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Abstract

Simulating mixtures of distributions with both positive and negative (signed) weights
proves a challenge as standard simulation algorithms prove inefficient in handling the
negative weights. In particular, the natural representation of mixture random variates as
being associated with latent component indicators is no longer available. We propose an
exact accept-reject algorithm for the general case of finite signed mixtures that relies on
optimally pairing positive and negative components and designing a stratified sampling
scheme on these pairs. We analyze the performances of our approach, relative to the
inverse cdf approach, since the cdf of the targeted distribution remains available for
signed mixtures of common distributions.

Keywords. Acceptance-rejection algorithm, Mixtures, Signed mixtures, Simulation,
Inverse cdf, Quantile function

1 Introduction

1.1 Signed mixtures

Mixture distributions [Titterington et al., 1985] abound in the statistical literature as a
ubiquitous tool to represent inhomogeneous populations and to enlarge the collection of
common distributions [see, e.g., McLachlan and Peel, 2000]. The density function of such
distributions writes as a linear combination of K > 1 base density functions fk, 1 ≤ k ≤ K,
namely

K∑
k=1

ωkfk , where

{∑K
k=1 ωk = 1 ,

ω1, . . . , ωK > 0 .
(1)

It is then straightforward to simulate from (1) when the component density functions fk
are themselves easily simulated: a component index 1 ≤ k ≤ K is selected with probability
ωk and a realization from fk is then produced. This simplicity explains why many simula-
tion methods in the literature exploit an intermediary mixture construction to speed up the
production of pseudo-random samples from more challenging distributions. For instance,
Devroye [1985, Section XIV.4.5] points out that unimodal distributions can be written as
countable mixtures of uniform distributions. Similarly, mixture distributions are often se-
lected as proposals in MCMC algorithms [Robert and Casella, 2004, Cappé et al., 2008].
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In this paper, we consider the more challenging setting of signed mixtures, namely the
case when the mixture weights, ω1, . . . , ωK , in (1) are signed, that is, when some of the ωk’s
are negative. We define a signed mixture density as a linear combination of P ≥ 1 positively
weighted density functions fk and of N ≥ 1 negative weighted density functions gk, with the
constraint that the combination remains a properly defined probability density. Denoting
by supp(h) the support of a real-valued function h, this implies that the joint support of
the positively weighted density functions must contain the joint support of the negatively
weighted density functions, namely⋃

1≤k≤N

supp(gk) ⊆
⋃

1≤k≤P

supp(fk) .

A signed mixture density m thus writes as

m =

P∑
k=1

ω+
k fk −

N∑
k=1

ω−
k gk , with

{∑P
k=1 ω

+
k −

∑N
k=1 ω

−
k = 1 ,

ω+
1 , . . . , ω

+
P , ω

−
1 , . . . , ω

−
N > 0

(2)

and the constraint that m is a non-negative function. (This property is indeed sufficient to
ensure m is a probability density.)

1.2 Simulation from signed mixtures

Density functions expressed as (2) present a significant challenge when considering the generic
issue of simulating them and we are not aware of existing solutions to this problem. Indeed, a
naïve solution consists in first simulating realizations from the associated mixture of positive
weight components, which writes as

P∑
k=1

ω+
k fk

/ P∑
k=1

ω+
k , (3)

when renormalized, and then using an accept-reject post-processing step [Bignami and
De Matteis, 1971, Devroye, 1985, Robert and Casella, 2004] that subsamples values among
these simulations. While formally correct, this approach may prove highly inefficient since
the marginal probability of acceptance

1
/ P∑

k=1

ω+
k

can be arbitrarily close to zero. Furthermore, as already observed by Devroye [1985], checking
for the acceptance condition is potentially costly if K = P +N is large. The intuition behind
the computational inefficiency of the standard accept-reject algorithm is that simulating
from the positive weight components fk is not necessarily producing values within regions
of high probability for the actual distribution (2). Indeed, it is possible that the negative
weight components ω−

k gk remove most of the mass attached to the ω+
k fk’s. Therefore high

probability regions for m have no reasons in general to coïncide with high probability regions
for all of the fk’s. By the same argument, resorting to an accept-reject method based on the
mixture of the negative weight components is similarly inefficient. In addition, the so-called
series method proposed by Devroye [1985, Section IV.5] is not well-suited for this target
density since it requires a manageable functional upper bound on (2), namely one that can
be simulated. Efficient alternatives are thus necessary and we herewith propose a generic
solution.
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1.3 Prevalence of signed mixtures

The motivation for considering signed mixtures and their simulation is many-fold. Besides
approximations proposed for simulation reasons [Devroye, 1985], signed mixtures appear in
series representations of density functions [Beaulieu, 1990, Delaigle and Hall, 2010, Hubalek
and Kuznetsov, 2011] or as flexible modelling tools [Zhang and Zhang, 2005, Müller et al.,
2012, Kroese et al., 2019, Loconte et al., 2024, the later using the denomination of subtractive
mixtures]. The kernel conditional density estimators constructed by Schuster et al. [2020]
open the possibility of signed mixtures, while Polson and Sokolov [2024] connect signed
mixtures with the notion of negative probability appearing in quantum theory. Loconte
et al. [2024] provides further references about the use of signed mixtures in machine learning,
optimization, and signal processing.

Specific examples of probability density functions represented as signed series include
the Raab-Green distribution, the Kolmogorov-Smirnov (test) distribution, and the Erdös-
Kac distribution [Devroye, 1985, IV.5]. For instance, Elston and Glassy [1989] study the
special case of Exponential signed mixtures

P∑
k=1

ω+
k E(λ

+
k )−

N∑
k=1

ω−
k E(λ

−
k ) , such that λ+1 , . . . , λ

−
N > 0 ,

by exploiting a connection with generalised Erlang distributions, whose density functions are
themselves linear combinations of multiple Exponential density functions with some negative
coefficients. However, the complexity of their approach is of order O(2P+N ), which calls
for a more efficient alternative. Similarly, the bivariate Exponential distribution proposed
by Gumbel [1960] is a signed mixture of bivariate Gamma distributions, whose efficient
simulation is of direct interest in extreme value theory and copula representations.

A primary remark is that, when the sole purpose of the simulation is the approximation
of integrals related with (2), the negativity of some weights is not directly a hindrance since∫

h(x)m(x)dx =

∫
h(x)

P∑
k=1

ω+
k fk(x)dx−

∫
h(x)

N∑
k=1

ω−
k gk(x)dx

holds. It thus suffices to produce simulations from both positive weight and negative weight
mixtures. However, this solution may prove inefficient whenK is large and when the supports
of the positive and negative density functions strongly overlap. (The above decomposition
also explains why the cdf of (2) can be computed, when considering h(y) = I(−∞,x)(y).)

1.4 A core decomposition for signed mixtures

This paper approaches the simulation from a signed mixture (2) by rewriting m(·) using a
non-unique decomposition of the positive and negative weights and a rearrangement into
three terms 1,

m =
K∑
k=1

λk{akfk − gk}+
P∑
i=1

rifi −
N∑
j=1

sjgj , such that


λ1, . . . , λK > 0 ,

r1, . . . , rP ≥ 0 ,

s1, . . . , sN ≥ 0 ,

(4)

and for all 1 ≤ k ≤ K, infx∈R{akfk(x)− gk(x)} ≥ 0 .
1In order to lighten the notational burden, (4) reuses notations such as fk and gk, with no exact corre-

spondence with those found in (2). For instance, the number K of components in (4) may be equal to the
product P ×N .
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Example 1. Denoting φ(·;µ, σ2) the probability density function of the Normal distribution
with mean µ and variance σ2, consider the Normal signed mixture

m(x) = 2φ(x; 0, 1) + 1.8φ(x; 0.5, 1)− φ(x; 0.25, 0.25)− 0.8φ(x; 0.75, 0.16).

A valid decomposition of this signed mixture as (4) is, for instance,

m(x) = 0.8{2.25φ(x; 0, 1)− φ(x; 0.75, 0.16)}+ 0.9{2φ(x; 0.5, 1)− φ(x; 0.25, 0.25)}
+ 0.2φ(x; 0, 1)− 0.1φ(x; 0.25, 0.25) .

since it can be easily checked that the first two signed mixtures are positive functions.

