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Abstract: The article presents a review of the relationships between melatonin and neurodevelop-
mental disorders. First, the antioxidant properties of melatonin and its physiological effects are
considered to understand better the role of melatonin in typical and atypical neurodevelopment.
Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum
disorder or neurogenetic disorders associated with autism (including Smith–Magenis syndrome,
Angelman syndrome, Rett’s syndrome, Tuberous sclerosis, or Williams–Beuren syndrome) and neu-
rodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia,
are discussed with regard to impaired melatonin production and circadian rhythms, in particular,
sleep–wake rhythms. This article addresses the issue of overlapping symptoms that are commonly
observed within these different mental conditions and debates the role of abnormal melatonin pro-
duction and altered circadian rhythms in the pathophysiology and behavioral expression of these
neurodevelopmental disorders.

Keywords: neurodevelopmental disorders; brain development; melatonin; circadian rhythms;
sleep–wake rhythms; sleep disturbance; autism; schizophrenia

1. Introduction

Melatonin (5-Methoxy-N-acetyltryptamine, N-acetyl-5-methoxytryptamine, NSC-
113928) is a neurohormone synthesized in the pineal gland, and its secretion is enhanced
by darkness and inhibited by light (daylight or artificial light). Indeed, Melatonin is often
labeled as being the «darkness hormone» for having its peak secretion during the late
evening hours while its production is suppressed by light [1,2]. Melatonin is a pleiotropic
neuroendocrine molecule released in the brain at night and plays a crucial role in the syn-
chronization of circadian rhythms, including sleep–wake rhythms, and controlling seasonal
rhythms, including reproduction [3]. Melatonin is considered an endogenous synchro-
nizer located in the suprachiasmatic nuclei (SCN) of the hypothalamus, stabilizing bodily
rhythms and as a chronobiotic molecule that reinforces variations or adjusts the time period
of the central biological clock [4]. It derives from serotonin to form first N-acetylserotonin
(NAS) by acetylation through the enzyme arylalkylamine-N-acetyltransferase (AANAT,
EC: 2.3.1.87) and then forms melatonin by methylation through the enzyme acetylserotonin-
O-methyltransferase (ASMT, EC: 2.1.1.4). Serotonin also contributes to the development of
the brain before acting as a neurotransmitter on mature brain; in particular, serotonin has a
role on dendritic development and branching in the hippocampus and cortex [5]. Melatonin
synthesis is regulated periodically in the SCN. This clock determines the circadian rhythm
of melatonin secretion. Melatonin is a powerful natural antioxidant providing beneficial
and protective effects against oxidative stress [6]; melatonin is found in mitochondria
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at concentrations higher than the ones in the blood, suggesting that melatonin could be
viewed as a mitochondrial antioxidant [7]. A specific section on the antioxidant properties
of melatonin is developed in this article. In addition, melatonin receptors can be found in
the regions associated with the master circadian clock [8]. Melatonin has an important role
in the circadian cycle, which is the temporal organization of physiological, cellular, neural,
biochemical, and behavioral processes. It helps the body to anticipate the different phases
of the day in a proactive way [9]. Melatonin affects various temporal processes via mainly
high G protein-coupled melatonin receptors 1 and 2 (MT1, MT1) widely distributed across
brain and peripherical tissues (for a review on melatonin receptors, see Tordjman et al. [10]).
Many melatonin receptors are found in neuroendocrine and acoustic-vocal integration
areas [11]. Animal models with diurnal birds or breeding green treefrogs changed vocal
behaviors through melatonin interactions with receptors influencing both inhibitory and
excitatory signaling; melatonin mediates the regulation of neural excitability in vocal-motor
circuits. Scholars are now aware of the role melatonin can have on social communication
and its development [12]. In the same line, as discussed below, melatonin is important for
child development even before birth.

