, x2), a control action u, and a damping coefficient
µ = 1. The oscillator position is represented by x1, its
velocity by x2, and the state derivative by ẋ. The system
is defined by:{

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1 + u.

(23)

The goal is to design a NN that mimics the behavior of
an optimization problem in a MPC controller that steers the
system to a desired position xref

1 . We first collect data using
an implementation of the MPC controller, which is then used
to train a one-hidden layer neural network offline.

The MPC controller is synthesized using a time step of
Ts = 0.5s, a prediction horizon of N = 5, and an initial
condition x0 = (1, 0) using [21]. The command applied to
the oscillator is constrained to the interval u ∈ [−1, 1], and
the cost function associated to the optimization is written as:

J(x, u) =

N−1∑
i=0

∥xref
1 (k + i)− x1(k + i)∥+γ∥∆u(k + i)∥

s.t. ulb ≤ u(k + i) ≤ uub, ∀i ∈ [0, ..., N − 1]

where ulb and uub are the lower and upper bounds for the
command, respectively, ∆u(k) = u(k) − u(k − 1) is the
change on the command, and γ = 0.1 is a weighting coeffi-
cient. The error with respect to the reference is represented
by ϵ(k) = xref

1 (k) − x1(k), where k is the current step
time. The MPC simulation is conducted offline through the
definition of different setpoints that are randomly generated
in [−1, 1].

The NN used to simulate the MPC is a one-step-ahead
predictive controller depicted in Fig. 1. It has d = 3 entries
in the input layer (x1(k), x2(k), x

ref
1 (k)), 10 neurons in the

hidden layer, and one output (u(k)) in the last layer. It was
implemented using PyTorch [17] with a ReLU activation
function in the hidden layer.

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹

Fig. 1. Architecture of the NN used to simulate the MPC controller of
Example 1.

The GD algorithm is performed over a single batch of n =
15 data. The training phase is conducted over 2 · 105 epochs
with a learning rate1 of η = 10−2. Under this configuration,
the 15 × 15 NTK matrix H[W̃ k] describes the dynamics
of the error ∥ṽk∥ at each iteration k. Figure 2 depicts the
log-scale evolution of the subset of eigenvalues λ̃i with i ∈
I1 = {0, . . . , 8} which are larger than α = 10−4. The other
eigenvalues λ̃i with i ∈ I2 = {9, . . . , 14} are inferior to
α = 10−4 and correspond to the eigenvectors spanning N .

Furthermore, the experimental proof is illustrated in Fig. 3,
which depicts the log-scale evolution of the error ∥ṽk∥
(blue), and projections ∥ṽ1

k∥ (orange) and ∥ṽ2
k∥ (green).

The error ∥ṽ1
k∥ converges linearly to 0, and we have:

1Note that according to Theorem 3, η < 2/L and η < 1/α. In practice,
the step size η is determined by decreasing it sufficiently since α separates
the positive eigenvalues from the zero eigenvalues in the continuous setting.



Fig. 2. Evolution of the 9 positive eigenvalues (λ̃0, . . . , λ̃8) of the NTK
matrix H[W̃ k] (the 6 other eigenvalues are inferior to α = 10−4 and are
not shown in the figure).

lim supk→∞ ∥ṽk∥ ≤ b := ∥ṽ2
k0
∥ = 0.0584 for k0 = 17, 000.

The red curve corresponds to the right-hand side of (10), and
is above ∥ṽk∥ (blue) as stated by Theorem 3.

Fig. 3. Log-scale evolution of the training error ∥ṽk∥ (blue), which is
decomposed in ∥ṽ1

k∥ (orange) and ∥ṽ2
k∥ (green). The red curve corresponds

to the right-hand side of (10), and is above ∥ṽk∥ (blue) as stated by
Theorem 3.

IV. GENERALIZATION ERROR

In this section, we give an upper bound Γ for the gen-
eralization error (see Proposition 1) which follows from
results of Arora et al. [5]. Let ℓ(·, ·) be an elementary loss
function defined over R × R. The population loss LD over
data distribution D and the empirical loss LS over n samples
S = {(xi, yi)}ni=1 drawn i.i.d. from D are defined as follows:

LD(f) = E(x,y)∼D[ℓ(f(x), y], (24)

LS(f) =
1

n

n∑
i=1

ℓ(f(xi), yi). (25)

The generalization error refers to LD(f) − LS(f) for
the learned function f given sample S. Given a class F
of functions, the notion of Rademacher complexity (denoted
RS(F)) has been used in [22] to derive an upper bound for
the generalization error:

Theorem 4: (Theorem 11.3 of [22]) Suppose the loss
function ℓ(·, ·) is bounded in [0, c] and is ρ-Lipschitz in
the first argument. Then with probability at least 1− δ over
sample S of size n:

sup
f∈F

{LD(f)− LS(f)} ≤ 2ρRS(F) + 3c

√
log(2/δ)

2n
,

where the Rademacher complexity is defined as:

RS(F) :=
1

n
Eε∈{±1}n

[
sup
f∈F

n∑
i=1

εif(xi)

]
. (26)

Besides, Arora et al. [5] proved the following:
Theorem 5: (Lemma 5.4 of [5]) Given R > 0, with

probability at least 1 − δ over the random initialization
(W (0),a), simultaneously for every B > 0, the following
function class:

FW (0),a
R,B = {f(W ,a) : ∥wr −wr(0)∥ ≤ R (∀r ∈ [m]),

∥W −W (0)∥F ≤ B} (27)

has empirical Rademacher complexity:

RS(FW (0),a
R,B ) :=

1

n
Eε∈{±1}n

 sup
f∈FW(0),a

R,B

n∑
i=1

εif(xi)


bounded as:

RS(FW (0),a
R,B ) ≤ B√

2n

(
1 +

(
2 log 2

δ

m

)1/4
)

+ 2R2
√
m+R

√
2 log

2

δ
.

It follows from Theorem 4 and Theorem 5:
Proposition 1: Consider the function loss ℓ(·, ·) defined

by ℓ(z, y) := (z − y)2 for all z, y ∈ R, and suppose ℓ(·, ·)
is bounded in [0, c] and is ρ-Lipschitz in its first argument.
Then with probability at least 1− δ over sample S:

sup
f∈FW (0),a

R,B

{LD(f)− LS(f)} ≤ Γ

with

Γ = 2ρR

(
2R

√
m+

√
2 log

2

δ

)

+
1√
2n

(
2ρB

[
1 +

(
2 log 2

δ

m

)1/4
]
+ 3c

√
log(2/δ)

)
.

Given a test set Stest = {(xtest
i , ytesti )}ntest

i=1 of the NN, the
test error, i.e. the mean squared error associated to Stest, is
defined by:

Ltest =
1

ntest

ntest∑
i=1

(fW ∗,a(x
test
i )− ytesti )2, (28)

where fW ∗,a is the learned function from the GD algorithm
on the training set S. Knowing that Ltest ≤ LD, we can use
Proposition 1 to write:

Ltest ≤ Σ, (29)

where Σ := Γ + LS .
Example 2: We consider the same case study as in Ex-

ample 1, except that we increase the number of neurons
in the hidden layer to m = 100 and we vary the number
of data (8 ≤ n ≤ 400). The network is trained using
GD until convergence with the same hyperparameters and
initialization as in Example 1.



Figure 4 gives the evolution of Ltest and Σ (bound over the
population loss LD) as a function of the number of training
data n. We verify that the curves Ltest and Σ have similar
trends.2 In particular, the curves present a double-peak shape
as observed, e.g., in [6] and [7] with peaks around n = d
and n = m.

Fig. 4. Evolution of Ltest and Σ with the number of training data n.

Finally, Fig. 5 depicts a comparison between the com-
mand uMPC synthesized by the MPC controller and uNN

predicted by the neural network (with m = 100 neurons and
a training set of size n = 2160). This illustrates the fact that
an underparameterized network is capable of reproducing the
MPC controller with good accuracy (Ltest = 0.003).

Fig. 5. Comparison of the true command (uMPC ) and the one predicted
by the NN (uNN ) using the test dataset.

V. CONCLUSION

This paper presented a proof that the training loss of an
underparameterized neural network converges linearly to a
(non-null) constant. The generalization error of the trained
model was investigated, and a bound to the population
loss was computed using the Rademacher complexity. We
illustrate these results on a one-hidden layer NN simulating
a MPC controller. We hope that our work will pave the way
for a better understanding of the success of data-driven MPC
using neural networks of moderate size.

Limitations and Future Work

This study focused on the analysis of the training error
convergence in a neural network with scalar output where
only the first layer is trained. We plan to extend the analysis

2Note that, in this example, the difference between Σ and Ltest is large.
This is partly explained by the fact that Ltest has been computed here
with a set Stest of data obtained with high precision. A set Stest of data
perturbed with noise would increase the value of Ltest and bring it closer
to Σ.

to include training on several layers and to consider multi-
dimensional outputs.
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