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An implicit staggered algorithm for CPFEM-based analysis of aluminum

In this paper, we introduce an implicit staggered algorithm for crystal plasticity finite element method (CPFEM) which makes use of dynamic relaxation at the constitutive integration level. An uncoupled version of the constitutive system consists of a multi-surface flow law complemented by an evolution law for the hardening variables. Since a saturation law is adopted for hardening, a sequence of nonlinear iteration followed by a linear system is feasible. To tie the constitutive unknowns, the dynamic relaxation method is adopted. A Green-Nagdhi plasticity model is adopted based on the Hencky strain calculated using a [2/2] Padé approximation. For the incompressible case, the approximation error is calculated exactly. A enhanced-assumed strain (EAS) element technology is adopted, which was found to be especially suited to localization problems such as the ones resulting from crystal plasticity plane slipping. Analysis of the results shows significant reduction of drift and well defined localization without spurious modes or hourglassing.

Introduction

Realistic simulations of anisotropy in metal polycrystals require robust single crystal algorithms that consistently produce results within an established error bound. In addition, since polycrystals typically include a large number of grains and significant computational costs, efficiency improvements are a necessity. Fully coupled constitutive systems for single crystals involve a large number of constitutive unknowns (plastic strain tensor, hardening variables, among others) in a nonlinear and frequently nonsmooth system. In a simple FCC simulation, constitutive unknowns are at least 18 corresponding to hardening in each of the 12 dominant slip systems plus 6 unknowns corresponding to the flow law (either plastic strain or final stress). Computational costs of the fully coupled constitutive system in a polycrystal are prohibitive for practical applications without considerable computational investment. Staggered solutions can be a solution, but naive implementations produce drifting. However, effective implicit staggered algorithms have been developed for thermoelasticity [START_REF] Erbts | Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains[END_REF] and phase-field simulations [START_REF] Schapira | Performance of acceleration techniques for staggered phase-field solutions[END_REF]. These are here adopted to improve the accuracy of the staggered algorithm. For FCC (aluminum), we propose an implicit staggered algorithm which ties the solutions to avoid drifting.

Classical works on single crystal plasticity emphasize the strain localization physics and describe the essentials of what is now CPFEM, see [START_REF] Rice | Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity[END_REF][START_REF] Asaro | Strain localization in ductile single crystals[END_REF]. Significant developments were achieved to incorporate mettallurgical effects in hardening and coupling with grain boundary phenomena (see, e.g. [START_REF] Cailletaud | Computational Crystal Plasticity: From Single Crystal to Homogenized Polycrystals[END_REF]). Current success of algorithms for single crystals can be observed by large-scale polycristalline ensembles, either combined with homogenization or not. Currently, theoretically sound frameworks exist for single crystal plasticity, including that of Kaiser and Menzel [START_REF] Kaiser | A dislocation density tensor-based crystal plasticity framework[END_REF], where gradient effects in hardening are considered. A review of developments in single crystal plasticity up to the year 2010 was performed by Roters et al. [START_REF] Roters | Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finiteelement modeling: Theory, experiments, applications[END_REF].

This work is organized as follows: in section 2, a description of the aluminum FCC crystal plasticity is presented, in Section 3 the constitutive integration algorithm for the flow law and the hardening evolution law is presented and a localization test is performed. Section 4 presents the proposed implicit staggered algorithm based on dynamic relaxation, as well as a verification test for its effectiveness. Section 5 presents the finite element technology, specifically a 3D enhanced assumed strain hexahedron (EAS) which is able to capture strain localization. A polycrystal numerical test, following the data of Alankar, Mastorakos and Field [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF], is presented in section 6. In section 7, conclusions are drawn with respect to the proposed algorithm.

Aluminum crystal plasticity

Significant literature exists concerning aluminum plasticity, both in phenomenological [START_REF] Barlat | A six-component yield function for anisotropic materials[END_REF][START_REF] Barlat | Linear transformation-based anisotropic yield functions[END_REF] as well as single crystal [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF][START_REF] Kasemer | A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet[END_REF][START_REF] Romanova | Mechanical aspects of nonhomogeneous deformation of aluminum single crystals under compression along[END_REF] cases. The FCC dominant slip systems (which is considered here for pure Aluminum) consist of {111} planes and directions < 110 >. Table 1 presents the dominant slip systems. The lattice elasticity matrix is anisotropic and given in sub-table 2a.

