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Abstract

Simulating mixtures of distributions with signed weights proves a challenge as
standard simulation algorithms are inefficient in handling the negative weights.
In particular, the natural representation of mixture variates as associated with
latent component indicators is no longer available. We propose here an exact
accept-reject algorithm in the general case of finite signed mixtures that relies
on optimaly pairing positive and negative components and designing a stratified
sampling scheme on pairs. We analyze the performances of our approach, relative
to the inverse cdf approach, since the cdf of the distribution remains available for
standard signed mixtures.

Keywords: Acceptance-reject algorithm, Signed mixtures, Simulation, Inverse cdf,
Quantile function



1 Introduction

The simulation of mixture distributions, namely densities expressed as a linear
composition of K € N* base distributions f;, 1 <k < K,

X K

s wep =1
Zwkﬂm such that D k1 Wk ,
k=1 wl?"'va>0,

is reasonably straightforward when the component densities fi are easily simulated.
This is why many simulation methods found in the literature exploit an intermedi-
ary mixture construction to speed up the production of pseudo-random samples from
more challenging distributions. For instance, Devroye (1985, Section XIV.4.5) points
out that unimodal distributions can be written as countable mixtures of uniform
distributions.

The setting is however completely different when the mixture weights, w1, ..., wx
are signed, that is, when they do take both positive and negative values. A signed miz-
ture of P € N* positive component distributions fr and N € N* negative component
distributions gj such that (J; .« n supp(9r) € Uj<p<p supp(fx) is defined as

P N P 4 N
— =1
m=> wfi—Y wigr, such that {Zf—l‘”k 2= = 1 (1)
k=1

+ — —_
Pt Wy WhaWy e, wy >0

under the provision that m is everywhere non-negative. When considering the generic
issue of simulating from (1), a naive solution consists in first simulating from the
associated mixture of positive weight components

P P
o)y i 2)
= k=1

k=1

and then using an accept-reject step (Bignami and De Matteis, 1971; Devroye, 1985)
to select accepted values among these simulations. However, this approach may prove
highly inefficient since the overall probability of acceptance

P
1/2(#2‘
k=1

can be arbitrarily close to zero. Furthermore, as noted by Devroye (1985), checking
for the acceptance condition is costly if K = P 4+ N is large. The main explanation
for this inefficiency is that simulating from the components fj is not necessarily pro-
ducing values within regions of high probability for the actual distribution (1) since
its negative components may remove most of the mass under the wlj fx’s. The series
method proposed by Devroye (1985, Section IV.5) is not necessarily well-suited either
since it requires a manageable upper bound on (1), namely one that can be simulated.
Efficient alternatives are thus necessary and we herewith propose a solution.



The motivation for simulating signed mixtures is many-fold: besides approxima-
tions proposed for simulation reasons (Devroye, 1985), signed mixtures appear in
series representations of densities (Beaulieu, 1990; Delaigle and Hall, 2010; Hubalek
and Kuznetsov, 2011) or as more flexible modelling tools (Zhang and Zhang, 2005;
Miiller et al., 2012). Specific examples of pdfs represented as such series include
the Raab-Green distribution, the Kolmogorov-Smirnov (test) distribution, the Erdds-
Kac distribution (Devroye, 1985, IV.5). The kernel conditional density estimators
constructed by Schuster et al. (2020) also open the possibility of signed mixtures.

Elston and Glassy (1989) study the special case of Exponential signed mixtures
by exploiting a connection with generalised Erlang distributions, whose pdfs are lin-
ear combinations of Exponential densities with some negative coefficients. But the
complexity of their method is of order O(2X). Similarly, the bivariate exponential
distribution proposed by Gumbel (1960) is a signed mixture bivariate Gamma distri-
butions. A more anecdotal connection is found in the maximum of two Exponential
variates being distributed as a weighted difference of Erlang distributions, since its gen-
eration is straightforward. Similarly, the density of a sum of Gamma random variables
can be expressed as a signed mixture of Gamma densities.

Note that, when the sole purpose of simulation is the approximation of integrals
related with (1), the negativity of some weights is not necessarily an hindrance since

P N
/h(x)m(z)dz = /h(x) Z wyf fr(z)dz — /h(:c) Zwk_gk(x)dx.
k=1

k=1

It thus suffices to produce simulations from both positive weight and negative weight
mixtures. However, this may prove inefficient when K is large and when the supports
of the positive and negative densities strongly overlap. (The above decomposition also
explains why the cdf of (1) can be computed, when considering h(z) = [(_s 4)-)

In this paper, we propose a general approach that aims at facilitating the simulation
by expressing m(x) as a non-unique decomposition

K P N )\1,...,)\}(>07
Z)\k{akfk(x) —gk(x)}—i—ani —Zsjgj, such that T1,...,rp >0, (3)
k=1 =1 Jj=1 81,...,8]\[207

and for all k,1 <k < K,

ai € {aeRi; inf  {afi(z) — gx(x)} 20}.

xesupp(fr)

Indeed, the motivation for the representation (3) that we can simulate from the gen-
eral signed mixture by mainly simulating from a mixture of two-component signed
mixtures represented by the first sum, both last sums being residuals with low proba-
bility mass. Selecting at random a component ay fx, — g in (3) proportionally to A is
straightforward and simulating from this component is feasible by a naive accept-reject



approach when ay, is small enough, or by a more elaborate accept-reject approach that
is developed below otherwise.

The plan of this paper is organised as follows. In Section 2, we construct a spe-
cific simulation method for two-component signed mixtures. Section 3 details how the
pairing decomposition of (3) is chosen. Section 4 contains numerical experiments that
compare different approaches of this simulation challenge.

Notations and conventions

In what follows, the probability density function of the signed mixture (with respect to
the Lebesgue measure) is denoted by m. The positive and negative weight components
are consistently referred to as f;, 1 < ¢ < P and gj, 1 < j < N, respectively, with
indices omitted when there is no ambiguity. The positive part m™* of a signed mixture
corresponds to the mixture (2).

For a set D C R? we note v(D) the probability that a random variable with
density v belongs to D and |D| the mass of D, that is

|D| :/]lD(;v)dx.

We specifically assume that cumulative distribution functions (cdf) of positive and
negative weight components can be computed everywhere so that

P N
m(D) =Y w fu(D) = > wy gr(D)
k=1 k=1
is available.

2 Two-component signed mixtures

Given two distinct probability density functions f and g such that

a*= sup g(x)/f(x) < +00, (4)
z€supp(f)

a two-component signed mizture of f and g is defined as

af —g
a—1

, with a>a*. (5)

Condition (4) ensures that m stands as a proper density when g has tails that are
dominated by those of the positive component f. Note that a* > 1 as in generic
accept-reject settings (see Appendix A, Lemma 3). The limiting case a = a* corre-
sponds to the minimal positive weight required to compensate the negative weight
component, i.e., when the density function m reaches zero at some point of its support
or asymptotically.