2. Melatonin and Typical Neurodevelopment

Since the beginning of the normal pregnancy process, melatonin secretion is involved
with the oocyte quality and the parturition course. The night-time concentrations start
increasing after 24 weeks of gestation and reach significantly higher levels by 32 weeks.
Melatonin receptors are widespread in the embryo and fetus since early stages. There is
solid evidence that this neurohormone has a role in fetal neuroprotection, as normal sleep
patterns are involved in human neurodevelopment even at this stage. It is noteworthy
that melatonin is the regulating factor of the fetal sleep patterns development set in late
pregnancy. Voiculescu et al. [13] found strong evidence that melatonin has a positive effect
on the outcome of compromised pregnancies. Melatonin concentrations progressively
increase in maternal blood during pregnancy, reaching their maximum at term. Researchers
have also found melatonin in amniotic fluid [14]. In addition, chronic disruption leads to
reproductive dysfunction and appears to be an important factor in the development of
offspring diseases in adulthood (this relates to the concept of fetal programming). Melatonin
decreases in conditions associated with serious outcomes for the fetus and appears to be
involved in preeclampsia and intrauterine growth restriction [15]. Animal models of fetal
growth restriction in newborn lambs showed that maternal administration of melatonin
reduced fetal hypoxia, improved neurodevelopment, and decreased brain injury and
oxidative stress [16]. Taken together, these studies suggest that the effects of melatonin on
the development of human fetuses appear to be not limited to circadian rhythmicity.

After birth, melatonin is secreted into the general circulation and in the cerebrospinal
fluid, allowing this neurohormone to circulate throughout the body and the brain [17]. In
the brain, extra-pineal melatonin behaves similarly to neurotrophic molecules [18,19] and is
capable of modulating cell survival, proliferation, and differentiation by signaling pathways
that can be triggered in response to stimulation of membrane and intracellular receptors.
Thus, melatonin plays a crucial role in brain neuroplasticity and neurodevelopment via
neurotrophic factors, promoting its growth and survival [20,21].

In addition, natural maternal melatonin is also a powerful free radical scavenger and
an antioxidant protecting the baby and fetus within the maternal-placental-fetal unit [22].
Indeed, maternal melatonin deprivation during gestation or lactation has been shown to
delay the infant’s physical maturation and neurobehavioral development. Melatonin found
in the gastrointestinal tract of newborns is of maternal origin knowing that melatonin easily
penetrates the placenta during the preterm period; melatonin is secreted into the mother’s
milk after birth and may be involved in the production of meconium [2,23–25]. Melatonin
also follows a circadian rhythm in human breast milk, and studies report undetectable
levels of melatonin during the day and high levels at night [22,26]. Several studies reporting
that melatonin rhythms set around 3 months of age in typical development allow us to
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understand better why infants begin at this period of life to have more regular sleep–wake
cycles combined with regular night-time sleep lasting 6 to 8 h [23,27]. Similarly, the infant’s
circadian cortisol rhythm is only set up at around 3 months of age [28]. The development of
circadian rhythms occurs fully between 49-and 52-weeks post-conception and corresponds
to the developmental phase when increased periods of deep sleep during the night are
consolidated as infants have fewer nocturnal awakenings [23]. Without maternal melatonin,
infants establish circadian rhythms mainly by neurological maturation [29]. Infants born
prematurely or facing circumstances related to normal intrauterine development show a
significant delay in pineal rhythmicity. In the life span, the highest melatonin levels are
found in children younger than 4 years [30]. Infants benefit from increased cell proliferation
differentiation and survival rates of novel neurons in the hippocampus when melatonin
is administrated after birth [31]. It also plays a role in terms of having effects on excita-
tion/inhibition balance by changes in neurotransmitter levels [32]. The balance between
excitation and inhibition in synaptic inputs of neural circuits must be tight to avoid the
pathogenesis of neurodevelopmental disorders [33]. Melatonin levels decline progressively
with age, although circadian rhythms tend to be highly consistent day to day at any age [30].
Biological aging is a natural process leading to the disruption of circadian rhythms; aging
is associated with the dampening of circadian gene expression, as aging is associated with
an increase in oxidative stress [34].

The antioxidant properties of melatonin and its physiological effects have first to be
considered in the next section to understand better the role of melatonin in typical and
atypical neurodevelopment, as discussed in the following sections.

3. Antioxidant Properties and Physiological Effects

The antioxidant action of melatonin involved in the cardiovascular, immune, gastroin-
testinal, oncostatic, and brain-protective effects of melatonin is presented in this section.
The protective effects of melatonin are summarized in Figure 1 and are developed below.

Figure 1. Antioxidant action and protective effects of melatonin.
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Melatonin regulates blood pressure and autonomic cardiovascular and immune func-
tion, in addition to other physiological processes such as free radical detoxification and
antioxidant effects via MT3 receptors, protecting the brain from oxidative stress [35–43].