Planes and directions are rotated for the analysis, as Figure 2 shows. The crystal orientation is defined in spherical coordinates using two angles: θ and ϕ. Figure 2 exhibits the transformation. The corresponding transformation matrix defined as follows:

T (θ, ϕ) =    cos θ cos ϕ cos θ sin ϕ -sin θ -sin ϕ cos ϕ 0 sin θ cos ϕ sin θ sin ϕ cos θ    (1) 
For the stereographic representation of the loading direction, the transpose of T (θ, ϕ) is adopted. We use a visco-plastic formulation, which is comprised of the following ingredients:

• Lattice elastic law.

• Additive decomposition of the logarithmic strain into elastic and plastic terms.

• Schmidt flow law.

• Hardening laws for the 12 systems.

[001]

[010] [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF]). These are assumed constant for α = 1, . . . , 12.

           × 10 9 Pa (a) Lattice elasticity matrix γ0 s -1 h 0 [Pa] ξ 0 [Pa] ξ ∞ [Pa] ξ ⋆ ∞ [Pa] q [-] n 0.
We adopt the Lagrangian Hencky strain, see [START_REF] Schröder | A simple orthotropic finite elasto-plasticity based on generalized stress-strain measures[END_REF]:

ε = 1 2 log [2E + I] ( 2 
)
where E is the Green-Lagrange strain and I is the identity matrix. Schröder, Gruttmann, and Löblein [START_REF] Schröder | A simple orthotropic finite elasto-plasticity based on generalized stress-strain measures[END_REF] as well as Shutov and co-workers [START_REF] Shutov | Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change[END_REF] and Miehe's group [START_REF] Miehe | Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and[END_REF] have explored the additive decomposition of ε and the corresponding conjugate stress. For metals, it is a long-standing procedure to adopt a Hookelike law with the strain (2), see [START_REF] Anand | On Hencky's, H. approximate strain-energy function for moderate deformations[END_REF], which is compatible with hyperelasticity if the Kirchhoff stress is used. The present approach is aligned with the spirit of Asaro in [START_REF] Asaro | Crystal Plasticity[END_REF] for the constitutive law. A review is presented by Xiao [START_REF] Xiao | Hencky strain and hencky model: extending history and ongoing tradition[END_REF]. Computational origins of the additive strain decomposition in finite strains were established by Papadopoulus and Lu [START_REF] Papadopoulos | A general framework for the numerical solution of problems in finite elasto-plasticity[END_REF][START_REF] Papadopoulos | On the formulation and numerical solution of problems in anisotropic finite plasticity[END_REF]. The approach inherits some of the formalism adopted in small strain elasto-plasticity. In particular, the additive decomposition, into elastic (ε e ) and plastic (ε p ) parts is retained:

ε = ε e + ε p (3) 
Theoretical foundations for the use of (3) in finite strains were established by Green and Nagdhi [21] and have been followed by schools of continuum mechanics, see Lehmann [START_REF] Th | Thermodynamical foundations of large inelastic deformations of solid bodies including damage[END_REF]. The lattice elastic law is written as follows:

ε e = C -1 : σ (4) 
In the isotropic case, Bruhns, Xiao and Meyers [START_REF] Bruhns | Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky's logarithmic strain tensor[END_REF] proved the satisfaction of the Legendre-Hadamard condition if every principal stretch satisfies λ k ∈ [0.21162..., 1.39561...] which encompasses the range of elastic behavior of metals discussed by Anand [START_REF] Anand | On Hencky's, H. approximate strain-energy function for moderate deformations[END_REF]. In (3), the total strain ε is assumed to be known from E. That allows to establish, in equation ( 3), a coupling between the macroscopic stress σ and the plastic strain ε p . The stress for the system α is obtained using Cauchy's lemma:

τ α = m α • (σ • n α ) ⇔ (5) 
τ α = M α : σ (6) 
τ α = P α : (ε -ε p ) (7) 
where P α = (m α ⊗ n α ) : C . The strain rate corresponding to each dominant slip system α = 1, . . . , 12 is introduced as γα . The single crystal flow law is provided by the Schmid relation, which is known to be an acceptable starting point for FCC crystals:

εp = 12 α=1 M α γα (8) 
where the flow vector M α is obtained as M α = [m α ⊗ n α ] symm . We note that M α is established for a given crystalline structure, which is fixed during the analysis. Since symmetry ensures that a Voigt form can be established for M α , it becomes possible to write:

P α = M α : C (9) 
If a fixed yield stress is assumed, then

ξ α -|τ α | ≥ 0 (10) 
Note that, in [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF], the equivalent strain rate in system α, γα can assume either negative or positive values. It is often assumed that γα follows a visco-plastic law:

γα = γα 0 τ α ξ α n sign [τ α ] (11) 
The hardening law for the critically resolved shear stress ξ α follows Kasemer [START_REF] Kasemer | A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet[END_REF] saturation proposal:

ξα = h 0 12 β=1 γβ 1 - ξ β ξ β ∞ h αβ (12) 
where the coupling matrix is given by [START_REF] Chang | An experimental study of shear localization in aluminum-copper single crystals[END_REF] with q = 1.4 [START_REF] Kasemer | A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet[END_REF], see also [START_REF] Bassani | Latent hardening in single crystals ii. analytical characterization and predictions[END_REF][START_REF] Zhang | A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations[END_REF].

h αβ = 1 α = β 1.4 α ̸ = β (13) 
Initial conditions for the previous constitutive system are:

ε p | 0 = 0 (14) ξ α = ξ 0 (15)

Constitutive integration

Using the backward-Euler integration method between time steps s and s + 1, the flow law (8) reads:

ε p s+1 = ε p s + 12 α=1 M α ∆γ α s+1 (16) 
Given ( 16), the trial shear stress for system α is given by:

τ ⋆ α = P α • (ε -ε p s ) (17) 
non-negativity of ( 17) is assumed, in the sense that τ ⋆ α ∆γ α s+1 ≥ 0, without sum on α. Integration of ( 16) for a given time increment ∆t is as follows:

ε p s+1 -ε p s -∆t 12 α=1 M α γα 0 P α : ε -ε p s+1 ξ α s+1 n sgn [τ α ] = 0 (18) 
Newton iteration for ε p s+1 in Voigt form is performed, which results in a decoupled solution from ξ α s+1 . The Jacobian of ( 18) is determined as:

J εp = I 6×6 + ∆t 12 α=1 M α ⊗ P α n γα 0 ξ α s+1 P α : ε -ε p s+1 ξ α s+1 n-1 (19) 
The hardening law is also integrated:

ξ α s+1 = ξ α s + h 0 12 β=1 ∆γ β s+1 1 - ξ β s+1 ξ β ∞ h αβ (20) 
Given that ( 20) is a linear system for ξ γ s+1 , we rewrite it as:

ξ γ s+1 δ αγ = ξ α s + h 0 ∆γ β s+1 1 - δ βγ ξ γ s+1 ξ β ∞ h αβ ⇔ (21) 
δ αγ + h 0 h αγ ∆γ γ s+1 ξ γ ∞ ξ γ s+1 = ξ α s + h 0 ∆γ β s+1 h αβ (22) 
If all slipping systems are active, then it follows that |τ α |ξ α s+1 = 0 for α = 1, . . . , 12. Introducing the sign of τ α as s α , then it follows that τ αs α ξ α s+1 = 0 for active systems. For each α, a summation in β = 1, . . . , 12 is required:

τ ⋆ α -s α ξ α s+1 -P α • M β ∆γ β s+1 = 0 (23) 
For the sole purpose of calculating ∆γ α s+1 , it is convenient to adopt the forward-Euler algorithm for [START_REF] Romanova | Mechanical aspects of nonhomogeneous deformation of aluminum single crystals under compression along[END_REF], resulting in a linearized version of ξ α s+1 , denominated here as ξ αL s+1 :