The construction and optimization of (4) will be conducted in Section 3. The argument
behind this representation (4) is that a generic signed mixture (4) can always be written2 as a
mixture of K two-component signed mixtures, the {akfk − gk}’s, plus potential positive and
negative residual terms. Simulation-wise, the appeal attached to (4) is that those residuals
have low probability mass and hence most of the draws from (4) correspond to the first sum
in (4), whose simulation is straightforward. Indeed, this simulation proceeds by first selecting
at random a component index k with probability proportional to λk and second generating
from this component density {akfk − gk}/(ak − 1) by a naïve accept-reject approach when
ak is small enough, or by a more elaborate accept-reject method that is developed below,
otherwise.

The plan of the paper is as follows. In Section 2, we construct a specific simulation method
for two-component signed mixtures. Section 3 details how the pairing decomposition of (4) is
chosen. Section 4 contains numerical experiments that compare different approaches of this
simulation challenge. Technical details are postponed till Appendices A, B, C, D. Appendix
A specifically focuses on two-component signed mixtures and elaborates in details examples
of the signed mixtures of two Normal or two Gamma distributions.

1.5 Notations and conventions

Throughout the paper, we do not distinguish between the measures and their associated
density functions. In what follows, the probability density function (pdf) of the signed
mixture (with respect to the Lebesgue measure) is denoted by m. The positive and negative
weight components are consistently referred to as fi, 1 ≤ i ≤ P and gj , 1 ≤ j ≤ N ,
respectively, with indices omitted when there is no ambiguity. The positive part m+ of a
signed mixture corresponds to the mixture (3).

For a set D ⊆ Rd, we denote by ν(D) the probability that a random variable with density
ν belongs to D and by |D| the volume of D, that is

|D| =
∫
1D(x)dx.

We always assume that the cumulative distribution functions (cdf) of positive and negative
weight components can be computed everywhere so that

m(D) =

P∑
k=1

ω+
k fk(D)−

N∑
k=1

ω−
k gk(D)

is available.
2In some special cases from the literature, the signed mixtures already come paired as in (4).
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2 Two-component signed mixtures

In this section, we address the specific case of a signed mixture with a sole positive and a
sole negative weights. Given two distinct probability density functions f and g such that
supp(g) ⊆ supp(f), and

a⋆ = sup
x∈supp(f)

g(x)
/
f(x) < +∞ , (5)

a two-component signed mixture of f and g is defined as

m =
af − g

a− 1
, with a ≥ a⋆. (6)

Condition (5) ensures that m stands as a proper probability density when g has tails that
are dominated by those of the positive component f . Note that a⋆ > 1 as in generic accept-
reject settings (see Appendix A, Lemma 3). The limiting case a = a⋆ corresponds to the
minimal positive weight required to compensate the negative weight component, i.e., when
the density function m reaches zero at some point of its support or asymptotically.

Vanilla sampling scheme As mentioned earlier, a natural, albeit naïve, method for
sampling from (6) consists in an accept-reject algorithm with proposed values generated
from the distribution f . Since

sup
x∈supp(f)

m(x)
/
f(x) =

a

a− 1
,

the proposed values x are accepted with probability

af(x)− g(x)

af(x)
.

The average acceptance probability is equal to (a−1)/a, which makes the approach inefficient
when a− 1 is near zero, i.e., when f and g are quite similar.

Stratified sampling scheme We can instead construct an alternative accept-reject scheme
based on a piecewise upper bound on (6) towards yielding a higher acceptance probability on
average. For this purpose, consider a partition (D0, . . . , Dn) of supp(f) with the convention
that D0 contains the tails of f and potential subsets where the density f is unbounded. We
assume that upper and lower bounds on both f and g, over all remaining elements of the
partition, Di, 1 ≤ i ≤ n, exist and can be easily computed, so that the terms

hi = a sup
x∈Di

f(x)− inf
x∈Di

g(x), 1 ≤ i ≤ n

are available. These terms yield a rough upper bound on m on each Di that can obviously
be improved in the specific situation when direct access to the supremum of m on Di is
available. Tails are treated separately. Indeed, since the tail dominating component is
necessarily attached to the positive part, af can then be used as an upper bound of m on
D0. The partition is therefore providing a direct and different upper bound on (6), that is,
for all x ∈ supp(f),

m(x) ≤ 1

a− 1

{
af(x)1D0(x) +

n∑
i=1

hi1Di(x)

}
.
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Algorithm 1: Accept-reject method for two-component signed mixtures
Input: Partition D0, . . . , Dn, upper bounds h1, . . . , hn.

sample k from M(m(D0), . . . ,m(Dn));
repeat

if k = 0 then
sample x from f truncated to D0;
accept x with probability {af(x)− g(x)}/{af(x)};

end
else

sample x uniformly on Dk;
accept x with probability {af(x)− g(x)}/hk;

end
until accepting ;

This dominating function can be normalised into a proposal density, towards a novel accept-
reject algorithm since sampling from this proposal is straightforward. Since this proposal is
a special instance of a mixture distribution, a possible sampling strategy is as follows: one
picks a partition element, that is a (latent) component index, at random according to the
vector of probabilities of its components

ϱ = (af(D0), h1|D1|, . . . , hn|Dn|)

/{
af(D0) +

n∑
i=1

hi|Di|

}

and then simulates from f restricted to D0 or uniformly on Di, 1 ≤ i ≤ n, respectively.
Note that D0 can be further decomposed towards making the simulation of the truncated
distribution manageable in practice.

This strategy is however computationally sub-optimal since, in order to obtain one draw
from m, it requires to sample on average (see Appendix A.2.1)

M =
a

a− 1
f(D0) +

1

a− 1

n∑
i=1

hi|Di|

(latent) component index variables, while only one is needed. Hence, we switch to a more effi-
cient strategy. We follow a stratified sampling method (as detailed in Algorithm 1) that takes
advantage of the partition structure as well as of the availability of the cdf of (6). First, the
procedure selects a partition element Dk according to the signed mixture m, i.e., it draws the
partition index k according to the Multinomial distribution M(m(D0), . . . ,m(Dn)). Once
the partition element k is generated, the procedure samples a realization from the distribu-
tion m restricted to Dk. This is achieved by performing an accept-reject step that uses as
proposal a truncated distribution if D0 was picked, and a uniform distribution otherwise.

The stratified approach reduces the total number of simulated random variables, even
though the average acceptance probability of Algorithm 1 remains the same as for the naïve
accept-reject algorithm, that is 1/M . While this modification might seem accessory, as the
simulation method within a partition element remains unchanged, it offers the key advantage,
of cutting the average computational budget of the proposition step from 3M to 1 + 2M
random variables, in contrast to the initial strategy.

Obviously, the initial partition can easily be refined into smaller sets towards controlling
the overall acceptance probability, as stated by the following result (Appendix A.2.2 details
its proof).
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Lemma 1. Let δ ∈ (1− 1/a, 1) and ε ∈ [0, (1− δ)/δ). If

g(D0) =
(a− 1){1− δ(ε+ 1)}

δ
, (7)

then there exists a partition (D1, . . . , Dnε) of supp(f) \D0 such that the average acceptance
probability of Algorithm 1 is greater than δ.

The constraint on parameters δ and ε ensures that (i) g(D0) ∈ (0, 1) and (ii) Algorithm
1 outperforms the vanilla method in terms of average acceptance probability. The result
also provides a heuristic on how to build the partition to achieve this. If we aim at an
overall acceptance probability of δ, we first build D0 so it satisfies (7) for a user-specified
tolerance ε. The purpose of this threshold is twofold: it informs on the average acceptance
probability for a countably infinite partition, namely δ/(1− δε) (see Appendix A.2.2), and,
more interestingly, on the largest error possible when approximating 1−m(D0) by the upper
Riemann sum

1

a− 1

nε∑
i=1

hi|Di|.