Also, the antioxidant action of melatonin protects the gastrointestinal tract from
ulcerations by (1) reducing hydrochloric acid secretion and oxidative effects of bile acids
on the intestinal epithelium; (2) increasing microcirculation and bicarbonate secretion from
duodenal mucosa via MT2 receptors (this alkaline secretion is an important mechanism for
duodenal protection against gastric acid); and (3) fostering epithelial regeneration [4,44].

Melatonin has direct immuno-enhancement effects in both humans and animals, which
is relevant to its function in immunological regulation [45,46]. The production of cytokines,
and more precisely, certain interleukins (IL-2, IL-6, and IL-12), is selectively stimulated by
melatonin [47]. Melatonin also improves T helper immune responses [46,48]. Additionally,
the antioxidant properties of melatonin contribute to its immunostimulatory effects [47]
and act indirectly by lowering the production of nitric oxide, which helps to reduce the
inflammatory response [49].

Furthermore, given that oxidative stress is implicated in the origin, promotion, and
development of carcinogenesis, the oncostatic protective effects of melatonin have been
documented and linked to its anti-oxidative action [50,51].

Regarding brain protection, there is growing experimental evidence showing thera-
peutic benefits of melatonin for prematurity as well as for neurodegenerative conditions
like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic
lateral sclerosis (for a review, see Polimeni et al. [52]). To determine the precise therapeutic
concentrations required according to the specific disease, age of individuals, and brain
lesion, as well as to examine the short- and long-term effects of melatonin on physiological,
functional, and cognitive outcomes, further studies and clinical trials are requested in
preterm neonates as well as aging adults. Finally, in addition to its therapeutic benefits
for sleep problems, melatonin is of major interest regarding its antioxidant action, increas-
ing brain protection against oxidative stress and inflammation, in general for atypical
development, and in particular for neurodevelopmental disorders.

4. Melatonin and Atypical Neurodevelopment

The establishment and maintenance of several circadian rhythms, such as the one in-
volved in the secretion of melatonin and sleep–wake rhythms, depend upon the interaction
of light perceived by the retina and the suprachiasmatic nucleus [23]. Some stressful and
traumatic situations experienced by pregnant women decrease maternal melatonin produc-
tion, and this can have an impact on the internal rhythms and post-natal development of
the fetus [24]. Brain anomalies such as the reduction of the hippocampus volume can occur
during early childhood or before birth due to the impact of stress in this brain region [25].
In the same way, children in their primary infancy who are coping with stressful situations
or traumas like insecure attachment, separation from the mother, or abuse can consequently
develop brain anomalies [25]. These traumas have long-term effects on cognitive function-
ing [22]. Among children diagnosed with developmental disabilities, many of them (the
frequencies range from 25% to 85%) also show sleep problems [26].

Tauman et al. [53] show relationships between low melatonin production in the first
weeks of life and impaired psychomotor development by measuring nocturnal urinary
excretion of 6-sulfatoxymelatonin. Melatonin production is related to brain functioning and
has effects on neurological development, given its impact on the onset of circadian rhythms,
as shown by a study on REM sleep (i.e., the rapid eye movement during sleep) [54]. The
relationships between low 6-sulfatoxymelatonin excretion and developmental delay appear
very early, including reports at 16 weeks of age [33].

5. Melatonin and Neurodevelopmental Disorders

Neurodevelopmental disorders encompass intellectual disability, autism spectrum
disorder (ASD), or neurogenetic disorders associated with ASD, as well as schizophre-



Antioxidants 2023, 12, 2017 5 of 18

nia or bipolar disorder occurring later in life, as these two last conditions are more and
more considered as neurodevelopmental disorders [55]. These different disorders can be
seen lying on a neurodevelopmental continuum and having considerable comorbidity,
as observed in patients showing an overall deficit of melatonin production [56]. A high
prevalence of altered circadian rhythms, including sleep–wake rhythms, was observed in
individuals with these neurodevelopmental disorders [57], strengthening the interest to
focus on melatonin metabolism in these disorders given the role of melatonin in sleep–wake
rhythms, synchronization of circadian rhythms, and neural development.

5.1. Relationships between Melatonin and Neurodevelopmental Disorders in Infancy

Melatonin production and circadian rhythms have been consistently associated with
mental disorders that occur in primary infancy. Early neurodevelopmental disorders,
such as autism spectrum disorder (ASD), have been associated with a dysregulation of
circadian cycles, especially the circadian cycle of melatonin production. It is notewor-
thy that alterations in circadian sleep–wake rhythms are frequently observed in these
neurodevelopmental disorders with abnormalities in melatonin secretion.