ξ αL s+1 = ξ α s + T αβ s β ∆γ β s+1 (24) 
where

T αβ = h 0 h αβ 1 - ξ β s ξ β ∞ (25) 
and

s β = τ β/ |τβ| (26) 
The second Piola-Kirchhoff stress S is power-conjugated to Ė and therefore, in Voigt form,

S : Ė = σ : ε = σ : dε dE : Ė ⇔ S = σ : dε dE (27) 
For moderate strains, the Padé approximation of order (2, 2) is adopted and it is shown to be adequate. The approximation is given by (see, e.g. [START_REF] Rezaee-Hajidehi | A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity[END_REF]): [START_REF] Sastre | New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential[END_REF] this ensures the coincidence, at X = I, of the approximation and the function up to the third derivative. Popular alternatives to [START_REF] Sastre | New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential[END_REF] are polynomial approximations with scaling and squaring algorithm (used for the exponential by Sastre et al. [START_REF] Sastre | New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential[END_REF]) and the approximation proposed by Bažant [START_REF] Bažant | Easy-to-Compute Tensors With Symmetric Inverse Approximating Hencky Finite Strain and Its Rate[END_REF]. Since ε = 1 2 log [2E + I], we have, in matrix form,

log [X] ∼ = [2/2] log (I -X) = 3 X 2 -I X 2 + 4X + I -1
ε ∼ = 3 [E • E + E] • [2E • E + 6E + 3I] -1 (29) 
First and second variations of ε are required. For the first variation, we have

dε = 3 [dE • E + E • dE + dE] • [2E • E + 6E + 3I] -1 -3 [E • E + E] • [2E • E + 6E + 3I] -1 • [2dE • E + 2E • dE + 6dE] • [2E • E + 6E + 3I] -1 (30) 
The material tangent modulus, C, is calculated using the chain rule. Using Voigt form,

C Voigt = dε dE T • dσ dε • dε dE + σ • d 2 ε dEdE (31) 
The specific expression for C Voigt is too intricate to present in this text. The corresponding Mathematica/Acegen source code is available in the Github repository [START_REF] Areias | Material logarithmic strain: transformations and tangent modulus[END_REF]. The optimized expression for (31) is compact (around 840 lines of Fortran 95) and dispenses the explicit calculation of the sixth-order tensor d 2 ε /dEdE described in Miehe, Apel and Lambrecht [START_REF] Miehe | Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and[END_REF]. Error analysis by C. Kenney and A. Laub [START_REF] Kenney | Padé error estimates for the logarithm of a matrix[END_REF] presents the following inequality, relating the errors of Padé approximation (after specialization for the present case): [START_REF] Kröner | Allgemeine kontinuumstheorie der versetzungen und eigenspannungen[END_REF] 0.02 0.04 0.06 0.08 0.10 0.12 This provides an upper bound for the error in ε. Bounds for the condition number are provided in [START_REF] Kenney | Padé error estimates for the logarithm of a matrix[END_REF]. Of course, in the 1D case, the absolute error can be calculated in closed form:

∥[m/n] log (-2E) -log [2E + I]∥ ≤ [m/n] log (2 ∥E∥) -log [1 -2 ∥E∥] 2E max [m/n] log
1 × 10 -6 2 × 10 -6 3 × 10 -6 4 × 10 -6 5 × 10 -6 E, E E max [2/2] log E max [2/2] log , E 1D [2/2] log E 1D [2/2] log
E 1D [m,n] log = 1 /2 |[m/n] log (2E) -log [1 + 2E]| (33) 
A graphical representation of E max [2/2] log as a function of ∥E∥ and of E 1D [2,2] log , respectively, is shown in Figure 3. For materials with limited elastic strains, the error in the approximation of logarithm is compatible with current computational mechanics practice.