Vanilla sampling scheme

As mentioned earlier, a natural if naive method for sampling from (5) consists in an
accept-reject algorithm with proposed values generated from the distribution f. Since

a

sup  m(x)/f(x) =

z€supp(f) a—1

)

the proposed values z are accepted with probability

af(x) —g(x)
af(xr)

The average acceptance probability is equal to (a — 1)/a, which makes the approach
inefficient when a — 1 is near zero, i.e., when f and g are quite similar.

Stratified sampling scheme

We can instead construct an alternative accept-reject scheme based on an piecewise
upper bound on (5) towards yielding a higher acceptance rate on average. For this
purpose, consider a partition (Dy,...,D,) of supp(f) with the convention that Dy
covers the tails of f and subsets where f is unbounded. We assume that upper and
lower bounds on both f and g, respectively over the remaining elements D;, 1 < i < n,
exist and can be easily computed, so that the terms

h; =asup f(z)— inf g(z), 1<i<n
z€D; reD;

are available. These terms yield a rough upper bound on m on each D;, which can
obviously be improved in the specific situation when direct access to the supremum
of m on D, is available. Tails are treated separately. Indeed, since the tail dominating
component is necessarily attached to the positive part, af can then be used as an
upper bound of m on Dy. The partition is therefore providing a direct and different
upper bound on (5), that is for all = € supp(f)

m(a) < — {af(l“)ﬂDo @)+ hilp, <x>} .

This dominating function can be normalised into a proposal towards a novel accept-
reject algorithm since sampling from this proposal is straightforward. It is indeed
a special instance of a mixture distribution, where one picks a partition element at
random according to the vector of probabilities of its components

Q(af(Do),h1|D1|,-~-,hnDn|)/{af(D0)+Zhi|Di|}

i=1



Algorithm 1: Accept-reject method for two-component signed mixtures

Input: Partition Dy, ..., D,, upper bounds hq,...,h,.

sample k from M(m(Dy),...,m(Dy));

repeat
if £ = 0 then
sample z from f truncated to Dy;
accept x with probability {af(z) — g(z)}/{af(x)};
end
else
sample z uniformly on Dy;
accept x with probability {af(z) — g(x)}/hg;
end

until accepting;

and then simulates from f restricted to Dy or uniformly on D;, 1 < i < n, respec-
tively. Note that Dy can be further decomposed towards making the simulation of the
truncated distribution possible.

This strategy is however computationally sub-optimal since to get one draw from
m, we would need, in particular, to sample on average

a

M = —— (D) +—Zh|D|

a—1

(latent) component index variables while solely one is needed. Hence, we opt for a more
efficient stratified sampling method that takes advantage of the partition structure as
well as of the availability of the cdf of (5). First, we select a partition element Dy
according to the signed mixture m, i.e., we draw the partition index k according to the
Multinomial distribution M(m(Dy),...,m(Dy)). Then we perform an accept-reject
step to sample from the distribution m restricted to Dj,.

This approach allows for tailoring down the total number of simulated random
variables, even though the average acceptance probability of the algorithm remains
the same as for the naive accept-reject algorithm, that is 1/M (see Appendix A.2.1).
While the simulation method does not change within a partition element, in contrast
to the initial proposition, this version keeps simulating within the same partition
element till acceptance and thus need not resample a partition index cutting the
average computational budget of the proposition step from 3M to 1 4+ 2M random
variables.

Obviously, the initial partition can easily be refined into smaller sets towards
controlling the overall acceptance rate. The following result shows how this can be
achieved (see Appendix A.2.2 for proof).



Lemma 1. Let 6 € (0,1) and £ € [0, (1 —§)/0). If

g(Dy) = min |1, (a—1){1 ;5(6—1— 1)} 7 (©)

then there exists a partition (D1,...,Dy,_) of supp(f) \ Do such that the average
acceptance probability of Algorithm 1 is greater than 9.

This result provides an heuristic on how to build the partition for our goal. If
we aim at an overall acceptance rate of d, we first build Dy so it satisfies (6) for a
user-specified tolerance €. The purpose of this threshold is twofold: it informs on the
average acceptance probability for a countably infinite partition, namely 6/(1 — de)
(see Appendix A.2.2), and, more interestingly, on the largest error possible when
approximating 1 — m(Dg) by the upper Riemann sum

1 n
mzhiwﬂ-
i=1

Note this error can be larger than 1 when the target acceptance rate is lower than 0.5.
A zero tolerance level serves no practical purpose, as it means infinite computation
cost, but if it leads to g(Dg) = 1, this implies that the stratified scheme is reduced
to the trivial partition Dy = supp(f) and hence equivalent to the vanilla method.
Otherwise, the stratified approach leaves room for improving performances. The mass
of Dy with respect to g decreases with . Choosing € close to (1 — §)/¢ allows larger
errors but it requires to partition a larger domain. Once D is set, we recursively divide
supp(f) \ Do to find a suitable (D1, ..., Dy_).

3 Pairing mechanism

For a generic signed mixture, it is rarely the case that the density m naturally appears
in the format (3). We thus derive a method to construct a pairing of positive and
negative (weight) components and a residual mixture towards a representation of the
mixture as a sum of (3) for which we can improve the average acceptance rate.

For a given signed mixture (1), denote E the set of all acceptable pairs of positive
and negative weight components, i.e., such that we can define a two-component signed
mixture from the associated densities, namely

E= {(i,j), 1<i<P1<j<N|aj;= sup gi(z)/ fi(z) < —|—oo}.
zEsupp(fi)
The set E is always non empty since, otherwise, the signed mixture m could not
constitute a proper probability density. Subsequently, Ef and EI will denote the
sets of pairs that contain the positive component i and the negative component 7,
respectively.



A pairing is defined as a set F' € P(E) and a collection of weights (wjj,wi;)(m)ep
that satisfy the following constraints

V(i,j) € F, w;; - afjwfj >0, (7)

Vi, 1 <i <P, o wh<uf, (8)
(i,5)EEFNF

Vj, 1<j <N, > wjj<wy. (9)
(i.4)€E; NF

The constraint (7) ensures that the weights associated with the pair (4,7) define a
two-component signed mixture that is positive everywhere but does not necessarily
integrate to 1. Constraints (8) and (9) guarantee that the pairing is compatible with m,
that is, the decomposition do not lead to new positive or negative weight components.
A pairing is thus associated with a residual mixture

P N
Zrifi—Zsjgj, where 7; = w;” — Z w;; and s; =w; — Z Wy
i=1 Jj=1 (i,)€EENF (i,j)€EE; NF
The decomposition of m associated with the pairing thus writes as
P N
Z (w?}fi—wi_jgj)+2nfifzesjgj. (10)
(,,4)EF i=1 j=1

Sampling from m can hereby be achieved by proposing a sample from the mixture
made of the two-components signed mixtures and of the positive weight components,
namely

vy - P P
W —w.. fwf, —w. . .
T = E: zJO ZJ( ZJ']E? Zzg]>+zgfi’ where C:§ w;r_ § Wi
Z i=1 i=1

W —w;
(i,j)eF E & (i,J)EF

and by accepting the resulting simulation x with probability
m(z)/Cr(z).