ASD is a behavioral syndrome with altered sensory motor development and sleep–
wake rhythms [58–60]. Key behavioral features of ASD are characterized by impairments in
social communication and restricted interests with repetitive patterns of behaviors [61–63].
This condition is often associated with common comorbidities such as intellectual disability,
epilepsy, and severe sleep disorders [64]. Family home movies of infants who were subse-
quently diagnosed with ASD showed motor and emotional asynchrony between infants
before 12 months of age and their parents [65,66]. These early signs are not specific to
autism but offer indicators of atypical development, which become more evident in the sec-
ond year of life [65]. In later stages of development, several signs were also reported, such
as abnormal eye contact and other social communication impairments in learning through
imitation (people’s faces, gestures, or vocal signals), social reciprocity, joint attention, and
orienting to name or body language [67,68].

Melatonin is a common pharmacologic treatment used to deal with sleep disturbance
due to circadian phase delay. The melatonin treatment provides a significant decrease in
sleep latency and night awakenings and an increase in sleep quality and sleep efficiency
(for a review, see Tordjman et al. [58,68]). However, Moon et al. [69] indicated that evidence
of the therapeutic benefits of melatonin on psychiatric disorders is robust only in autism,
attention deficit hyperactivity disorder (ADHD), and neurocognitive disorders. Sleep
disturbances, such as falling asleep or having night awakenings, are relatively common
among children with ASD, and their prevalence is higher when compared with children
with typical development. This contributes to a variety of disturbances in their daily lives,
such as behavioral problems, self-injurious behaviors, and other-injurious behaviors, and
emotional problems like depression or anxiety. Finally, sleep deprivation among children
with ASD also has negative ecological consequences since it affects parents’ or caregivers’
overall mental health. These difficulties can be related to odd bedtime routines and bedtime
resistance [70].

Several studies reported that individuals with ASD showed lower melatonin levels
in urine, plasma, and pineal gland than control groups [64]. Furthermore, several studies
provided evidence of relationships between melatonin deficit and social communication im-
pairments that are prevalent in neurodevelopmental disorders. In ASD, a lack of melatonin
production was associated with language impairments [71,72]. The Tordjman et al. studies
showed that abnormally low nocturnal melatonin excretion is significantly associated with
severe autistic social communication impairments, especially verbal communication and
social imitative play impairments in children and adolescents with ASD [73,74]. Moreover,
this deficit in melatonin may be involved in ASD development through desynchronized,
disrupted, and abnormal circadian rhythms but also through several physiological path-
ways, including a lack of antioxidant protective effects (as seen in Section 3 on antioxidant
properties and physiological effects, melatonin protects the brain from oxidative stress
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and its antioxidant action decreases the production of nitric oxide which helps in turn
to decrease the inflammatory response), and impairments in neurotransmission, synap-
tic plasticity and metabolic pathways [75]. It is noteworthy that nitro-oxidative stress,
immune-inflammatory, neurotransmission, synaptic plasticity, and metabolic pathways are
also under the control of the circadian clock [75]. In addition, researchers found metabolic
disorders and neurochemical imbalances in the melatonin/serotonin system of children
with ASD or Down syndrome [76]. It was suggested that the autistic, well-replicated hyper-
serotonemia [73] could cause a loss of serotonin terminals [77], possibly involved in autistic
behaviors, given that serotonin production was associated with poor social interaction,
emotional detachment, and aggression towards others [78]. Concerning Down syndrome,
associations were observed with a serotonin deficit in the postmortem brain, cerebrospinal
fluid, and blood [5].

Furthermore, altered melatonin circadian rhythms and impaired melatonin secre-
tion are also reported in several neurogenetic disorders associated with autism, such as
Smith–Magenis syndrome, Angelman syndrome, Rett’s syndrome, Tuberous sclerosis, or
Williams–Beuren syndrome. A summary concerning the melatonin abnormalities found in
these neurogenetic disorders associated with autism is presented in Table 1 and includes
particular sleep problems, melatonin impairments, and the response to melatonin therapy
observed in these developmental neurogenetic disorders.
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Table 1. Melatonin abnormality and therapy in neurogenetic disorders associated with autism.