For the incompressible case, which is reasonable in metal plasticity with finite strains, and using principal directions (principal Euler-Lagrange strains E 1 , E 2 and E 3 ), we have, for the Hencky strain,

1 /2 log [-2E] = 1 /2    log [2E 1 + 1] 0 0 0 log [2E 2 + 1] 0 0 0 -log [1 + 2E 1 + 2E 2 + 4E 1 E 2 ]    (34) 
where it was assumed that E 3 is a function of E 1 and E 2 :

E 3 = 1 2 -1 + 1 1 + 2E 1 + 2E 2 + 4E 1 E 2 ( 35 
)
For the [2/2] Padé approximation,

ε =     3E 1 (1+E 1 ) 3+2E 1 (3+E 1 ) 0 0 0 3E 2 (1+E 2 ) 3+2E 2 (3+E 2 ) 0 0 0 3E 3 (1+E 3 ) 3+2E 3 (3+E 3 )     (36)
Figure 4 shows the error ∥ 1 /2 log [2E + I] -ε∥ in the domain E k ∈ [-0.25, 0.65]. It can be observed that even for considerable strains in tension, the error is 0.0258, which corresponds to a relative error of 2.52%.

The calculation of the rotated normals is performed with Kröner/Lee's multiplicative decomposition [START_REF] Kröner | Allgemeine kontinuumstheorie der versetzungen und eigenspannungen[END_REF][START_REF] Lee | Finite strain elastic-plastic theory particularly for plane wave analysis[END_REF][START_REF] Lee | Elasto-plastic deformation at finite strains[END_REF] of the deformation gradient F into elastic F e and plastic parts F p , Since F is determined by the finite element solution, F e at time step n is determined by the flow law (see, e.g. [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF]) as:

F = F e • F p (37) 
F e s = F s • F p s-1 -1 • I - 12 α=1 m α ⊗ n α ∆t γα (38) 
from which the plane normals in the deformed configuration (see Kaiser and Menzel [START_REF] Kaiser | A dislocation density tensor-based crystal plasticity framework[END_REF]) are obtained using the elastic push-forward:

m ⋆ α = F e s • m α (39) 
We use the centroidal deformation gradient for purposes of calculating F e s and m ⋆ α . A verification test is performed using the data shown in Figure 5. Two rigid plates are connected to the single crystal. The upper plate is clamped and pulled in the z direction by an imposed displacement u 3 . The lower plate is fixed in the z direction but left free to have displacement in the xy plane. We measure the average normal stress σ 33 by dividing the reaction force on the z direction. In addition, the average strain, E 33 is obtained as E 33 = u 3/12.5×10 -3 . To enforce localization, we adopt the saturation stress ξ ⋆ ∞ in Table 2b. Localization results for the two orientations are shown in Figure 6 as a function of the element size h (see, e.g. [START_REF] Hughes | The Finite Element Method[END_REF] for this nomenclature). The relation between these quantities is represented in Figure 7, where good mesh insensitivity can be observed, especially considering that no regularization is adopted. For θ = 0.304π and ϕ = 0.25π, we show the contour plots of ξ 1 , • • • , ξ 12 in Figure 8. 

θ = 0.304π φ = 0.25π B A E p = E p E p = E p E p = E p E p = E p E p = E p E p = E p

Implicit staggered algorithm

Since a decoupled constitutive system is solved, explicit algorithms produce drift, as is the case in thermoelasticity [START_REF] Erbts | Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains[END_REF], fluid-structure interaction (FSI) [START_REF] Küttler | Fixed-point fluid-structure interaction solvers with dynamic relaxation[END_REF][START_REF] Degroote | Performance of partitioned procedures in fluid-structure interaction[END_REF] and phase-field simulations [START_REF] Schapira | Performance of acceleration techniques for staggered phase-field solutions[END_REF]. The study by Erbts and Düster shows that dynamic relaxation with appropriate predictors produces efficient and stable results to remove the drift. We adopt dynamic relaxation and introduce a substep index i as a superscript. Hardening variables ξ are adopted in the relaxation. Index interpretation is as follows: ξ i s : i th substep of time step s Since the value of ξ depends on ∆γ and this also depends on ξ, the staggered solution must comply with the original coupled system. To represent these dependencies, we introduce the operator Ξ ⋆ (ξ) as:

ξ i+1 s+1 = Ξ ⋆ ξ i s+1 = Ξ Γ ξ i s+1 , ξ i s+1 (40) 
Relaxation methods make use of a combination of fixed-point iteration with heuristic acceleration. Updating is based on linear combination of the image [START_REF] Simo | Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes[END_REF] and the previous substep:

ξ i+1 s+1 = (1 -ω i ) ξ i s+1 + ω i ξ i+1 s+1 ( 41 
)
where ω i is the coefficient of the linear combination, ω i ∈]0, 2[. The hardening variable residual for substep i + 1 is given by:

r i = ξ i+1 s+1 -ξ i s+1 (42) 
Heuristics for updating ω i have been discussed at length. We here follow [START_REF] Erbts | Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains[END_REF] to update ω i : Longitudinal force for single crystal FCC, θ = 0.304π, φ = 0.25π 

(b) θ = 0.304π, ϕ = 0.25π
ω i = ω i-1 1 + (r i-1 -r i ) • r i (r i-1 -r i ) • (r i-1 -r i ) (43) 
Figure 3 shows the algorithm 1 adopted in our code.

The algorithm is inserted in our in-house code, SimPlas [START_REF] Areias | Simplas[END_REF] and combined with the existing finite element technology.

Finite element formulation

We adopt the 8-node hexahedron with EAS (enhanced assumed strain) technology developed by Simo and co-workers [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF][START_REF] Simo | Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes[END_REF][START_REF] Simo | Improved versions of assumed strain tri-linear elements for 3D finite deformation problems[END_REF], which has proved itself to be appropriate for strain localization problems (cf. [START_REF] Simo | Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes[END_REF]). A version based on the Green-Lagrange strain was introduced by Andelfinger and Ramm [START_REF] Andelfinger | EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements[END_REF] and it is employed here. Calculations were performed using Mathematica with the AceGen add-on [START_REF] Korelc | Multi-language and multi-environment generation of nonlinear finite element codes[END_REF]. Using the classical formalism and the Euler-Lagrange strains,

E = E u + E α (44)
see, e.g. [START_REF] Andelfinger | EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements[END_REF]. Classical results for E u and E α follow (see, e.g. [START_REF] Andelfinger | EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements[END_REF]): Algorithm 1 Dynamic relaxation algorithm for ∆γ and ξ

E u = 1 2 (∇u) + (∇u) T + (∇u) T • (∇u) (45) 
E α = J J J -T • E α • J -1 (46) 
1 ξ 0 s+1 = ξ s 2
Newton iteration for ∆γ: ∆γ = Γ ξ 0 s+1 3 Linear solution for

ξ 1 s+1 = Ξ ∆γ, ξ 0 s+1 4 Initial substep residual r 0 = ξ 1 s+1 -ξ 0 s+1 5 Initial coefficient ω 0 = 1 /2 6 Estimate ξ 1 s+1 = (1 -ω i ) ξ 0 s+1 + ω i ξ i+1 s+1 7 Iteration i = 1, . . .until ∥r i+1 ∥ ≤ ε∥r 1 ∥ 7.1 ξ i+1 s+1 ← Ξ ⋆ ξ i s+1 7.2 r i+1 = ξ i+1 s+1 -ξ i s+1 7.3 ∥r i+1 ∥ ≤ ε∥r 1 ∥ → goto 8 7.4 ω i = ω i-1 1 + (r i-1 -r i )•r i (r i-1 -r i )•(r i-1 -r i ) 7.5 i ← i + 1 8
End iteration

where

[∇u] ij = [ ∂u i/∂X j ]
is the displacement gradient with respect to the undeformed coordinates and E α is the enhanced strain in parent-domain (see, e.g. [START_REF] Simo | Improved versions of assumed strain tri-linear elements for 3D finite deformation problems[END_REF]) coordinates. It is required to adopt the centroidal Jacobian matrix J and the corresponding determinant J to ensure the patch-test satisfaction. The EAS modes are based on the interpolation of the bending deformation modes. 12 additional, internal element degrees-of-freedom are adopted, which here we denote by the letter α = {α 1 , . . . , α 12 }. Using Voigt form [START_REF] Belytschko | Nonlinear Finite Elements for Continua and Structures[END_REF], it follows that:

E voigt α =            ξ 2 ξ 3 ξ 2 ξ 3 0 0 0 0 0 0 0 0 0 0 0 0 ξ 1 ξ 3 ξ 1 ξ 3 0 0 0 0 0 0 0 0 0 0 0 0 ξ 1 ξ 2 ξ 1 ξ 2 0 0 0 0 0 0 0 0 0 0 0 0 ξ 3 0 0 0 0 0 0 0 0 0 0 0 0 ξ 2 0 0 0 0 0 0 0 0 0 0 0 0 ξ 1            •        α 1 . . . α 12       
As mentioned, patch test is satisfied a-priori by the the use of J and J in [START_REF] Areias | EAS 3D element[END_REF], see also [START_REF] Simo | Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes[END_REF][START_REF] Simo | Improved versions of assumed strain tri-linear elements for 3D finite deformation problems[END_REF]. The full weak form corresponding to the decomposition is as follows, using the undeformed configuration:

Ω 0 S : (δE u + δE α ) dV δW int = Ω 0 ρ 0 B • δudV + ∂Ω 0 T • δudA δWext (47)
where the Piola stress vector T , resulting from integration by parts, is calculated as (see [START_REF] Wriggers | Nonlinear finite element methods[END_REF]): T = F •S•N where F is the deformation gradient and N is the outer normal to ∂Ω 0 . The second Piola-Kirchhoff stress S is a function of the total Green-Lagrange strain E as S ≡ S (E u + E α ). Use of Newton iteration for [START_REF] Fohrmeister | Classic crystal plasticity theory vs crystal plasticity theory based on strong discontinuities-Theoretical and algorithmic aspects[END_REF] requires the calculation of the variation in both hand-sides:

∆ u δW int • ∆u + ∆ α δW int • ∆α = δW ext -δW int (48) 
assuming that ∆ u δW ext = 0. Source code for this element (forces and tangent stiffness) is available in Github [START_REF] Areias | EAS 3D element[END_REF]. It is worth noting that a development of EAS has been used with single crystal plasticity by J. Mosler's group [START_REF] Fohrmeister | Classic crystal plasticity theory vs crystal plasticity theory based on strong discontinuities-Theoretical and algorithmic aspects[END_REF].

Numerical assessment

We now test a polycrystalline rectangular cuboid as depicted in Figure 10. The initial distribution of (111) plane in the XYZ space is shown in sub-Figure 10b. This test was proposed by Alankar, Mastorakos and Field [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF]. In contrast with that reference, a free edge with X = 2 × 10 -4 is left to exhibit the texture. The contour plots of ξ k and E p = ∥E p ∥ for 80% compression are shown in Figure 11. These are close to those reported in [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF] but the right edge X = 2 × 10 -4 is here left free. We now assess drifting of ξ 1 , • • • , ξ 12 in Figure 13 using the classical staggered algorithm and dynamic relaxation. Two time-steps are tested: ∆t = 0.0025 s and ∆t = 0.0075 s. If the traditional staggered decomposition is adopted, with all variables, for the larger time-step, at a compression value of 55%, drifting occurs. Dynamic relaxation removes this effect and allows the use of large time-steps. We also noted that Newton convergence is improved with dynamic relaxation. 

u Z = 0 2 × 10 -4 2 × 1 0 -4 1 × 1 0 - 4 u X = 0 u Z = u Z X Y Z ( 

Conclusions

We introduced an alternative method to solve FCC single crystal finite strain plasticity problems. It combines the use of Logarithmic strain additive decomposition, Newton iteration for the plastic strain, a linear solution for the evolution of the hardening variables and an implicit staggered algorithm based on dynamic relaxation. Discretization makes use of an EAS formulation based on the Green-Lagrange strain.