Note that this error can be larger than 1 when the targeted acceptance probability is lower
than 0.5. With a positive tolerance level3, the stratified approach leaves room for improving
performances. The mass of D0 with respect to g decreases with ε. Choosing ε close to
(1− δ)/δ allows for larger errors but this requires to partition a larger domain. Conversely,
choosing ε close to 0 involves partitioning a smaller domain but requires a possibly larger
cardinal of the partition. Once D0 is set, we recursively divide supp(f)\D0 to find a suitable
(D1, . . . , Dnε), that is till the upper Riemann sum approximates 1 −m(D0) with an error
less than ε:

1

a− 1

nε∑
i=1

hi|Di| − 1 +m(D0) ≤ ε i.e.
1

a− 1

nε∑
i=1

hi|Di| −
1

δ
+
af(D0)

(a− 1)
< 0.

Various recursive processes can be used to achieve this stopping rule. In Section 4, we
started with a partition based on equally spaced points, and we then recursively refined
every partition element Di for which

1

a− 1
hi|Di| −m(Di) >

ε

nε
.

For a practical implementation of building such a partition, we refer the reader to the example
in Appendix A.3.3.

3 Pairing mechanism

For a generic signed mixture (2), it is rarely the case that the density m naturally appears
in the format (4). We thus propose a method to construct a pairing of positive and negative
(weight) components and a residual mixture towards a representation of the mixture as (4)
that improves the average acceptance probability.

For a given signed mixture (2), denote E the set of all acceptable pairs of positive and
negative weight component indices, i.e., such that we can define a two-component signed
mixture from the associated density functions, namely

E =

{
(i, j),

1 ≤ i ≤ P

1 ≤ j ≤ N

∣∣∣∣∣ supp(gj) ⊆ supp(fi) and a⋆ij = sup
x∈supp(fi)

gj(x)

fi(x)
< +∞

}
.

3Note that setting ϵ = 0 serves no practical purpose, as it means having a countably infinite partition.
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The set E is always non-empty since, otherwise, the signed mixture m could not constitute
a proper probability density. Subsequently, E+

i and E−
j will denote the sets of pairs that

contain the positive component i and the negative component j, respectively.
A pairing refers to a set of two-component signed mixtures that can be constructed from

mixture m, and is defined as a subset F ⊂ E, and a collection of weights (ω+
ij , ω

−
ij)(i,j)∈F

that satisfy the following constraints

∀(i, j) ∈ F, ω+
ij − a⋆ijω

−
ij ≥ 0, (8)

∀i, 1 ≤ i ≤ P,
∑

(i,j)∈E+
i ∩F

ω+
ij ≤ ω+

i , (9)

∀j, 1 ≤ j ≤ N,
∑

(i,j)∈E−
j ∩F

ω−
ij ≤ ω−

j . (10)

The constraint (8) ensures that the weights associated with the pair (i, j) define a two-
component signed mixture that is positive everywhere. Constraints (9) and (10) guarantee
that when we gather the two-component signed mixtures, the overall weight does not exceed
the total weight in m.

A pairing is associated with a residual mixture

P∑
i=1

rifi −
N∑
j=1

sjgj , where ri = ω+
i −

∑
(i,j)∈E+

i ∩F

ω+
ij and sj = ω−

j −
∑

(i,j)∈E−
j ∩F

ω−
ij .

The decomposition of m associated with the pairing thus writes as

∑
(i,j)∈F

(ω+
ijfi − ω−

ijgj) +
P∑
i=1

rifi −
N∑
j=1

sjgj . (11)

Sampling from m can hereby be achieved by proposing a sample from the mixture made of
the two-component signed mixtures and of the positive weight components, namely

π =
∑

(i,j)∈F

ω+
ij − ω−

ij

C

(
ω+
ijfi − ω−

ijgj

ω+
ij − ω−

ij

)
+

P∑
i=1

ri
C
fi, where C =

P∑
i=1

ω+
i −

∑
(i,j)∈F

ω−
ij ,

and by accepting the resulting simulation x with probability m(x)
/
Cπ(x). Sampling from

π proceeds as for any standard (unsigned) mixture distribution, albeit requiring an extra
accept-reject step when sampling from the component of π that corresponds to pairs (i, j) ∈
F (see Algorithm 2).

If sampling each pair (i, j) ∈ F relies on the vanilla approach, the overall procedure
resumes to sampling by proposing from the mixture m+ (3). Indeed, one sample from m
requires C samples from π on average, and to get one sample from π we need to propose

∑
(i,j)∈F

ω+
ij − ω−

ij

C

ω+
ij

ω+
ij − ω−

ij

+

P∑
i=1

ri
C

=
1

C

P∑
i=1

ω+
i

random variables on average. However, improving the acceptance probability to sample
from at least one of the two-component signed mixtures involved in the decomposition (11)
is enough to improve the performance of the sampling method, as shown by the following
result (whose proof is given in Appendix B.1).
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Algorithm 2: Accept-reject method for general signed mixtures
Input: A pairing F .

compute the vector of probabilities prob ∝
(
ω+
ij − ω−

ij , rℓ

)
(i,j)∈F,1≤ℓ≤P

;

repeat
sample k according to prob;
if k is associated with a pair (i, j) ∈ F then

sample x from the two-component signed mixture with an accept-reject
scheme;

end
else

sample x from fk;
end
accept x with probability m(x)/{Cπ(x)}.

until accepting ;

Lemma 2. Consider δ ∈ (0, 1) and a pairing F for m. Assume that we sample from each
pair (i, j) ∈ F , using

1. the vanilla sampling scheme if (1 − δ)ω+
ij − ω−

ij ≥ 0, that is if the average acceptance
probability of the vanilla scheme associated to the pair is larger than δ,

2. a piecewise sampling scheme that guarantees an average acceptance probability greater
than δ, otherwise.

Then Algorithm 2 requires on average less than

P∑
i=1

ω+
i +

1

δ

∑
(i,j)∈F

{
(1− δ)ω+

ij − ω−
ij

}
1{(1−δ)ω+

ij−ω−
ij<0}

proposed random variables to sample once from m.

A direct consequence of this result is to define the optimal pairing scheme (in terms of
the number of proposed samples) as the one that minimizes the objective function∑

(i,j)∈F

{
(1− δ)ω+

ij − ω−
ij

}
1{(1−δ)ω+

ij−ω−
ij<0}.

The solution to this optimization problem is equivalent to minimizing the objective function∑
(i,j)∈E

{
(1− δ)ω+

ij − ω−
ij

}
(12)

under the linear constraints (8), (9) and (10) (refer to the justification in Appendix B.2).
The optimal pairing solution can thus be found by an optimization algorithm targeting the
above objective, such as the simplex method [Dantzig, 1963].

We stress that Algorithm 2 does not necessarily achieve an overall average acceptance
probability of δ for the optimal pairing. Indeed, the average number of proposed random
variables for the pairing writes as

P∑
i=1

ω+
i +

1

δ

∑
(i,j)∈F

{
(1− δ)ω+

ij − ω−
ij

}
=

1

δ
+

(
1− 1

δ

) P∑
i=1

ri +
1

δ

N∑
j=1

sj .
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It is then lower than 1/δ only when

N∑
j=1

sj ≤ (1− δ)
P∑
i=1

ri.

For instance, when an optimal pairing has no positive weight residuals, attaining exactly
the targeted probability δ is then achieved solely if we have no negative residuals as well.
Even though we control the acceptance probability when sampling from a pair, the reject
step towards getting samples of m by simulating from π degrades the overall performances.
Conversely, if there are no negative weight residuals, Algorithm 2 achieves a higher accep-
tance probability than the user-specified rate δ. This setting does not involve a reject step
to get from π to m. In that case, we do control sampling performances for each pair and
each positive weight residual can be simulated exactly.

4 Comparison experiments

In this section, we examine the performances of three methods that return simulations from
arbitrary signed mixture distributions m, namely

1. the vanilla scheme corresponding to the accept-reject method based on the positive
part of m,

2. the stratified scheme we proposed for acceptance probabilities δ ∈ {0.4, 0.6, 0.8} and
tolerance levels ε ∈ {0.1, 0.2, 0.5, 1} compatible with δ,

3. a numerical inversion of the cumulative distribution function associated with m for a
precision of 10−10 (see Appendix C).