Neurogenetic Disorder

Neurogenetic
Disorder Frequency, Estimated Rate (%)
of Autism in the
Disorder, and
Estimated Rate (%)
of the Disorder
in Autism

Age of Diagnosis

Phenotype
(Including Autistic
Behaviors and
Intellectual
Functioning)

Sleep Problems Melatonin
Abnormality

Response to
Melatonin Therapy

Smith-Magenis syndrome
(SMS)
Chromosome 17p11.2
microdeletion encompassing
retinoic acid-induced 1
(RAI1) or a mutation in the
RAI1 gene [79–82]

- Frequency:

1 in 15,000–25,000 individuals [82,83]

- Estimated rate of autism in SMS:

50–100 [84]

- Estimated rate of SMS in autism:
NA [84]

Many of the features of SMS are
subtle in infancy and early
childhood and become more
recognizable with advancing
age. Despite increased clinical
awareness of SMS as well as
improved cytogenetic
technologies, many children are
not definitively diagnosed until
early childhood or even school
age [85]

Facial dysmorphism,
peripheral neuropathy,
hypotonia, early feeding
problems.
Tantrums, self-injurious and
stereotyped behaviors,
sameness, developmental delay
in vocalizations but possible
social contact.
Normal intellectual functioning
to
moderate intellectual
disability [84,86,87]

Disrupted sleep patterns
with shortened sleep cycles
are characteristic of SMS and
begin typically during the
months after birth. Reports
of excessive daytime
sleepiness, increased sleep
latency, frequent nocturnal
and early morning
awakenings due to an
inverted circadian rhythm of
melatonin [88]

Inverted circadian rhythm
of melatonin
secretion [88]

Melatonin therapy is used to
regulate sleep problems.
Combined with exogenous
PRM (prolonged release
melatonin), blockade of
endogenous melatonin
production during the day by
the adrenergic antagonist
acebutolol can improve
impaired sleep and behaviors,
and increase melatonin
concentrations [89]
Patients aged 3–18 years were
given PRM (4 to 6 mg/day) as a
single evening dose over a
treatment duration of
6–72 months. Within 3 months,
parents report improvement in
sleep duration, sleep latency,
number of midnight
awakenings and sleep quality.
No serious adverse events [88]

Angelman
syndrome (AS)
Maternal 15q11-q13 deletion,
paternal uniparental disomy,
mutations of UBE3A that
encodes ubiquitin protein
ligase (UBE3A) [90–94]

- Frequency:

1 in 12,000–20,000 individuals [95]

- Estimated rate of autism in AS:

48–80 [84]

- Estimated rate of AS in autism:
1 [84]

Developmental delays,
between about 6 and 12 months
of age, are usually the first
signs, and seizures begin often
between the age of 2 and
3 years old [96]

Facial dysmorphism,
microcephaly, seizures
(>1 year), ataxia and walking
disturbance,
Attention Deficit with
Hyperactivity Disorder
(ADHD), paroxysmal laughter,
tantrums
No language,
stereotypies, sameness.
Severe intellectual
disability [84,96–100]

Severe sleep disturbances are
common in
Angelman
syndrome, and are included
in the diagnostic
criteria [96]

The melatonin secretion
profile of patients with
Angelman syndrome is
impaired, leading to a
variety of sleep problems,
most prominently in the
areas of sleep-wake
patterns and sleep
duration [100]

Melatonin therapy significantly
advanced sleep onset by
28 min, decreased sleep latency
by 32 min, increased
total sleep time by 56 min, and
reduced the number of nights
with awakenings from 3.1 to
1.6 nights per week [101]
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Table 1. Cont.

Neurogenetic Disorder

Neurogenetic
Disorder Frequency, Estimated Rate (%)
of Autism in the
Disorder, and
Estimated Rate (%)
of the Disorder
in Autism

Age of Diagnosis

Phenotype
(Including Autistic
Behaviors and
Intellectual
Functioning)

Sleep Problems Melatonin
Abnormality

Response to
Melatonin Therapy

Tuberous sclerosis complex
(TSC),
synonym:
Bourneville disease
(TSC1, 9q34) (TSC2, 16p13.3)
Pathogenic variants in TSC1
and TSC2 genes: 31% and
69%, respectively [102]

- Frequency:

1 in 6000 individuals [103]

- Estimated rate of autism in TSC:

25–60 [84]

- Estimated rate of TSD in autism:
1–4 [84]

The average age at diagnosis of
TSC is 7.5 years with 81% of
patients diagnosed before the
age of 10.
Diagnosis may be difficult
because symptoms are not
present in all patients, and none
are pathognomonic [104]