Sampling from 7 proceeds as for any standard (unsigned) mixture distribution, albeit
requiring an extra accept-reject step when sampling from the component of 7 that
corresponds to pairs (i,j) € F (see Algorithm 2).

If sampling from a pair (i,j) € F relies on the vanilla approach, the overall proce-
dure resumes to sampling by proposing from the mixture m™* (2). Indeed, one sample
from m requires on average C' samples from 7 and to get one sample from 7 we need



Algorithm 2: Accept-reject method for general signed mixtures

Input: A pairing F.

compute the vector of probabilities prob (w;; — W, rg)(i SeF1<i<P’

repeat

sample k according to prob;

if & is associated with a pair (i,j) € F then
sample x from the two-component signed mixture with an
accept-reject scheme;

end

else

‘ sample x from f;

end

accept x with probability m(z)/{Cn(z)}.

until accepting;

to propose

shmwy Wl S 1
Z jC' jwfjthrZ@:@ij

(i,j)EF i ij =1 i=1

random variables. However, improving the acceptance rate to sample from at least one
of the two-component signed mixtures involved in the decomposition (10) is enough
to improve the performance of the sampling method, as shown by the following result.

Lemma 2. Consider 6 € (0,1) and a pairing F for m. Assume that we sample from
each pair (i,7) € F, using
1. the vanilla sampling scheme if (1 — 5)0.),; —w; >0,

2. a piecewise sampling scheme that guarantees an average acceptance probability
greater than §, otherwise.

Then Algorithm 2 requires on average less than

P
1 _
> wh + 5 > {0 -0 —wi} La-syws —w;<0)
i=1 (i.5)eF

proposed random variables to sample once from m.
A direct consequence of this result is that the optimal pairing scheme (in terms of
the number of proposed samples) is the one that minimizes the objective function

> {0 =0 —wih L sus <o
(id)eF



The solution to this optimization problem is equivalent to minimizing the objective

function
> {0 -y}
(i,5)€EE

subject to the linear constraints (7), (8) and (9). Indeed, we can drop the indicator
function from the above since considering a pair (i,j) € E associated with weights
(wfwwi;) satisfying the constraints and such that the average acceptance probability
of the vanilla scheme verifies
wi; S 1
=6
ij
does increase the value of the objective function. The optimal pairing solution can
thus be found by an optimization algorithm targeting the above objective, such as the
simplex method (Dantzig, 1963).

We stress that Algorithm 2 does not necessarily achieve an overall average accep-
tance probability of § for the optimal pairing. Indeed, the average number of proposed

random variables for the pairing writes as

- 1 1 1 1
;wg"ﬁ-&(z {(1—(5)(»?3—%;}:5+<1—5>Zm+523j.

B,J)EF

1-—

w

It is then lower than 1/ only when

N
ZSJ' S (1 —(S)Z’I’i.
j=1

i=1

For instance, when an optimal pairing has no positive weight residuals, attaining ex-
actly the targeted probability § is then achieved solely if we have no negative residuals
as well. Even though we control the acceptance probability when sampling from a
pair, the reject step towards getting samples of m by simulating from 7 degrades the
overall performances. Conversely, if there are no negative weight residuals, Algorithm
2 performs better than the targeted probability. This setting does not involve a reject
step to get from 7 to m. In that case, we do control sampling performances for each
pair and each positive weight residual can be simulated exactly.

4 Comparison experiments

In this section we examine the performances of three methods that return simulations
from arbitrary signed mixture distributions m, namely
1. the vanilla scheme corresponding to the accept-reject method based on the
positive part of m,
2. the stratified scheme we proposed for acceptance rates § € {0.4,0.6,0.8} and
tolerance levels € € {0.1,0.2,0.5, 1} compatible with 4,
3. a numerical inversion of the cumulative distribution function associated with m
for a precision of 10719 (see Appendix B).
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Figure 1 Histogram of 10° samples from an alternating signed mixture (11) with Normal distribu-
tions (12) (left) and Gamma distributions (13) (right).

Each method is run to get n € {10,10%,10%,10*} samples from m. For a given sample
size n, we report the proportion Sn of accepted proposed variables. Its theoretical value
is denoted 4 for both the vanilla and the stratified schemes. We also detail the relative
efficiency of a method A compared to a method B, defined as the ratio of the running
time of B by the running time of A. A relative efficiency larger than 1 indicates that A
outperforms B in terms of computational budget. We focus on the relative efficiency
R, of our method compared to the vanilla approach and the relative efficiency Q,, of
accept-reject based methods compared to the numerical inversion of the cdf.

While the above construction is as generic as possible, we run the comparison
on special instances of signed mixtures of exponential families distributions, namely
fr and gi are both either Normal or Gamma distributions. Both families display
an explicit condition to fulfill (4) and define a two-component signed mixture of fj
and g; (see Appendix A.3). We also provide details on how to build the partition
Dy, ..., D, for such two-component signed mixture in Appendix A.3.3. For each
family, we consider two kinds of numerical experiment.

4.1 Alternating signed mixtures

The first comparison is provided for a particular signed mixture that writes as the

alternating sum
([ ar \ (aif—on
mo‘;(azlﬂ ) )
where each term involves the two-component signed mixture (5) of f; and g for the
minimal positive weight possible. Such a signed mixture exhibits then a natural pairing
structure where the weight of each pair in the overall signed mixture is inversely
proportional to the average acceptance probability of the pair. There exists at least
one solution to the optimisation problem where there is no residual mixture.