Each method is run to get n ∈ {10, 102, 103, 104} samples from m. For a given sample size n,
we report the proportion δ̂n of accepted proposed variables. Its theoretical value is denoted
δ for both the vanilla and the stratified schemes. We also detail the relative efficiency of a
method A compared to a method B, defined as the ratio of the running time of B by the
running time of A. A relative efficiency larger than 1 indicates that A outperforms B in terms
of computational budget. We focus on the relative efficiency Rn of our method compared to
the vanilla approach and the relative efficiency Qn of accept-reject based methods compared
to the numerical inversion of the cdf.

While the above construction is as generic as possible, we run the comparison on special
instances of signed mixtures of exponential families distributions, namely fk and gk are both
either Normal or Gamma distributions. Both families enjoy an explicit condition for (5) to
hold and hence define a proper two-component signed mixture of fk and gk (see Appendix
A.3). We also provide details on how to build the partition D0, . . . , Dnε for such a two-
component signed mixture in Appendix A.3.3. For each family, we consider two kinds of
numerical experiments.

4.1 Alternating signed mixtures

The first comparison is provided for a particular signed mixture that writes as the alternating
sum

m ∝
K∑
k=1

(
a⋆k

a⋆k − 1

)(
a⋆kfk − gk
a⋆k − 1

,

)
(13)

where each term involves the two-component signed mixture (6) of fk and gk for the minimal
positive weight possible. Such a signed mixture exhibits a natural pairing structure where
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Figure 1: Histogram of 105 samples from an alternating signed mixture (13) with Normal
distributions (14) (left) and Gamma distributions (15) (right).

the weight of each pair in the overall signed mixture is inversely proportional to the average
acceptance probability of the pair. There exists at least one solution to the optimisation
problem that comes with no residual mixture.

Signed mixture of Normal distributions A two-component Normal signed mixture
can only be defined when the variance of the positive weight component is strictly greater
than the variance of the negative one (see Appendix A.3.1). We thus consider the signed
mixture (13) with K = 51 and for all k, 1 ≤ k ≤ 51,

fk ≡ N (µk, σ
2
k)

gk ≡ N (µk + 0.01, (σk − 0.01)2)
with

{
µk = 0.2 (k − 1),

σk = 0.25 + 0.015 (k − 1),
(14)

and

a⋆k =
σk

σk − 0.1
exp

{
0.01

4σk − 0.02

}
.

Signed mixture of Gamma distributions A two-component Gamma signed mixture
can only be defined when the shape and rate of the positive weight component are lower,
respectively strictly lower, than the shape and rate of the negative one (see Appendix A.3.2).
As an example of the signed mixture (13), we consider a setting with K = 41 and for all k,
1 ≤ k ≤ 41,

fk ≡ Γ(αk, βk)

gk ≡ Γ(αk + 0.01, βk + 0.01)
with

{
αk = 1 + 0.1 (k − 1),

βk = 0.25 + 0.04375 (k − 1),
(15)

and

a⋆k =
Γ(αk)

Γ(αk + 0.1(k − 1))

(
βk

βk + 0.01

)0.01(k−1)

exp {0.01(1− k)} .

Comments Table 1 displays the results for both families. In both examples, the simplex
method retrieves the natural pairing associated with the alternating sum form (13) for all
δ ∈ {0.4, 0.6, 0.8}. The stratified method overall outperforms both the vanilla method and
the numerical inversion of the cdf, regardless of the selected acceptance probability δ and

11



the tolerance level ε. Unless simulating a dozen variables, our method is between 1.6 and
90 times faster than the vanilla method while the reduction in computation time is smaller
when compared to the numerical inverse of the cdf but can still go up to a factor 22. In
general, for a given acceptance probability δ, increasing the tolerance level ε results in a
lower computational cost of our stratified method, supporting the hypothesis that integration
error prevails when building the partition. Conversely, the higher the acceptance probability,
the higher the cost of our method. This pattern directly results from the construction of
the partition D0, . . . , Dnε , where a higher acceptance probability implies a larger domain to
partition and a smaller tolerance requires finer partition elements. Lastly, the computational
benefit increases with the number of variables simulated, as the cost of both the simplex
method and the computation of the partition becomes negligible in front of the cost of
sampling random variables.

Table 1: Sampling performances for alternating signed mixtures (13) of Normal distributions
(14) and Gamma distributions (15).

Stratified
Vanillaε 0.1 0.2 0.5 1.0 0.1 0.2 0.5 0.1 0.2

Normal signed mixture
δ 0.4 0.6 0.8 0.018
δ̂10 0.156 0.256 0.500 0.769 0.588 0.769 0.833 0.278 1.000 0.017
R10 1.876 2.136 2.153 2.125 1.604 1.720 1.738 1.128 1.208 1.000
Q10 2.892 3.293 3.319 3.276 2.473 2.652 2.680 1.738 1.862 1.542
δ̂102 0.407 0.592 0.417 0.633 0.389 0.637 0.645 0.820 0.714 0.018
R102 10.70 11.90 10.93 12.71 10.49 11.69 11.66 8.374 9.995 1.000
Q102 2.213 2.461 2.262 2.630 2.170 2.417 2.413 1.732 2.067 0.207
δ̂103 0.422 0.442 0.480 0.657 0.615 0.607 0.737 0.810 0.868 0.017
R103 26.05 27.25 27.76 27.94 11.39 19.94 16.08 22.25 23.70 1.000
Q103 4.521 4.730 4.817 4.849 1.976 3.461 2.791 3.861 4.114 0.174
δ̂104 0.411 0.426 0.499 0.640 0.604 0.641 0.776 0.827 0.855 0.018
R104 38.05 36.51 37.02 37.04 37.59 38.65 38.84 36.96 37.96 1.000
Q104 6.233 5.980 6.063 6.068 6.157 6.330 6.362 6.053 6.218 0.164

Gamma signed mixture
δ 0.4 0.6 0.8 0.008
δ̂10 0.909 0.769 1.000 1.000 0.833 1.000 1.000 1.000 0.714 0.006
R10 0.674 0.715 0.783 0.790 0.426 0.428 0.428 0.386 0.471 1.000
Q10 1.731 1.836 2.010 2.028 1.095 1.100 1.098 0.990 1.209 2.568
δ̂102 0.435 0.408 0.595 0.495 0.752 0.498 0.820 0.990 0.962 0.010
R102 2.606 2.422 3.240 3.744 2.029 2.109 1.606 1.740 2.178 1.000
Q102 1.613 1.499 2.005 2.317 1.256 1.305 0.994 1.077 1.348 0.619
δ̂103 0.418 0.385 0.487 0.648 0.646 0.520 0.640 0.884 0.858 0.009
R103 20.11 20.51 25.82 27.13 17.28 18.34 22.77 15.23 19.45 1.000
Q103 5.728 5.844 7.355 7.727 4.923 5.225 6.487 4.339 5.540 0.285
δ̂104 0.420 0.426 0.456 0.523 0.581 0.644 0.602 0.828 0.852 0.009
R104 54.03 56.36 70.68 90.18 61.65 64.92 77.01 66.44 75.97 1.000
Q104 13.44 14.02 17.59 22.44 15.34 16.15 19.16 16.53 18.90 0.249
δ, δ̂n: theoretical average acceptance probability of the method and its estimated value for a n-sample.
Rn,Qn: relative efficiency for a n-sample of the sampling method compared respectively to the vanilla
method and the numerical inversion of the cdf.
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Figure 2: Summaries per vanilla average acceptance probability categories (x-axis in %) of the
2,800 randomly generated signed mixtures of, respectively, Normal distributions (left) and
Gamma distributions (right): number of positive and negative weight components (top row),
proportion of positive weight components in the model (second row), number of acceptable
pairs in the model (third row) and proportion of acceptable pairs selected by the simplex
algorithm (bottom row).