Autosomal dominant
neurocutaneous disorder with
ectodermal anomalies clinically
diagnosed, renal lesions,
seizures, learning disorder.
Severe autistic syndrome.
Variable intellectual
disability [84,103,105–107]

Sleep problems are
considered one of the most
common behavioral
manifestations in children
with TSC [108]

Significant differences
between TSC melatonin
secretion profiles and
control ones. Melatonin
rhythm but not its
amplitude was related to
the total number of
seizures [109]

Treatment improvement in
sleep latency, total sleep time,
and sleep fragmentation
reported with melatonin at
5 mg dose [110]

Rett’s syndrome (RS)
Mutation in the MECP2 gene
coding for the methyl CpG
binding protein 2
and located at Xq28 [111,112]

- Frequency:

1 in 10,000–15,000 live female births [113]

- Estimated rate of autism in RS:

61–100 [84,114,115]

- Estimated rate of RS in autism:

<1 in female [84]

Because of the apparent normal
developmental course in early
childhood, diagnosis may be
delayed [116]

Developmental course:
- Stagnation stage in girls
(6–18 months);
- Regression stage
(12–36 months) with head
growth deceleration,
appearance of progressive
motor symptoms (gait and
truncal apraxia, ataxia,
decreasing mobility) and
respiratory symptoms
(hyperventilation, breath
holding, apnea);
- Pseudo-stationary stage
(2–10 years);
- Late motor deterioration
(>10 years).
Autistic behaviors: stereotyped
hand movements, absence of
language, loss of social
engagement.
Severe intellectual
Disability [84]

Sleep problems are common
in Rett’s syndrome but there
is some variation with age
and mutation type [116]

Impaired secretion of
melatonin [117]

Exogenous melatonin
improved the sleep-wake cycle
and sleep onset. The effect was
maintained over 2 years
without any adverse
effects [117,118]
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Table 1. Cont.

Neurogenetic Disorder

Neurogenetic
Disorder Frequency, Estimated Rate (%)
of Autism in the
Disorder, and
Estimated Rate (%)
of the Disorder
in Autism

Age of Diagnosis

Phenotype
(Including Autistic
Behaviors and
Intellectual
Functioning)

Sleep Problems Melatonin
Abnormality

Response to
Melatonin Therapy

Williams Beuren syndrome
(WBS)
7q11.23 deletion including 26
to 28 genes (typically CLIP2,
ELN, GTF2I, GTF2IRD1, and
LIMK1) [119,120]

- Frequency:

1 in 7500–10,000 [119]

- Estimated rate of autism in WBS:

<10 [84]

- Estimated rate of WBS in autism:

<1 [84]

The mean age at initial
concerns is 0.98 year (Standard
Deviation: 1.24), and the mean
age at diagnosis may be
delayed to 3.66 years (Standard
Deviation: 4.13) [121]

Facial dysmorphism, short
stature, heart and endocrine
malformations, hypercalcemia,
feeding problems, hyperacusis,
visual spatial deficit, risk for
attention deficit.
Autistic syndrome but
overfriendliness with social
disinhibition and
overtalkativeness.
Mild to moderate intellectual
disability [122–127]

Sleep disorders are common
in individuals with Williams
syndrome [128]

The WBS group had
shallower drops in cortisol
and less pronounced
increase in melatonin at
bedtime compared to the
control group [129,130]

Melatonin was the most
frequently reported medication
taken for sleep problems in
WBS, with 91% of parents
reporting benefits for their
child with WBS, and very few,
if any, side effects [131,132]
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5.2. Association of Melatonin with Mental Disorders Emerging in Early Adulthood