Signed mixture of Normal distributions

A two-component Normal signed mixture is well-defined when the variance of the
positive weight component is strictly greater than the variance of the negative one

11



(see Appendix A.3.1). We thus consider the signed mixture (11) with K = 51 and for
all k, 1 <k <51,

fi = N, o) it {uk =0.2(k—1), (12)

gr = N (uy +0.01, (o — 0.01)?) or = 0.25+0.015 (k — 1),

and

a* Ok e 0.01
= X .
BT o =01 P 4o, —0.02

Signed mixture of Gamma distributions

A two-component Gamma signed mixture is well-defined when the shape and rate of
the positive weight component are lower, respectively strictly lower, than the shape
and rate of the negative one (see Appendix A.3.2). For signed mixture (11), we consider
a setting with K = 41 and for all k&, 1 < k < 41,

kaI‘(ak,ﬁk) . Oék:1+0.1 (/{71),
with (13)
gr = T(ay +0.01, B + 0.01) Br = 0.25 +0.04375 (k — 1),
and 0.01(k—1)
L) Bk T
r = 0.01(1 —k)}.
= T(ap +0.1(k— 1)) (ﬂk+0.01 exp{0.01(1 = k)}
Comments

Table 4.1 displays the results for both families. In both examples, the simplex method
retrieves the natural pairing associated with the alternating sum form (11) for all
5 € {0.4,0.6,0.8}. The stratified method overall outperforms both the vanilla method
and the numerical inversion of the cdf, regardless of the selected acceptance rate § and
the tolerance level €. Unless simulating a dozen variables, our method is between 1.6
and 90 times faster than the vanilla method while the reduction in computation time
is smaller when compared to the numerical inverse of the cdf but can still go up to
a factor 22. In general, for a given acceptance rate §, increasing the tolerance level
results in a lower computational cost of our stratified method. Conversely, the higher
the acceptance rate, the higher the cost of our method. This pattern directly results
from the construction of the partition Dy,...,D,_, where a higher acceptance rate
implies a larger domain to partition and a smaller tolerance requires finer partition
elements. Lastly, the computational benefit increases with the number of variables
simulated, as the cost of both the simplex method and the computation of the partition
becomes negligible in front of the cost of sampling random variables.

4.2 Randomly generated signed mixtures

The second comparison is based on a collection of 2,800 randomly generated signed
mixtures (see Appendix C) with a wide range of variety from the number of com-
ponents to the average acceptance rate of the vanilla method. Table 4.2 details the

12



distribution of the models into 7 categories depending on the acceptance rate of the
vanilla method. The aim was to have models with arbitrary low vanilla acceptance
probability in order to challenge our approach in situation where the vanilla method
may perform extremely poorly. Models considered also encompass a few components
up to a hundred with varying proportion of positive and negative weight components,
ensuring then real diversity in the complexity of models (see Figure 2).

Table 1 Sampling performances for alternating signed mixtures (11) of Normal distributions (12)
and Gamma distributions (13).

Stratified ‘
Vanilla
e 0.1 0.2 0.5 1.0 | o1 0.2 05 | o1 02 |
NORMAL SIGNED MIXTURE
3 0.4 \ 0.6 \ 0.8 | 0.018
510 0.156  0.256  0.500  0.769 | 0.588 0.769  0.833 | 0.278  1.000 | 0.017

Rio 1.876 2.136  2.153 2.125 1.604 1.720 1.738 | 1.128 1.208 1.000
Q10 2.892 3.293 3.319 3.276 2.473 2.652 2.680 | 1.738 1.862 1.542

6192 0.407 0.592 0.417 0.633 0.389 0.637 0.645 0.820 0.714 0.018
Rig2 10.70 11.90 10.93 12.71 | 10.49 11.69 11.66 8.374  9.995 1.000
Q102 2.213 2.461 2.262 2.630 | 2.170 2.417 2.413 1.732  2.067 0.207

6103 0.422 0.442 0.480 0.657 | 0.615 0.607 0.737 0.810 0.868 0.017
Rio3 26.05 27.25 27.76 27.94 | 11.39 19.94 16.08 22.25 23.70 1.000
Q03 4.521 4.730 4.817  4.849 | 1.976 3.461 2.791 3.861 4.114 0.174

0104 0.411 0.426  0.499 0.640 | 0.604  0.641 0.776 0.827  0.855 0.018
Ripa 38.05 36.51 37.02 37.04 | 37.59 38.65 38.84 | 36.96 37.96 1.000
Q04 6.233 5980  6.063 6.068 | 6.157  6.330 6.362 | 6.053 6.218 0.164

GAMMA SIGNED MIXTURE

5 0.4 | 0.6 | 0.8 | 0.008

810 0.909 0.769 1.000 1.000 | 0.833 1.000 1.000 1.000 0.714 0.006
Rio 0.674  0.715 0.783 0.790 | 0.426  0.428 0.428 0.386 0.471 1.000
Q1o 1.731 1.836  2.010 2.028 1.095 1.100 1.098 0.990 1.209 2.568

0102 0.435 0.408  0.595 0.495 | 0.752  0.498 0.820 0.990 0.962 0.010
Rio2 2.606 2.422 3.240 3.744 | 2.029 2.109 1.606 1.740 2.178 1.000
Q102 1.613 1.499  2.005 2.317 | 1.256 1.305 0.994 1.077 1.348 0.619

0103 0.418 0.385 0.487 0.648 0.646 0.520 0.640 0.884 0.858 0.009
Rio3 20.11 20.51 25.82 27.13 | 17.28 18.34 22.77 | 15.23 19.45 1.000
Q103 5.728 5.844 7.355 7.727 | 4.923 5.225 6.487 | 4.339 5.540 0.285

6104 0.420  0.426  0.456 0.523 | 0.581 0.644 0.602 0.828 0.852 0.009
Rip4 54.03 56.36 70.68  90.18 | 61.65  64.92 77.01 | 66.44 75.97 1.000
Q104 13.44 14.02 17.59 22.44 | 15.34 16.15 19.16 | 16.53 18.90 0.249

d, On: theoretical average acceptance probability of the method and its estimated value for a n-
sample. Ry, Op: relative efficiency for a n-sample of the sampling method compared respectively to
the vanilla method and the numerical inversion of the cdf.
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Legend E3 Negative E3 Positive

Normal signed mixture Gamma signed mixture
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Figure 2 Summaries per vanilla average acceptance rate categories (x-axis in %) of the 2,800
randomly generated signed mixtures of, respectively, Normal distributions (left) and Gamma distri-
butions (right): number of positive and negative weight components (top row), proportion of positive
weight components in the model (second row), number of acceptable pairs in the model (third row)
and proportion of acceptable pairs selected by the simplex algorithm (bottom row).

Comments

The running time of our method does not depend significantly of the user-specified
acceptance rate nor the tolerance level (see Figure 3). However we can point out a
consistent pattern regarding the influence of both § and . Allowing a larger tolerance
level leads to a reduced cost since it implies building a partition with less elements.
However opting for a larger acceptance rate happens to increase the running time.
In such settings, we end up with a larger domain to partition and a tolerance level
restricted to a smaller range. Hence this results in increasing the number of partition

Table 2 Repartition of the 2,800 randomly generated signed mixtures of Normal distributions and
Gamma distributions according to the average acceptance rate § of the vanilla accept-reject method.