4.2 Randomly generated signed mixtures

The second comparison is based on a collection of 2,800 randomly generated signed mixtures
(see Appendix D) with a wide range of variety from the number of components to the average
acceptance probability of the vanilla method. Table 2 details the distribution of the models
into 7 categories depending on the acceptance probability of the vanilla method. The aim
was to have models with arbitrary low vanilla acceptance probability in order to challenge
our approach in situations where the vanilla method may perform extremely poorly. Models
considered also encompass a few components up to a hundred with varying proportions of
positive and negative weight components, ensuring then real diversity in the complexity of
models (see Figure 2).

Table 2: Repartition of the 2,800 randomly generated signed mixtures of Normal distribu-
tions and Gamma distributions according to the average acceptance probability δ of the
vanilla accept-reject method.
δ (in %) ≤ 10−2 (10−2, 0.1] (0.1, 1] (1, 5] (5, 10] (10, 20] (20, 35]

Normal distributions 400 400 400 400 393 404 403
Gamma distributions 287 505 408 400 420 480 300
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Figure 3: Running time (in sec.) of the stratified method with respect to user-specified
acceptance probability δ (x-axis) and tolerance level ϵ (eps) for the 2,800 randomly generated
signed mixtures of, respectively, Normal distributions (left) and Gamma distributions (right).

Comments The running time of our method does not depend significantly on the user-
specified acceptance probability nor the tolerance level (see Figure 3). However, we can
point out a consistent pattern regarding the influence of both δ and ε. Allowing a larger
tolerance level leads to a reduced cost since it implies building a partition with less elements.
However, opting for a larger acceptance probability happens to increase the running time.
In such settings, we end up with a larger domain to partition and a tolerance level restricted
to a smaller range. Hence this results in increasing the number of partition terms, as we
aim at a more precise piecewise approximation of the signed mixture. Our method is not
designed to efficiently achieve acceptance probability arbitrary close to 1. Instead, users can
benefit from reasonably lowering the acceptance probability δ. Obviously, this holds as long
as δ remains larger than the vanilla acceptance probability and the simulation cost does not
exceed the advantage of the stratification.

The relative efficiency of our stratified solution compared to the vanilla ranges from
around 10−5 to 105 and unsurprisingly decreases with the vanilla average acceptance proba-
bility (see Figure 4, top row). The stratified approach far outperforms the vanilla method on
challenging situations, that is when an accept-reject from the positive part would lead to an
average acceptance probability lower than 1%, a domination found even for very small sam-
ples. For a hundred samples, sampling from the positive part of the signed mixture becomes
equivalent to, if not better than, the stratified solution when the vanilla average acceptance
probability exceeds 5%. For larger sample sizes, the relative efficiency remains in general
larger than 1. Furthermore, we point out that the median running time of our method for
a given sample size is quite stable across the different categories of vanilla acceptance prob-
abilities and mostly lower than the second (see Figure 4, second row). In comparison, the
median running time of the vanilla method strongly depends on its associated acceptance
probability (see Figure 4, third row). This asymmetry means that in situations where the
vanilla method performs better, the actual computational benefit is of a negligible scale.
Conversely, our method presents a reduction of the simulation cost that is more than sub-
stantial in challenging settings, cutting the cost for instance from a few minutes to less than
a second.

In the stratified scheme, we have better control of the simulation cost, even in the presence
of negative weight residuals (see Figure 7), due to the acceptance probability constraint on
each pair. This explains the general median stability we observe on Figure 4 regardless of
the overall weight of the positive part in the model. The major elements of influence are
the computation of the partition and of the pairing using the simplex method. Regarding
the partition, we already observed that it does not alter strongly the computational cost of
our solution and hence the relative efficiency compared to the vanilla method, but it can be
further confirmed with Figure 8 in Appendix. As for the pairing step, Figure 5 illustrates the
influence of the number |E| of acceptable pairs on the computational budget. Namely, the
cost of our approach increases as the number of pairs increases, and the method becomes less
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Figure 4: Time performances of accept-reject based methods per vanilla average acceptance
probability categories (x-axis in %) and number of draws n for the 2,800 randomly generated
signed mixtures of, respectively, Normal distributions (left) and Gamma distributions (right):
relative efficiency of the stratified method compared to the vanilla method (top row), running
time (in sec.) of, respectively, the stratified method (second row) and the vanilla method
(bottom row).

competitive than the vanilla approach. Indeed, the simplex algorithm is then used to solve an
optimization problem involving 2|E| variables and |E|+N +P constraints. For a moderate
number of samples, the efficiency of our solution is reduced when the model contains over
a thousand acceptable pairs. In this regime, the simplex may prove more time-consuming
than simulating even numerous random variables.

Computing a numerical inverse of the cdf does not exhibit a practical advantage over
our accept-reject based method from a computational perspective (see Figure 6). Indeed,
the median relative efficiency of our method compared to the numerical inverse is close to 1,
if not greater. Additionally, the numerical inverse solution only generates samples from an
approximate probability measure. As shown in the bottom row of Figure 6, this surrogate
quantile function is solely beneficial compared to the vanilla method when the latter exhibits
low acceptance probability. Yet, our approach is specifically designed to provide an efficient
and exact solution in such a setting.
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Figure 5: Relative efficiency of the stratified method compared to the vanilla method with
respect to the number of acceptable pairs (x-axis) and the number of draws n, for the 2,800
randomly generated signed mixtures of, respectively, Normal distributions (left) and Gamma
distributions (right).
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Figure 6: Relative efficiency of, respectively, the stratified method (top row) and the vanilla
method (bottom row) compared to the numerical inverse cdf per vanilla average acceptance
probability categories (x-axis in %), and number of draws n for the 2,800 randomly generated
signed mixtures of, respectively, Normal distributions (left) and Gamma distributions (right).

5 Conclusions

The challenge of simulating a signed mixture (2) surprisingly differs from the standard simu-
lation of an unsigned mixture in that the negative components of (2) have no natural associ-
ation with a latent variable. It thus proves impossible to directly eliminate simulations that
issue from these negative terms, i.e., to formalize a negative version of accept-reject and one
has to resort to more rudimentary approaches. As discussed above, sampling from a signed
mixture using only the positive part of the density may prove cumbersome, especially when
the weight of the latter is small. While elementary, our alternative approach achieves notice-
ably superior computational performances by combining a simplex step towards identifying
an efficient decomposition of the model into a well-balanced set of two-component mixtures,
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and a piecewise constant approximation of these two-component distributions. Controlling
a lower bound on the average acceptance probability ensures steady performance, regard-
less of the overall weight of the positive part. Furthermore, this alternative performs most
satisfactorily relative to the inverse cdf approach, a feat explained in part by the necessity
to numerically invert the cdf, even in cases when the quantile function of both positive and
negative components is known.
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Appendix A Two-component signed mixtures

A.1 Lower bound property

Lemma 3. Assuming two separate probability density functions f and g such that g is
absolutely continuous with respect to f , then

a⋆ = sup
supp(f)

g

f
> 1.

Proof. Let assume a⋆ ≤ 1 and denote E = {x ∈ supp(f) | f(x) = g(x)}. We have for all
x ∈ supp(f) \ E, g(x) < f(x) and∫

E
g(x)dx =

∫
E
f(x)dx and

∫
supp(f)\E

g(x)dx <

∫
supp(f)\E

f(x)dx.

Since supp(g) ⊆ supp(f), we thus have

1 =

∫
supp(f)

g(x)dx <

∫
E
f(x)dx+

∫
supp(f)\E

f(x)dx = 1.

Reductio ad absurdum complete.
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A.2 Results on stratified sampling scheme

A.2.1 Average acceptance probability of Algorithm 1

Behaviour in the tails The distribution m restricted to D0 satisfies

1

m(D0)
m(x)1D0(x) ≤

af(D0)

(a− 1)m(D0)

1

f(D0)
f(x)1D0(x).

To get one sample from m restricted to D0, we need on average

M0 =
af(D0)

(a− 1)m(D0)

samples from the distribution f truncated to D0.

Behaviour in D1, . . . Dn The distribution m restricted to Di satisfies

1

m(Di)
m(x)1Di(x) ≤

hi|Di|
(a− 1)m(Di)

1

|Di|
1Di(x).