Neuroscientists are trying to understand schizophrenia through a new approach
involving neurodevelopmental maturation. Schizophrenia onset usually occurs in adoles-
cence or early adulthood but might be related to vulnerability in infancy. Studies in indi-
viduals with a first episode of schizophrenia reported a decrease in grey matter volume for
most of the examined brain regions and cerebellar area [133]. This reduced volume of grey
matter can get even smaller and extend to other surrounding regions in chronic cases [134].
Individuals with schizophrenia suffer from changes in brain microstructure, physiology,
and connectivity of widely acting neurotransmitter systems, resulting in affective, cogni-
tive, and psychotic symptoms. Schizophrenia leads to major impairments regarding the
more complex cognitive performances, the so-called higher-order cognitive functions like,
for example, verbal episodic memory or executive functioning [135]. Individuals with
schizophrenia show errors in integrative information processing that are hypothesized to
result in mis-connectivity or dysconnectivity, leading to a dysfunction of multiple brain
circuits [134]. Melatonin is viewed as an important biological marker of the circadian cycle
and as a psychiatric therapeutic agent [136]. Individuals with schizophrenia show lower
levels of nocturnal melatonin secretion compared to a healthy control group, poor sleep
efficiency, and disrupted circadian rhythms [137,138]. The Galván-Arrieta et al. study on
olfactory neuronal precursors in schizophrenia and typical development suggested that a
deficit in melatonin may lead to impaired neurodevelopment in schizophrenia [139]. Brain
autopsies revealed abnormal elevated HIOMT activity in schizophrenia due to abnormally
low activity of an enzyme prior to HIOMT involved in the biosynthesis of melatonin [140].
The decreased endogenous secretion of melatonin can persist even if there are improve-
ments in sleep and positive effects with psychotic agents [141]. Finally, the Beckmann
et al. study [142] showed no abnormal melatonin concentrations in the cerebrospinal fluid
of individuals with schizophrenia compared to healthy controls. However, the authors
conclude that other possibilities, such as changes in biological rhythms related to variations
in melatonin activity and its influence on other neuroendocrine functions, may have a role
in the pathophysiology of schizophrenia.

Similarly, bipolar disorder can exhibit prodromal manifestation prior to illness onset,
underlying eventual similarities of neurodevelopmental abnormalities possibly involved in
the pathogenesis of bipolar disorder [143]. Bipolar disorder is mainly associated with a shift
in mood, energy, and activity. Patients show sleep alteration, circadian cycle disturbances,
emotional deregulation, cognitive impairment, and increased risk for comorbidities [144].
The psychopathology of bipolar disorder (BD) is associated with altered sleep/wake
rhythms, thermoregulation, cortisol secretion, and melatonin secretion. BD patients show
abnormal rhythmic activity that is more functionally impacted during inter-episode periods
(the passage from a mania state to a depressive one) [145]. Circadian cycles are dysreg-
ulated regarding the sleep–wake rhythms, especially the number of hours of sleep [146].
Manic symptoms were associated with less robust circadian rhythms leading to a decreased
need for sleep, but also with other symptoms such as thought disorder, increased rate and
amount of speech, and increased motor activity and energy [147]. It is noteworthy that a
manic phase with a decreased need for sleep is considered a critical marker of the appear-
ance of a depressive phase [1]. During the depression phase, hypersomnia is prevalent in
100% of patients and is also followed by a delayed sleep onset with night-time awaken-
ings [148,149]. It has been highlighted that bipolar disorder treatments could benefit from a
better understanding of circadian cycles in bipolar disorder [1]. Therapeutic administration
of agomelatine (a selective agonist of MT1/MT2 receptors and a selective antagonist of
5-HT2C/5-HT2B receptors) is of special interest given that agomelatine is involved in
the resynchronization of interrupted circadian rhythms with therapeutic benefits on sleep
patterns, resynchronizing circadian rhythms in individuals with depression (a few studies
has also been published on ASD, ADHD, and anxiety) [150].
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6. Transnosographic Approach on the Role of Melatonin in Neurodevelopmental Disorders

Making an association between neurodevelopmental disorders and the pineal gland
became more significant since the discovery of melatonin in the 1950s [148]. First, impair-
ments in melatonin secretion have been associated with a significant decrease in sleep
efficiency, notably in elderly individuals with continuity at different ages [6,10]. Second,
melatonin seems to have a protective role in neurodevelopmental disorders with effects
on early synaptic plasticity and neurotransmitter levels [33]. As indicated previously, cir-
cadian cycles have an impact on our bodies, shaping the timing and rhythms of various
physiological and behavioral processes [1]. Children having an absence or alteration of
circadian rhythms may have difficulties adapting to changes in their internal or external
environment [151].