§ (in %) <102 (1072%,0.1] (0.1,1]  (1,5] (5,10  (10,20]  (20,35]
Normal distributions 400 400 400 400 393 404 403
Gamma distributions 287 505 408 400 420 480 300
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Figure 3 Running time (in sec.) of the stratified method with respect to user-specified acceptance
rate ¢ (x-axis) and tolerance level ¢ (eps) for the 2,800 randomly generated signed mixtures of,
respectively, Normal distributions (left) and Gamma distributions (right).

terms, as we aim at a more precise piecewise approximation of the signed mixture.
Our method is not designed to efficiently achieve acceptance rate arbitrary close to 1.
Instead, users can benefit from reasonably lowering the acceptance rate §. Obviously,
this holds as long as § remains larger than the vanilla acceptance probability and the
simulation cost does not exceed the advantage of the stratification.

The relative efficiency of our stratified solution compared to the vanilla ranges from
around 107° to 10° and unsurprisingly decreases with the vanilla average acceptance
probability (see Figure 4, top row). The stratified approach far outperforms the vanilla
method on challenging situations, that is when an accept-reject from the positive part
would lead to an average acceptance rate lower than 1%, a domination found even
for very small samples. For a hundred samples, sampling from the positive part of
the signed mixture becomes equivalent to, if not better than, the stratified solution
when the vanilla average acceptance probability exceed 5%. For larger sample sizes,
the relative efficiency remains in general larger than 1. Furthermore, we point out that
the median running time of our method for a given sample size is quite stable across
the different categories of vanilla acceptance rates and mostly lower than the second
(see Figure 4, second row). In comparison, the median running time of the vanilla
method strongly depends on its associated acceptance probability (see Figure 4, third
row). This asymmetry means that in situations where the vanilla method performs
better, the actual computational benefit is of a negligible scale. Conversely, our method
presents a reduction of the simulation cost that is more than substantial in challenging
settings, cutting the cost for instance from a few minutes to less than a second.

In the stratified scheme, we have a better control of the simulation cost, even in the
presence of negative weight residuals (see Figure D1), due to the acceptance rate con-
straint on each pairs. This explains the general median stability we observe on Figure
4 regardless the overall weight of the positive part in the model. The major elements
of influence are the computation of the partition and of the pairing using the simplex
method. Regarding the partition, we already observed that it does not alter strongly
the computational cost of our solution and hence the relative efficiency compared to
the vanilla method, but it can be further confirmed with Figure D2 in Appendix. As
for the pairing step, Figure 5 illustrates that the number |E| of acceptable pairs has
a negative effect in terms of computational budget. Indeed, the simplex algorithm is
then used to solve an optimization problem involving 2|F| variables and |E| 4+ N + P
constraints. For a moderate number of samples, the efficiency of our solution is reduced
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Figure 4 Time performances of accept-reject based methods per vanilla average acceptance rate
categories (x-axis in %) and number of draws n for the 2,800 randomly generated signed mixtures of,
respectively, Normal distributions (left) and Gamma distributions (right): relative efficiency of the
vanilla method compared to the stratified method (top row), running time (in sec.) of, respectively,
the stratified method (second row) and the vanilla method (bottom row).

when the model contains over a thousand acceptable pairs. In this regime the simplex
may prove more time consuming than simulating even numerous random variables.

The computation of a numerical inverse of the cdf does not exhibit practical interest
over our accept-reject based method from a computational perspective (see Figure 6).
Indeed, the median relative efficiency is close to 1, if not greater while we only generate
samples from an approximated probability measure. This surrogate quantile function
solely alleviates the cost of the vanilla method in low acceptance situations, a specific
setting for which we provide an efficient and exact solution.

5 Conclusions

The challenge of simulating a signed mixture (1) surprisingly differs from the standard
simulation of an unsigned mixture in that the negative components of (1) have no nat-
ural association with a latent variable. It thus proves impossible to directly eliminate
simulations that issue from these negative terms, i.e., to formalize a negative version
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Figure 5 Relative efficiency of the vanilla method compared to the stratified method with respect to
the number of acceptable pairs (x-axis) and the number of draws n, for the 2,800 randomly generated
signed mixtures of, respectively, Normal distributions (left) and Gamma distributions (right).
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Figure 6 Relative efficiency of the numerical inverse cdf compared, respectively, to the stratified
method (top row) and the vanilla method (bottom row) per vanilla average acceptance rate categories
(x-axis in %) and number of draws n for the 2,800 randomly generated signed mixtures of, respectively,
Normal distributions (left) and Gamma distributions (right).

of accept-reject and one has to resort to more rudimentary approaches. As discussed
above, sampling from a signed mixture using only the positive part of the density may
prove cumbersome, especially when the weight of the latter is small. While elementary,
our alternative approach achieves noticeably superior computational performances by
combining a simplex step towards identifying an efficient decomposition of the model
into a well-balanced set of two-component mixtures, and a piecewise constant ap-
proximation of these two-component distributions. Controlling a lower bound on the
average acceptance rate ensures steady performance, regardless of the overall weight
of the positive part. Furthermore, this alternative performs most satisfactorily relative
to the inverse cdf approach, a feat explained in part by the necessity to numerically
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invert the cdf, even in cases when the quantile function of both positive and negative
components is known.

Acknowledgements

A discussion with Murray Pollock (University of Newcastle) was instrumental in
sparkling our interest in the matter. The first author has been partly supported by a
senior chair (2016-2021) from U'Institut Universitaire de France, by a Prairie chair from
the Agence Nationale de la Recherche (ANR-19-P3IA-0001), and by the European
Union under the ERC Synergy grant 101071601 (OCEAN).

References
Devroye, L.: Non-Uniform Random Variate Generation. Springer, New-York (1985)

Bignami, A., De Matteis, A.: A Note on Sampling from Combinations of Distributions.
IMA Journal of Applied Mathematics 8(1), 80-81 (1971)

Beaulieu, N.C.: An infinite series for the computation of the complementary prob-
ability distribution function of a sum of independent random variables and its
application to the sum of Rayleigh random variables. IEEE Transactions on
Communications 38(9), 1463-1474 (1990) https://doi.org,/10.1109/26.61387

Delaigle, A., Hall, P.: Defining probability density for a distribution of random
functions. The Annals of Statistics 38(2), 1171-1193 (2010)

Hubalek, F., Kuznetsov, A.: A convergent series representation for the density of the
supremum of a stable process. Electronic Communications in Probability 16, 84-95
(2011) https://doi.org/10.1214/ECP.v16-1601

Zhang, B., Zhang, C.: Finite mixture models with negative components. In: Perner,
P., Imiya, A. (eds.) Machine Learning and Data Mining in Pattern Recognition, pp.
31-41. Springer, 777 (2005)