To get one sample from m restricted to Di, we need on average

Mi =
hi|Di|

(a− 1)m(Di)

samples from the uniform distribution on Di.

Global behaviour To get one sample from m, we need to propose on average

n∑
i=0

m(Di)Mi =
a

a− 1
f(D0) +

1

a− 1

n∑
i=1

hi|Di| =M

random variables.

Remark 1. Sampling from the distribution f restricted to D0 is not necessarily straightfor-
ward and might require an accept-reject scheme as well. Both methods based on piecewise
proposals have nevertheless still the same acceptance probability on average. If we need N0

samples from a proposal to get one sample from f restricted to D0, Algorithm 1 then requires
simulating

M̃ =
a

a− 1
f(D0)N0 +

1

a− 1

n∑
i=1

hi|Di|

random variables. Conversely, sampling from the dominating piecewise function would re-
quire

M

{
af(D0)

M(a− 1)
N0 +

1

M(a− 1)

n∑
i=1

hi|Di|

}
= M̃

random variables.
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A.2.2 Proof of Lemma 1

Proof. We have

1

a− 1

n∑
i=1

hi|Di| −→
n→+∞

∫
supp(f)\D0

m(x)dx = 1− af(D0)− g(D0)

a− 1
.

Hence, for all ε > 0, there exists nε, such that for all n ≥ nε∣∣∣∣M − a− 1 + g(D0)

a− 1

∣∣∣∣ ≤ ε.

Given ε ∈ [0, (1− δ)/δ), if

g(D0) =
(a− 1){1− δ(ε+ 1)}

δ
,

then ∣∣∣∣M − 1

δ
+ ε

∣∣∣∣ ≤ ε.

This leads to 1/M ≥ δ.

Remark 2. Under the assumption of Lemma 1, we have

M −→
n→+∞

1

δ
− ε.

Remark 3. A direct consequence of Lemma 1 is that, if we pick the partition of supp(f)\D0

such that

1−m(D0) + ε =
1

a− 1

nε∑
i=1

hi|Di|,

then using the assumption on g(D0) we get

M =
a

a− 1
f(D0) + 1−m(D0) + ε = 1 +

1

a− 1
g(D0) + ε =

1

δ
.

A.3 Exponential families examples

Assume that, within the context of Section 2, the terms f and g are both distributions from
the same exponential family

F =
{
c(θ)h(x) exp{η(θ)⊤T (x)} ; x ∈ Rd, θ ∈ Θ ⊆ Rq

}
.

A pairing of f and g, parametrized respectively by θ+ and θ−, into a two-component signed
mixture is thus possible if

a⋆ = sup
x∈supp(f)

{η(θ−)− η(θ+)}⊤T (x) < +∞. (16)
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A.3.1 Example of Normal distributions

Let f ≡ N (µ+, σ2+) and g ≡ N (µ−, σ2−). Since

−(x− µ−)2

2σ2−
+

(x− µ+)2

2σ2+
∼
±∞

−x2
(
σ2+ − σ2−
2σ2−σ

2
+

)
condition (16) is fulfilled if σ2− < σ2+ (or if µ+ = µ− and σ2− = σ2+ which is of no interest).
Assuming σ2− < σ2+, critical points are then solution of

µ−

σ2−
− µ+

σ2+
+ 2x

(
− 1

2σ2−
+

1

2σ2+

)
= 0.

We derive a global maximum at

x⋆ =
µ−σ2+ − µ+σ2−
σ2+ − σ2−

.

Then

a⋆ =
σ+
σ−

exp

{
(µ+ − µ−)2

2(σ2+ − σ2−)

}
.

Monotonicity of a two-component Normal signed mixture Assume f ≡ N (0, 1)
and g ≡ N (µ, σ2), with µ ≥ 0 and σ < 1. The signed mixture m has at most 3 extreme
values. More specifically, it admits

(i) a unique global maximum in (−∞, 0], if

a ≥ sup
x>µ

(x− µ)g(x)

σ2xf(x)
;

(ii) a local maximum in (−∞, 0], a local minimum and a local maximum in [µ,+∞),
otherwise.

We have for all x ∈ R

m′(x) =
f(x)

a− 1
{ψ(x)− ax} , where ψ : x 7→ (x− µ)g(x)

σ2f(x)
.

The number of solutions to m′(x) = 0 then depends on the number of intersection points
between ψ and x 7→ ax. The assumption on two-component signed mixtures imposes
g(x)/f(x) −→

x→±∞
0. Since it happens at exponential speed, we also have ψ(x) −→

x→±∞
0.

On the other hand, for all x ∈ R,

ψ′(x) =
{
(σ2 − 1)x2 + x(2µ− µσ2) + σ2 − µ2

} g(x)

σ4f(x)
.

A straightforward computation shows that the equation ψ′(x) = 0 has two distinct solutions
and thus ψ has a global minimum and a global maximum, respectively at

x1 =
µ

2
+
µ− σ

√
µ2σ2 + 4− 4σ2

2(1− σ2)
and x2 =

µ

2
+
µ+ σ

√
µ2σ2 + 4− 4σ2

2(1− σ2)
.

Moreover, since

ψ′′(x) =
g(x)

σ6f(x)

{
(σ2 − 1)2x3 +Q2(x)

}
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where Q2(x) is a univariate polynomial of degree 2, ψ changes convexity solely one time in
[x1, x2]. Note that ψ′′(µ) = 2µg(µ)/{σ2f(µ)} ≥ 0 and thus the change of convexity happens
between µ and x2. Functions ψ and x 7→ ax have then at most 3 intersection points.

If µ= 0, we have a first obvious solution: x = 0. Since ψ is an odd function when µ = 0,
the latter solution is unique if

a ≥ ψ′(0) =
1

σ3
= sup

x>0

g(x)

σ2f(x)
.

It is the unique global maximum for m, which thus has the same monotonicity as f . Other-
wise, it is a local minimum and we have two local maxima corresponding to the intersection
points solution of

exp

{
x2

2σ2
(σ2 − 1)

}
= aσ3,

that is ±2σ2 log(aσ3)/(1− σ2).

If µ> 0, we do not have a closed form for the critical points. However ψ is a non-positive
function on (−∞, µ], that is decreasing on (−∞, x1) and an increasing convex function on
(x1, µ]. Consequently, there exists a unique intersection point y⋆1 on (−∞, 0] that corresponds
to a local maximum of m. The function x 7→ ax being positive on (0, µ], if there are two
other intersection points, they are necessarily in (µ,+∞). If

a ≥ sup
x>µ

(x− µ)g(x)

σ2xf(x)
,

then for all x > µ, m′(x) < 0 and as a result y⋆1 is the unique global maximum of m.
Otherwise, we have two intersection points. The point y⋆2 corresponding to a local minimum
of m is bound to be on (µ, x2). Nevertheless, note that on (µ, x2)

ψ(x)− ax ≤ (x− µ)
a⋆

σ2
− ax =

(a⋆ − aσ2)x− a⋆µ

σ2
.

If a⋆ − aσ2 > 0, m is decreasing between µ and a⋆µ/(a⋆ − aσ2) and y⋆2 ≥ a⋆µ/(a⋆ − aσ2).

Remark 4. The results for µ < 0 are obtained by symmetry of the problem. Finally the
result for the general case of a signed mixture m of N (µ+, σ2+) and N (µ−, σ2−) can be derived
using that for all x ∈ R

m(x) ∝ af

(
x− µ+

σ+

)
− g

(
x− µ+

σ+

)
, with µ =

µ− − µ+

σ+
and σ =

σ−
σ+

.

A.3.2 Example of Gamma distributions

Let f ≡ Γ(α+, β+), g ≡ Γ(α−, β−) (shape, rate parametrization). Condition (16) imposes
α+ ≤ α− and β+ < β−, so that

(α− − α+) log x+ (β+ − β−)x −→
x→0+

−∞ or 0,

(α− − α+) log x+ (β+ − β−)x −→
x→+∞

−∞.

Assuming this, critical points are solutions of

α− − α+

x
+ β+ − β− = 0,
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which leads to a unique global maximum at

x⋆ =
α+ − α−

β+ − β−
.