There is compelling evidence indicating that impairments in the endogenous circadian
system, and especially in the sleep–wake rhythms (e.g., a delayed excretion of melatonin
with a later onset of circadian rhythms), might precede the appearance of clinical symptoms
for a variety of psychiatric disorders such as major depressive disorder, anxiety disorders
or schizophrenia [152]. It suggests the existence of a biological dysfunction of rhythmicity
and synchrony of rhythms in neurodevelopmental disorders. Reduced melatonin activ-
ity would then create a timing dysfunction of biological clocks with physiological and
psychological disturbances leading to autistic social communication impairments. This
timing dysfunction of biological clocks in early infancy could then lead to clinical psy-
chopathological neurodevelopmental disorders later and even to psychotic or borderline
psychotic states when the individual is emerging into adulthood. A disrupted sleep–wake
cycle was associated as a major component for mood, anxiety, and psychotic disorders
in adolescence [153]. Even if neurodevelopmental disorders display considerable genetic
as well as environmental heterogeneity, severe mental conditions such as schizophrenia
or bipolar conditions have increasing support from neuroscientific disciplines as originat-
ing from their origins from disturbed development of the nervous system based on the
neurodevelopmental hypothesis [56,154,155]. New nosology conceptions should consider
the genetic overlap between schizophrenia and psychopathologies associated with neu-
rodevelopmental disorders that manifest in childhood [156]. Those conditions show some
similarities in their phenotypes. All of them present significant cognitive impairment, tend
to be more common among males, and are associated with developmental delay as well as
neurological and motor abnormalities [155]. Symptoms and behaviors observed in autism
are also found in adults with schizophrenia [157]. For example, autism and schizophrenia
share intellectual disability, social communication impairment, or social withdrawal. One
common factor that might be associated with these symptoms is a past or current deficiency
of melatonin production.

There is a higher risk for ASD in children when the parents have mood disorders.
The prevalence of ASD is higher in the offspring of parents with BD, then in the offspring
of mothers with affective disorders, and finally in the offspring of parents with depres-
sive disorders [158]. One possible explanation for these associations might be a possible
shared genetic etiology between BD, depressive disorders, and ASD [159]. Reported fam-
ily co-aggregation of BD and schizophrenia, as the common co-occurrence of ASD and
BD, indicates a potential neurodevelopmental pathway [143]. The appearance of these
neurodevelopmental disorders in families with ASD, BD, or schizophrenia was higher
than in control families [160]. Further evidence to link the role of neurodevelopment in
psychiatric disorders occurring later in life is the finding that neonatal lesions produce
schizophrenia-like behaviors that emerge in post-adolescence [161].

In the Singh et al. meta-analysis, genetic data regarding rare coding variants in whole-
exome sequences of 4133 schizophrenia cases and 9274 controls, de novo mutations in
1077 trios and copy number variants from 6882 cases and 11,255 controls, provided evidence
that individuals with schizophrenia share rare damaging variants. Cases of schizophrenia
with intellectual disability suggest that intellectual disability might be a dimension shared
by neurodevelopmental disorders. These results support an overlap of genetic risk between
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schizophrenia and other neurodevelopmental disorders [162,163]. Several studies have
concluded that schizophrenia is associated with cognitive impairments that probably result
from a long-term neurodevelopmental evolution, even if it might be etiologically variable
for each individual [135]. Risk factors associated with this disorder exert primarily their
effects during developmental periods, leading to a detrimental maturation of the brain.
The dysconnectivity in brain circuits found in schizophrenia is seen more and more as the
result of abnormal brain development [134].

7. Conclusions

Psychiatric nosography suggests possible links between the pathogenesis of neu-
rodevelopmental disorders and altered circadian rhythms. Altered circadian rhythms
may participate in the development of these neurodevelopmental disorders but can also
elicit and worsen psychopathological symptoms associated with this range of conditions.
Melatonin production would consequently play a considerable role in sleep disorders and
cognitive and social communication impairments. Neurodevelopmental disorders can
greatly benefit from melatonin therapeutic administration and developmental behavior
interventions that focus on rhythm synchronization [10,151]. Melatonin has been used with
therapeutic efficacy for its resynchronizing effects to treat free-running rhythm disorder
and delayed phase syndrome, among other circadian rhythm disorders [136]. Circadian
disruption is a common prodrome for schizophrenia and bipolar disorder, as they are also
for other mood disorders, but the nature of the relationships between melatonin, circadian
rhythms, and psychopathology is still poorly understood today [164]. Further research is
warranted to ascertain better the mechanisms underlying the effects of abnormal melatonin
production and altered circadian rhythms on the pathogenesis and behavioral expression of
neurodevelopmental disorders such as autism spectrum disorder or neurogenetic disorders
associated with autism, schizophrenia, and bipolar disorder. Finally, given the neuroprotec-
tive and neurotrophic role of melatonin, it is a major issue to understand the relationships
between the pathophysiology of melatonin metabolism and the development and severity
of certain mental disorders discussed in the present paper.
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