Miiller, P., Ali-Loytty, S., Dashti, M., Nurminen, H., Piché, R.: Gaussian mixture
filter allowing negative weights and its application to positioning using signal
strength measurements. In: 2012 9th Workshop on Positioning, Navigation and
Communication, pp. 71-76 (2012). https://doi.org/10.1109/WPNC.2012.6268741

Schuster, 1., Mollenhauer, M., Klus, S., Muandet, K.: Kernel conditional density op-
erators. In: Chiappa, S., Calandra, R. (eds.) Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, vol. 108, pp. 993-1004. PMLR, 77?7 (2020)

Elston, D.A., Glassy, C.A.: Simulating from a mixture of exponential distributions

with some negatively weighted components. Journal of Statistical Computation and
Simulation 33(1), 1-9 (1989)

18


https://doi.org/10.1109/26.61387
https://doi.org/10.1214/ECP.v16-1601
https://doi.org/10.1109/WPNC.2012.6268741

Gumbel, E.J.: Bivariate exponential distributions. Journal of the American Statistical
Association 55, 698-707 (1960)

Dantzig, B.G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

Appendix A Two-component signed mixtures

A.1 Lower bound property

Lemma 3. Assuming two separate probability density functions f and g such that g
is absolutely continuous with respect to f, then

*

a” = sup g>1.
supp(f) f

Proof. Let assume a* < 1 and denote E = {x € supp(f) | f(z) = g(x)}. We have for
all © € supp(f) \ E, g(z) < f(z) and

dz = d d d dz.
/E o(z)dz /E f@)dz an /supp(f)\ng) v < /supp(f)\Ef(x) z

Since supp(g) C supp(f), we thus have

1= d d dz =1.
/S“PP(f) glz)de < /Ef(x) v /supp(f)\E flo)dz

Reductio ad absurdum complete. O

A.2 Results on stratified sampling scheme
A.2.1 Average acceptance probability of Algorithm 1

Behaviour in the tails

The distribution m restricted to Dy satisfies

1 af(Do) 1
(D) " 00 (0) < TN D) (D)

f(@)1p,(z).
To get one sample from m restricted to Dy, we need on average

af(Do)

Mo = @ Dm(Dy)

samples from the distribution f truncated to Dy.
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Behaviour in D,...D,

The distribution m restricted to D; satisfies

1 hi| D;| 1
m(Dy) ") < ) 1D

D; (.’)3)

To get one sample from m restricted to D;, we need on average

~_ hi|Dy
" (a—1)m(D;)

samples from the uniform distribution on D;.

Global behaviour

To get one sample from m, we need to propose on average

> m(DoM; = (Do) + g Do hiDi =1

a—1

random variables.

Remark 1. Sampling from distribution [ restricted to Dy is not necessarily straight-
forward and might require an accept reject scheme as well. Both methods based on
piecewise proposals have nevertheless still the same acceptance probability on average.
If we need Ny samples from a proposal to get one sample from f restricted to Dy,
Algorithm 1 then requires simulating

~ a 1 -
M = Do)No + —— S hy|D;
a—lf( 0) O+a—1; |Di

random variables. Conversely, sampling from the dominating piecewise function would
require

af(D 1 - -
M{M{i _01>N0+ Ma=1) ;}MDJ} =M

random variables.

A.2.2 Lemma 1
Proof. We have

Il
—
I

1 mn
LS hip| — / m(z)dz = 1 — [ P0) = 9(Do)
a—1: =100 Jsupp(£)\ Do a—1
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Hence, for all € > 0, there exists n., such that for all n > n,

‘M_al‘i’g(Do) <
a—1
Given € € [0, (1 — 9)/9), if
min [1’ (a—1D{1-¥d(+ 1)}} _1
)
then 1
“ +e< - and Vn>n.,, M< a4 +e.
a—1 ) a—1

Otherwise, we have

1
M—-—-+¢<ce¢

9(Do) = ;

(a-D{L-dE+1} ‘
5

Both cases lead to 1/M > 4. O

Remark 2. A direct consequence of Lemma 1 is that if we pick the partition of
supp(f) \ Do such that

m(Do) +sf—Zh|D|

then using the assumption on g(Dg) we get

1

1

a
a—1
A.3 Exponential families examples

Assume that, within the context of Section 2, the terms f and g are both distributions
from the same exponential family

F = {c(0)h(z)exp{n(0) 'T(z)};z e R 6 € © CR}.

A pairing of f and g, parametrized respectively by % and #~, into a two-components
signed mixture is thus possible if

*

a = GSup(f){n(f) —n(07)} T () < +oo. (A1)
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A.3.1 Example of Normal distributions
Let f=N(u",0%) and g = N(u~,02). Since

(z—p ) (= p*)? , (0%~
- 5 T RO Wy a

207 209 +oo 202073
condition (A1) is fulfilled if 02 < of (or if p* = p~ and 02 = o3 which is of no
interest). Assuming 02 < crf_, critical points are then solution of

- +

% 1% 1 1

B o+~ ) =0
) +I< 202+203)

We derive a global maximum at

- 2 2
_pmof —pto?

2 _ L2
oL g

+ )2
o = T exp { W 1)L
o_ 2(07 —02)
Monotonicity of a two-component Normal signed mizture

Assume f = N(0,1) and g = N(p,0?), with 4 > 0 and o < 1. The signed mixture m
has at most 3 extreme values. More specifically, it admits
(i) a unique global maximum in (—oo, 0], if

(z—wg(z)
azigﬁ o2z f(z)

Then

(ii) a local maximum in (—oo, 0], a local minimum and a local maximum in [u, +00),

otherwise.
We have for all x € R
m'(z) = @) {¢Y(z) —ax}, where o:x+— w

a—1

o f(x)

The number of solutions to m/(x) = 0 then depends on the number of intersection

points between v and x — ax. The assumption on two-component signed mixtures

imposes g(x)/f(x) - 0. Since it happens at exponential speed, we also have
T—rL 00

Y(x) - 0. On the other hand, for all z € R,
T—r 100

V'(2) = {(0* = 1)2® + 2(2p — po®) + o* — p?} 02;23)'
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A straightforward computation shows that the equation ¢’(z) = 0 has two distinct
solutions and thus 9 has a global minimum and a global maximum, respectively at

w— o/ plo? +4 — 402 w+ o/ plo? +4— 402

+ 21— o?) 2(1 = o?)

+

and x5 =

=5
D)

s
2

Moreover, since
T
V(@) = A (= 1%+ Qafo)
where Q2(z) is a univariate polynomial of degree 2, 1) changes convexity solely one
time in [x1,72]. Note that " (u) = 2ug(n)/{c?f(1)} > 0 and thus the change of
convexity happens between u and x5. Functions ¥ and = — ax have then at most 3
intersection points.