Then

a⋆ =



Γ(α+)(β−)α
−

Γ(α−)(β+)α+ exp
{
(α+ − α−)(1− log x⋆)

}
if α+ < α−,

(
β−

β+

)α+

if α+ = α−.

Monotonicity of a two-component Gamma signed mixture The arguments for
studying the monotonicity are similar to those used for the Gaussian case. For all x > 0,

m′(x) =
f(x)

(a− 1)x

{
ψ(x)− a(β+x+ 1− α+)

}
, where ψ : x 7→ (β−x− α− + 1)g(x)

f(x)
.

If α+ = α−, first and second derivatives of ψ write as

ψ′(x) =
{
β−(β+ − β−)x+ β+ + α−(β− − β+)

} g(x)
f(x)

ψ′′(x) =
[
β−(β− − β+)x− {β+ + β− + α−(β− − β+)}

] (β− − β+)g(x)

f(x)
.

We thus have a unique global maximum and a single change of convexity.

• If α− = α+ > 1, then a(1 − α+) < ψ(0) and m admits a unique global maximum on
(0,+∞).

• If α− = α+ ≤ 1, a(1 − α+) ≥ ψ(0) and m admits a local minimum and local maximum
on (0,+∞) solely when

a < sup
x≥0

β−(β−x+ 1− α−)

β+(β+x+ 1− α−)
exp

{
(β+ − β−)x

}
.

Otherwise, m is decreasing on (0,+∞).

If α+ < α−,

ψ′(x) =
[
β−(β+ − β−)x2 + {β+(1− α−) + β−(2α− − α+)}x

+ (α− − α+)(1− α−)
] g(x)
xf(x)

The univariate polynomial has necessarily two real roots x1 and x2 (otherwise ψ would be a
continuous decreasing function on [0,+∞) and hence constant since its limit at 0 and +∞
is 0). It is straightforward to show that the smallest root is non-positive when α− ≤ 1 and
non-negative when α− > 1 while the largest is always positive. The convex properties are
identical to the Gaussian example as

ψ′′(x) =
g(x)

x2f(x)

{
β−(β− − β+)2x3 +Q2(x)

}
,

where Q2(x) is a univariate polynomial of degree 2.
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• If α+ < 1, then a(1 − α+) > 0. m admits a local minimum and local maximum on
(max{0, (α− − 1)/β−},+∞) solely when

a < sup
x≥0

{β−x+ 1− α−}g(x)
{β+x+ 1− α+}f(x)

.

Otherwise, m is decreasing on (0,+∞).

• If α+ ≥ 1, then a(1 − α+) ≤ 0. The behaviour depends on the relative position of the
modes of each component.

• If β−(α+ − 1) < β+(α− − 1), then m admits a local maximum in [0, (α+ − 1)/β+].
It is then decreasing on [(α+ − 1)/β+,+∞) when

a ≥ sup
β−x+1−α−>0

{β−x+ 1− α−}g(x)
{β+x+ 1− α+}f(x)

.

Otherwise, m admits a local minimum and a local maximum within the latter interval.

• If β−(α+−1) > β+(α−−1), then m admits a local maximum in [(α+−1)/β+,+∞).
On [0, (α+ − 1)/β+], m is increasing when

a ≥ sup
β−x+1−α−<0

{β−x+ 1− α−}g(x)
{β+x+ 1− α+}f(x)

.

Otherwise, m admits a local maximum and a local minimum within the latter interval.

• If β−(α+−1) = β+(α−−1), both components have the same mode that is the unique
global maximum of m when

a ≥ sup
β+x+1−α+ ̸=0

{β−x+ 1− α−}g(x)
{β+x+ 1− α+}f(x)

= ψ′
(
α+ − 1

β+

)
,

and a local minimum otherwise. In the latter situation, m admits two local maxima,
one in (0, (α+ − 1)/β+) and one in ((α+ − 1)/β+,+∞).

A.3.3 Construction of the partition

We compute D0 = (qα, q1−α)
c, where qα and q1−α are respectively α and 1− α-quantiles of

g, with

α =
(a− 1){1− δ(ε+ 1)}

2δ
.

In the specific setting of a two-component Gamma signed mixture with both shape param-
eters larger than 1, we consider D0 = [q1−2α,+∞).

We partition Dc
0 into S subsets D1, . . . , DS relying on the monotonic properties of the

signed mixture. The aim is to decide whether, on subdivisions [xi, xi+1[ of Di, we use

(A) hi = sup
[xi,xi+1[

(af − g)(x) or (B) hi = sup
[xi,xi+1[

af(x)− inf
[xi,xi+1[

g(x).

On each subset, the signed mixture has one of the following properties:

1. the signed mixture is a monotonic function. On such a subset, we use the version (A)
on every subdivision [xi, xi+1[;
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2. the signed mixture changes monotonicity only once on the subset. For all subdivisions
[xi, xi+1[ such that m′(xi)m

′(xi+1) > 0, we use the version (A). Otherwise, we use the
version (B) but that happens solely once;

3. the signed mixture changes monotonicity more than once on the interval. On such
subset, we use the version (B) on every subdivision [xi, xi+1[.

Note that for two-component Gamma and Normal signed mixtures, we can restrict ourselves
to use only the first two types of subsets by numerically computing some of the local extrema.

For a given subset Ds, 1 ≤ s ≤ S, we start with the partition [x1, x2[, . . . , [xn−1, xn[,
such that xi+1 − xi = |D0|/100, 1 ≤ i ≤ n. The length of each partition element of Ds is
divided by two until we achieve∑

xi∈Ds

(xi+1 − xi)hi = m(Di) +
ε

S + 1
.

Appendix B Pairing mechanism

B.1 Proof of Lemma 2

Proof. As mentioned in the paper, to get one sample from m, we need to propose in average
C samples from π. Let now detail the number N of proposed sample from π according to
the sampling strategy of Lemma 2. The probability to randomly a pick pair (i, j) ∈ F is
(ω+

ij−ω
−
ij)/C, while the one to pick a residual i ∈ {1, . . . , P} is ri/C. To get one sample from

a pair (i, j) ∈ F , the vanilla scheme requires proposing ω+
ij/(ω

+
ij − ω−

ij) random variables,
while, by assumption, the piecewise sampling scheme requires less than 1/δ random variables.
When sampling from a residual, we have an exact and immediate sampler that requires solely
to propose one draw. Overall, we then have

N ≤
∑

(i,j)∈F

ω+
ij

C
1{(1−δ)ω+

ij−ω−
ij≥0} +

∑
(i,j)∈F

ω+
ij − ω−

ij

δC
1{(1−δ)ω+

ij−ω−
ij<0} +

P∑
i=1

ri
C
.

Since ∑
(i,j)∈F

ω+
ij +

P∑
i=1

ri =

P∑
i=1

ω+
i ,

we end up with

C ×N ≤
P∑
i=1

ω+
i −

∑
(i,j)∈F

ω+
ij1{(1−δ)ω+

ij−ω−
ij<0} +

∑
(i,j)∈F

ω+
ij − ω−

ij

δ
1{(1−δ)ω+

ij−ω−
ij<0}

≤
P∑
i=1

ω+
i +

1

δ

∑
(i,j)∈F

{
(1− δ)ω+

ij − ω−
ij

}
1{(1−δ)ω+

ij−ω−
ij<0}.

B.2 Objective function for the simplex method

Minimizing the objective function (12) provides the optimal pairing for Lemma 2. Let
{ω̃+

ij , ω̃
−
ij}(i,j)∈E be a minimizer of (12), which, as a reminder, is given by∑

(i,j)∈E

{
(1− δ)ω+

ij − ω−
ij

}
,
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and assume there exists a pair (k, ℓ) ∈ E such that (1− δ)ω̃+
kℓ − ω̃−

kℓ > 0. Then,∑
(i,j)∈E

{
(1− δ)ω̃+

ij − ω̃−
ij

}
>

∑
(i,j)∈E\{(k,ℓ)}

{
(1− δ)ω̃+

ij − ω̃−
ij

}
+
{
(1− δ)ω+

kℓ − ω−
kℓ

}
1{(ω+

kℓ,ω
−
kℓ)=(0,0)}.