Verification tests for mesh size and time step dependences were successfully performed and a polycristal example from [START_REF] Alankar | A dislocation-density-based 3d crystal plasticity model for pure aluminum[END_REF] was studied for texture evolution. We conclude that the dynamic relaxation is effective in reducing drift caused by the staggered algorithm. Significant savings and computational cost reductions can be achieved and the procedure can be extended to more intricate constitutive laws.
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 71 Figure 1: Dominant slip systems for a FCC crystal.
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 2 Figure 2: Rotation of the FCC cell in the space x, y, z.
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 3 Figure 3: Upper bound on the error E max [2/2] log compared with the error in closed form E 1D [2/2] log .

Figure 4 :

 4 Figure 4: Relative error for an incompressible 2D problem, E [2,2] log = ∥ 1 /2[2/2] log (-2E) -ε∥.

  304π, φ = 0.25π θ = 0.25π, φ = 0 (111) plane in the XYZ space (b) Cases of plane (111) orientation with respect to z

Figure 5 :h = 3 . 13 × 10 - 4 h = 3 . 13 × 10 - 4 h

 5313104313104 Figure 5: Verification test: geometry and boundary conditions for the single crystal cylinder under tension.

Figure 6 :

 6 Figure 6: Deformed meshes (10× magnified) and E p = ∥E p ∥ contour plots for {θ}. Three characteristic mesh sizes h = 3.13 × 10 -4 , 2.08 × 10 -4 , 1.56 × 10 -4 are tested. Consistent units are used.

33 h 33 h = 3 . 13 × 10 - 4 h = 2 .08 × 10 - 4 h

 33333131042104 = 3.13 × 10 -4 h = 2.08 × 10 -4 h = 1.56 × 10 -4 Longitudinal force for single crystal FCC θ = 0.25π, φ = 0 (a) θ = 0.25π, = 1.56 × 10 -4

Figure 7 :

 7 Figure 7: Effect of h on the average stress σ 33 and E 33 for two orientations: θ = 0.25π, ϕ = 0 and θ = 0.304π, ϕ = 0.25π.

Figure 8 :

 8 Figure 8: Contour plots of ξ 1 , • • • , ξ 12 for θ = 0.304π, ϕ = 0.25π.

  of [ε] p33 for single crystal FCC, θ = 0.25π, φ = 0 (a) Evolution of [εp] 33 for θ = 0.25π, ϕ = 0 in point A. of [ε] p33 for single crystal FCC, θ = 0.304π, φ = 0.25π (b) Evolution of [εp] 33 for θ = 0.304π, ϕ = 0.25π in point B.
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 9 Figure 9: Effect of dynamic relaxation on the evolution of [ε p ] 33 .

  a) Geometry and boundary conditions plane in the XYZ space (b) Distribution of (111) planes in the undeformed configuration.

Figure 10 :Figure 11 :

 1011 Figure 10: Aluminum polycrystal: geometry, dimensions and boundary conditions. Also shown is the distribution of (111) planes in the undeformed configuration.

Figure 12 :

 12 Figure 12: Texture (111) planes and comparison, see also Alankar et al. [8].

Figure 13 :

 13 Figure 13: Effect of the algorithm in the evolution of ξ 1 , • • • , ξ 12 in point X = 2 × 10 -4 , Y = 0 and Z = 0.

Table 1 :

 1 Dominant slip systems of an FCC single crystal Slip system Dense plane (m α ) Dense direction (n α )

			1		(111)		[011]
			2		(111)		[101]
			3		(111)		[110]
			4		(111)		[011]
			5		(111)		[101]
			6		(111)		[110]
			7		(111)		[011]
			8		(111)		[101]
			9		(111)		[110]
			10		( 111)		[011]
			11		( 111)		[101]
			12		( 111)		[110]
			106.75 60.41 60.41	0	0	0
	C =	         	60.41 106.75 60.41 60.41 60.41 106.75 0 0 0 0 0 0	0 0 28.34 0	0 0 0 28.34	0 0 0 0
			0	0	0	0	0	28.34

Table 2 :

 2 Relevant properties for single crystal plasticity of aluminum (see