If pu=0, we have a first obvious solution: x = 0. Since v is an odd function when
=0, the latter solution is unique if

, 1
©2 V0= =y

It is the unique global maximum for m, which thus have the same monotonicity than
f. Otherwise, it is a local minimum and we have two local maxima corresponding to
the intersection points solution of

ex :C—Q 2 1) =ao®
p 20_2(0 )—ClO',

that is +202 log(ac?)/(1 — o?).

If u> 0, we do not have a closed form for the critical points. However 9 is a non-
positive function on (—oo, y], that is decreasing on (—oo, 1) and an increasing convex
function on (21, u]. Consequently, there exists a unique intersection point y7 on (—oo, 0]
that corresponds to a local maximum of m. The function x — ax being positive on
(0, ], if there are two other intersection points, they are necessarily in (u, +00). If

(z —p)g(x)
azigﬁ o2z f(x) ’

then for all x > pu, m/(x) < 0 and as a result y} is the unique global maximum of
m. Otherwise, we have two intersection points. The point y3 corresponding to a local
minimum of m is bound to be on (u,x1). Nevertheless, note that on (u, 1)

a*

Y(z) —ax < (x_'u)ﬁ —ar — (a* fa(ﬂ)xfa*'u'

2

g

If a* —ac? > 0, m is decreasing between p and a*p/(a*—ao?) and y5 > a*p/(a* —ac?).
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Remark 3. The results for p < 0 are obtained by symmetry of the problem. Finally
the result for the general case of a signed mizture m of N'(u*,0%) and N'(u=,02) can
be derived using that for all v € R

+

_ ot o+ -
m(z) x af T — g T — W . with p= r K and o= 2=
ot ot oy oy

A.3.2 Example of Gamma distributions
Let f = I'(a™*,8%), g = T'(a™,87) (shape, rate parametrization). Condition (A1)
imposes a™ < a~ and BT < 37, so that

(a” —af)logz+ (BT — B7)x 2, ~o0 or 0,
(@ —af)logz + (BT =B )z — —oc.

r— 400

Assuming this, critical points are solution of

which leads to a unique global maximum at

Al
=G5
Then
a* =
(é_)a ifatT=a".

Monotonicity of a two-component Gamma signed mixture

The arguments for studying the monotonicity are similar to those used for the Gaussian
case. For all z > 0,

fx

(872 —a” +Lg(x)

m'(z :7> z) —a(BTx —a’ where tx
)= LU ) —atr -0t} where e 0

(a—1

If o™ = o, first and second derivatives of 1 write as

W' (z) = {B~ (B =B )z + B +a (B~ - 5)} gg))
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(B~ =B )g(x)
fl@)y

We thus have a unique global maximum and a single change of convexity.

e If o =a’ > 1, then a(l — a™) < ¢(0) and m admits a unique global maximum
on (0, +00).

elfa” =at <1,a(l —a’) > ¥(0) and m admits a local minimum and local
maximum on (0, +00) solely when

V(@)= [B7(B” =BT )z —{BT+ 8" +a (B - B}

B x+1—a” _
Ay e A R

Otherwise, m is decreasing on (0, 400).

Ifat <a-,

W(@) = [87(8% — B)a + {B*(1 — a7) + 67 (20" —a))a

+(a” —a®)(1-a7)| xgjfg)

The univariate polynomial has necessarily two real roots 1 and x5 (otherwise 1) would
be a continuous decreasing function on [0,400) and hence constant since its limit at
0 and +o0 is 0). It is straightforward to show that the smallest roots is non-positive
when a~ < 1 and non-negative when o~ > 1 while the largest is always positive. The
convex properties are identical to the Gaussian example as

¥(a) = S {5 (5 = ) + Qao)}.

where Q2(x) is a univariate polynomial of degree 2.
e If o™ < 1, then a(l — a™) > 0. m admits a local minimum and local maximum on
(max{0, (o~ —1)/8~},+00) solely when

C {pret1-a)y(a)
O et 1ot (x)

Otherwise, m is decreasing on (0, 400).
e If o™ > 1, then a(1 — a*) < 0. The behaviour depends on the relative position of
the modes of each component.
e If 37 (at—1) < BT (a” —1), then m admits a local maximum in [0, (a™—1)/87].
It is then decreasing on [(a* —1)/8%, +00) when

s wp  Brtl-ale@)

- Btaz+l—at>0 {5+(E +1-— aJr}f(x)

25



Otherwise, m admits a local minimum and a local maximum within the latter
interval.

o If B7(a™ — 1) > BT(a” — 1), then m admits a local maximum in [(at —
1)/B%,400). On [0, (et —1)/B7], m is increasing when

(52 41— a-}g(a)
“Z AR et l—at)f@)

Otherwise, m admits a local maximum and a local minimum within the latter
interval.

o If B~ (a™ —1) = BT (a™ — 1), both component have the same mode that is the
unique global maximum of m when

s wp  FEtloale@)

T prati-atzo BT +1—at}f(z)

and a local minimum otherwise. In the latter situation, m admits two local
maxima, one in (0, (et —1)/A7%) and one in ((a™ —1)/8T, +00).

A.3.3 Construction of the partition

C

We compute Dy = (qq,q1—a)¢, Where g, and ¢1_, are respectively o and 1 — a-

quantiles of g, with

(a—1){1-6(c+1)}
26 '
In the specific setting of a two-component Gamma signed mixture with both shape
parameters larger than 1, we consider Dy = [¢1-24, +00).
We partition D into S subsets Dy, ..., Dg relying on the monotonic properties of
the signed mixture. The aim is to decide whether, on subdivisions [x;, z;+1[ of D;, we
use

(A) hi= sup (af —g)(x) or (B) h;= sup af(z)— inf g(z).

[zizipa] [zi,xit1] [zi it

On each subset, the signed mixture has one of the following properties:

1. the signed mixture is a monotonic function. On such subset, we use the version
(A) on every subdivision [x;, Z;41];

2. the signed mixture changes monotonicity only once on the subset. For all subdivi-
sions [x;, 2;41[ such that m/(z;)m/(z;41) > 0, we use the version (A). Otherwise,
we use the version (B) but that happens solely once;

3. the signed mixture changes monotonicity more than once on the interval. On such
subset, we use the version (B) on every subdivision [2;, ;1]

Note that for two-component Gamma and Normal signed mixtures, we can restrict
ourselves to usie only the first two types of subsets by numerically computing some of
the local extrema.
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For a given subset Dy, 1 < s < S, we start with the partition [z1, 23], ..., [Zn_1, 24|,
such that z;11 — 2; = |Do|/100, 1 < i < n. The length of each partition element of D;
is divided by two until we achieve

13
S+1°

;€D

Appendix B Numerical inversion of the cdf

Consider n ordered points ¢y, ..., q, in the support of f and py,...,p, the value of
the cdf associated with m at these points, that is p; = m((—o0,¢]), 1 < i < n.
Furthermore, set a user-specified precision €. In the paper, we used € = 10719,

Step A

Assume we have u € [p;,p;+1]. We compute the preimage ¢* of w by the affine
transformation

Pi+1 — pix + Pidi+1 — p¢+1q1"

di+1 — Gi di+1 — Gi

Then we compute the cdf at ¢* and denote p* its value. This yields a new interval
containing u that is strictly included in [p;, p;+1]. We now apply the same procedure
on that interval. We repeat the process until we get a value p* such that |u — p*| < e.