This contradicts the fact that {ω̃+
ij , ω̃

−
ij}(i,j)∈E is a minimizer of (12). Therefore a minimizer

{ω̃+
ij , ω̃

−
ij}(i,j)∈E of (12) satisfies for all (i, j) ∈ E, (1 − δ)ω̃+

ij − ω̃−
ij ≤ 0. Consequently, (12)

has the same set of minimizers than∑
(i,j)∈E

{
(1− δ)ω+

ij − ω−
ij

}
1{(1−δ)ω+

ij−ω−
ij<0}.

Appendix C Numerical inversion of the cdf

Consider n ordered points q1, . . . , qn in the support of f and p1, . . . , pn the value of the cdf
associated with m at these points, that is pi = m((−∞, qi]), 1 ≤ i ≤ n. Furthermore, set a
user-specified precision ε. In the paper, we used ε = 10−10.

The set of points q1, . . . , qn and p1, . . . , pn provides a piecewise affine approximation of
the inverse cdf. The aim of our numerical inversion is to refine the affine approximation so
that we can find the quantile associated with a probability arbitrary close to a point u ∈ [0, 1]
using one of the following steps.

Step A Assume we have u ∈ [pi, pi+1]. We compute the preimage q⋆ of u by the affine
transformation on [pi, pi+1]

x 7→ pi+1 − pi
qi+1 − qi

x+
piqi+1 − pi+1qi

qi+1 − qi
,

that is

q⋆ =
(qi+1 − qi)u− piqi+1 + pi+1qi

pi+1 − pi
.

Then we compute the cdf at q⋆ and denote p⋆ its value. This yields a new interval containing
u that is strictly included in [pi, pi+1]. We now apply the same procedure on that interval.
We repeat the process until we get a value p⋆ such that |u− p⋆| < ε.

Step B If we deal with a distribution that has an unbounded support, tails should be
treated separately. Assume we have u < p1. We use a scheme similar to the above except we
take the preimage by the affine transformation based on the two first points (p1, p2) larger
than u. Here we stop when we find a point p⋆ ≤ u+ ε. If u > pn, the reasoning is the same
except we use the last two points smaller than u and we stop when p⋆ ≥ u− ε. Now, either
this ending point satisfies |u− p⋆| < ε, or we apply Step A starting with the interval [p⋆, p1]
for left tail or [pn, p

⋆] for right tail.

Appendix D Random generator of signed mixture models

We used two different methods to generate the benchmark models. Both methods start by
randomly setting an initial number K of positive weight components in the model. The
number K is drawn uniformly between kmin and kmax for the following sets {5, . . . , 10},
{10, . . . , 30}, {30, . . . , 50}, and {50, . . . , 100}. Once the number of positive weight compo-
nents is set, we randomly draw the associated parameter values.
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• For Normal signed mixtures, the mean µ+ is drawn uniformly in [0, 20] and the stan-
dard deviation is drawn according to a Gamma distribution Γ(3, 2.5) (shape, rate
parametrization).

• For Gamma signed mixtures, the shape parameter α+ is drawn according to a Gamma
distribution Γ(4, 0.5) and the rate parameter β+ to a Gamma distribution Γ)(2, 0.7).

We then randomly set the number of negative weight components (1 or 2) that are initially
related to each positive weight component. The parameter value for the negative compo-
nents as well as the weights are then computed to ensure a benchmark model for which the
vanilla average acceptance probability p ranges in [pmin, pmax] for the following sets [0, 10−4],
(10−4, 0.001], (0.001, 0.01], (0.01, 0.05], (0.05, 0.1], (0.1, 0.2] and (0.2, 0.3]. For each set of
values for K and p, and for each method, we generated 50 benchmarks.

D.1 First method

The first method is based on the properties of two-component signed mixtures. For a given
positive weight component, we compute the parameter value of the associated negative weight
component such that a⋆ ∈ [1/(1− pmax), 1/(1− pmin)]. The weights for this two-signed com-
ponent are the ones associated with a⋆. If the positive weight component is associated with
more than one negative component, we repeat this procedure for each negative component.
As a result, we thus obtain a collection of two-component signed mixtures that all have the
targeted acceptance probability. A convex combination with uniform rates of these mixtures
yields a signed mixture with the vanilla average acceptance probability we aim at.

If the overall acceptance probability is lower than pmax, we randomly decide to add
positive weight components that can either balance some of the negative components already
included or that can balance none. We can easily determine the maximal weight to assign
to such single components so the acceptance probability remains lower than pmax. Indeed,
assume we add K̃ positive weight components. The new normalized signed mixture writes
as ∑K

i=1 ω
+
i fi −

∑N
j=1 ω

−
j gj +

∑K̃
k=1 rkfK+k

1 +
∑K̃

k=1 rk
.

The latter is associated with a vanilla acceptance probability lower than pmax as long as

K̃∑
k=1

rk ≤
pmax

∑K
i=1 ω

+
i − 1

1− pmax
.

In a given benchmark, a negative weight component is hence not naturally paired with a
single positive weight component. This method aims at providing benchmarks such that the
number of acceptable pairs in the model is quite important. They constitute a good basis
to challenge the performances of the simplex method as it has to narrow down the pairs
involved in a pairing from a large number of initial acceptable pairs.

D.2 Second method

After generating all the positive weight components, accounting for multiplicity when more
than one negative weight component is associated, for a given positive weight component,
we randomly draw the parameter value of the associated negative weight component such
that a⋆ ≤ 10. This constraint ensures the two-component signed mixture does not have a
vanilla acceptance probability larger than 0.90 in the worst case scenario, making the next
step easier. As opposed to the previous method, we now consider the linear combination
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af − g with a drawn uniformly in [0, a⋆]. The resulting function takes negative values on the
support of f and, hence, does not define a distribution anymore.

We use all the positive components fi, 1 ≤ i ≤ K−1 generated, except f , to balance the
negative part of that function. First, we make sure that all positive components together
have enough mass over the set of negative values, that is the function is not negative in the
tails of all the possible positive components. When necessary we add one or more positive
weight components (we still denote K the overall number of positive weight components).
We then compute the weights ω̃+

i such that

af − g +

K−1∑
i=1

ω̃+
i fi ≥ 0.

That yields a collection of K signed mixtures, each one having solely one negative component
and associated with a vanilla acceptance probability pi. We consider a convex combination
of these signed mixtures to control the acceptance probability associated with the vanilla
method and set it to mini pi. This is usually not enough to ensure that p ranges in [pmin, pmax].
However, we can easily modify the model to satisfy this constraint by adding a two-signed
component mixture to the model. We select at random a positive weight component included
in the model and we build from it a two-signed mixture a⋆f − g that fulfills the constraint
on p. The new normalized signed mixture writes as∑K

i=1 ω
+
i fi −

∑N
j=1 ω

−
j gj + λ(a⋆f − g)

1 + λ(a⋆ − 1)
.

The latter is associated with a vanilla acceptance probability lower than pmax as long as

λ ≤
pmax

∑K
i=1 ω

+
i − 1

a⋆(1− pmax)− 1
.

This method aims at providing benchmarks that exhibit negative weight residuals. Such
benchmarks allow to study the performances of the stratified method when the residual
mixture obtained after the pairing step degrades the acceptance probability of the procedure
(see Figure 7).

Appendix E Supplementary material on methods comparison
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Figure 7: Theoretical acceptance probability of the stratified sampling scheme with respect
to the vanilla average acceptance probability categories (x-axis in %) and user-specified
acceptance probability δ for the 2,800 randomly generated signed mixtures of, respectively,
Normal distributions (top row) and Gamma distributions (bottom row). An acceptance
probability lower than δ signals the presence of negative weight residuals.
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Figure 8: Relative efficiency of the vanilla method compared to the stratified method with
respect to user-specified acceptance probability δ, tolerance level ϵ (x-axis) and number of
draws n, for the 2,800 randomly generated signed mixtures of, respectively, Normal distri-
butions (top row) and Gamma distributions (bottom row).
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