T —

Step B

If we deal with a distribution that has an unbounded support, tails should be treated
separately. Assume we have u < p;. We use a scheme similar to the above except we
take the preimage by the affine transformation based on the two first points (pi1,p2)
larger than u. Here we stop when we find a point p* < u+e¢. If u > p,,, the reasoning is
the same except we use the last two points smaller than v and we stop when p* > u—c¢.
Now, either this ending point satisfies |u — p*| < ¢, or we apply Step A starting with
the interval [p*,p1] for left tail or [p,,p*] for right tail.

Appendix C Random generator of signed mixture
models

We used two different methods to generate the benchmark models. Both methods
start by randomly setting an initial number K of positive weight components in the
model. The number K is drawn uniformly between ki, and kyax for the following sets
{5,...,10}, {10,...,30}, {30,...,50}, and {50, ...,100}. Once the number of positive
weight components is set, we randomly draw the associated parameter values.

e For Normal signed mixtures, the mean p* is drawn uniformly in [0,20] and the
standard deviation is drawn according to a Gamma distribution I'(3,2.5) (shape,
rate parametrization).

e For Gamma signed mixtures, the shape parameter a™ is drawn according to a
Gamma distribution I'(4,0.5) and the rate parameter 57 to a Gamma distribution
I)(2,0.7).
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We then randomly set the number of negative weight components (1 or 2) that are
initially related to each positive weight component. Parameter value for the negative
components as well as the weights are then computed to ensure a benchmark model
for which the vanilla average acceptance rate p ranges in [Pmin, Pmax| for the following
sets [0,1074], (1074, 0.001], (0.001, 0.01], (0.01, 0.05], (0.05,0.1], (0.1, 0.2] and (0.2, 0.3].
For each set of values for K and p and for each method, we generated 50 benchmarks.

C.1 First method

The first method is based on properties of two-component signed mixtures. For a given
positive weight component, we compute the parameter value of the associated negative
weight component such that a* € [1/(1 —pmax), 1/(1—Pmin)]- The weights for this two-
signed component are the ones associated with a*. If the positive weight component
is associated with more than one negative component, we repeat this procedure for
each negative component. As a result, we thus obtain a collection of two-component
signed mixtures that all have the targeted acceptance rate. A convex combination
with uniform rates of these mixtures yields a signed mixture with the vanilla average
acceptance probability we aim at.

If the overall acceptance rate is lower than py,.x, we randomly decide to add positive
weight components that can either balance some of the negative components already
included or that can balance none. We can easily determine the maximal weight to
assign to such single components so the acceptance rate remains lower than pyax.
Indeed, assume we add K positive weight components. The new normalized signed
mixture writes as

K N - K
Diet w;rfi - Zj:l w; gj + > ket Tk Sk
1+ Zszl Tk

The latter is associated with a vanilla acceptance rate lower than py,.x as long as

K K

Z Pmax ) _i—1 W;r -1
re < .

k=1 1- Pmax

In a given benchmark, a negative weight component is hence not naturally paired
with a single positive weight component. This method aims at providing benchmarks
such that the number of acceptable pairs in the model is quite important. They con-
stitute a good basis to challenge the performances of the simplex method as it has to
narrow down the pairs involved in a pairing from a large number of initial acceptable
pairs.

C.2 Second method

After generating all the positive weight components, accounting for multiplicity when
more than one negative weight component is associated, for a given positive weight
component, we randomly draw parameter value of the associated negative weight
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component such that a* < 10. This constraint ensures the two-component signed
mixture does not have a vanilla acceptance rate larger than 0.90 in the worst case
scenario, making the next step easier. As opposed to the previous method, we now
consider the linear combination af — ¢ with a drawn uniformly in [0, a*]. The resulting
function takes negative values on the support of f and, hence, does not define a
distribution anymore.

We use all the positive components f;, 1 < i < K—1 generated, except f, to balance
the negative part of that function. First, we make sure that all positive components
together have enough mass over the set of negative values, that is the function is not
negative in the tails of all the possible positive components. When necessary we add
one or more positive weight components (we still denote K the overall number of
positive weight components). We then compute the weights d}j such that

K-1

af —g+ > & fi > 0.
i=1

That yields a collection of K signed mixtures, each one having solely one negative
component and associated with a vanilla acceptance rate p;. We consider a convex
combination of these signed mixture to control the acceptance rate associated with the
vanilla method and set it to min; p;. This is usually not enough to ensure that p ranges
in [Pmins Pmax|- However we can easily modify the model to satisfy this constraint by
adding a two-signed component mixture to the model. We select at random a positive
weight component included in the model and we build from it a two-signed mixture
a* f — g that fulfills the constraint on p. The new normalized signed mixture writes as

ZiK:1 Wj_fl - 2521 wj_gj +Aa*f—g)
1+ A(a* —1)

The latter is associated with a vanilla acceptance rate lower than py.x as long as

K
pmax Zi:l wi - ]-

A< .
- a*(]- 7pmax) -1

This method aims at providing benchmarks that exhibit negative weight residuals.
Such benchmarks allow to study the performances of the stratified method when the
residuals mixture obtained after the pairing step degrade the acceptance rate of the
procedure (see Figure D1).

Appendix D Supplementary material on methods
comparison
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Figure D1 Theoretical acceptance rate of the stratified sampling scheme with respect to the vanilla
average acceptance rate categories (x-axis in %) and user-specified acceptance rate § for the 2,800
randomly generated signed mixtures of, respectively, Normal distributions (top row) and Gamma
distributions (bottom row). An acceptance rate lower than ¢ signals the presence of negative weight
residuals.
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Figure D2 Relative efficiency of the vanilla method compared to the stratified method with respect
to user-specified acceptance rate 4, tolerance level e (x-axis) and number of draws n, for the 2,800
randomly generated signed mixtures of, respectively, Normal distributions (top row) and Gamma
distributions (bottom row).
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