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2Aix Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France

In regular binary eutectic alloys, the shape of two-phase solidification microstructures varies be-
tween neighboring eutectic grains. This occurs in particular in alloys that present special orientation
relationships (ORs) between the two kinds of crystals. In practice, eutectic grains most often present
spatial variations of the crystal orientation of a few degrees. The consequences of this “mosaicity”
on the growth dynamics are not clear. We present the first steps of a numerical investigation
(boundary-integral method) of the dynamics of the so-called locked-lamellar patterns in the pres-
ence of a mosaicity. Realistic alloy parameters were used. We simulated a few pairs of lamellae
(periodic boundary conditions) with a smoothly modulated anisotropy of the interphase boundaries
in the solid. The pattern evolves then toward a steady-state regime with a uniform lamellar tilt
angle, but a spatial modulation of the lamella width.

I. INTRODUCTION

The formation of coupled-growth patterns during the
directional solidification of nonfaceted eutectic alloys
(regular eutectics) is primarily governed by solute diffu-
sion in the liquid and local-equilibrium capillary effects
at the solid-liquid interface [1, 2]. This dynamics gives
rise to the freezing of various composite microstructures
with more or less complex spatial arrangements in the
bulk material, depending on alloy characteristics, control
parameters and the experimental path [3]. The shape
of eutectic solidification microstructures can also depend
on the orientation of the crystals of the different eutec-
tic solid phases. This has been evidenced experimentally
for a long time in lamellar eutectics that present special
orientation relationships (ORs) between the two eutec-
tic solids [4, 5]. In a given eutectic grain, the lamellae
often grow tilted, with a fixed inclination with respect
to the main solidification axis (lamellar locking). This
particular inclination is very close to that of dense co-
incidence planes that characterize an OR. Importantly,
an interphase boundary that aligns, in the solid, with a
dense coincidence plane realizes a minimum of the surface
free energy. Generally speaking, the growth of lamellar
eutectic patterns depends on the orientation of the crys-
tals in a given eutectic grain via the effect of the interfa-
cial anisotropy of the interphase boundaries [6, 7]. This
statement has been formalized theoretically a few years
ago [8]. A semi-empirical theory of the lamellar-locking
phenomenon has been proposed, with a clear experimen-
tal and numerical support [9–13]. Experimentally, how-
ever, it has been observed in metallic ingots that the
relative orientation of the eutectic crystals often departs
from a strict coincidence. In addition, the crystal ori-
entation slightly varies inside a eutectic grain (see, e.g.,
Refs. [14, 15]). Both the origin of this mosaicity, and
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its consequences on the growth dynamics are far from
being known and understood. The first point is a specif-
ically experimental question. The second point can be
addressed from a more general viewpoint. This is the
aim of the present study.

In this short paper, we report on the first, mostly pre-
liminary results of a numerical investigation of the dy-
namics of tilted-lamellar growth patterns in the presence
of a finite mosaicity. We used a dynamic boundary-
integral code in two dimensions [16], using simplified
interfacial-anisotropy functions attached to the inter-
phase boundaries [11]. In a sharp-interface formulation
of the coupled eutectic growth problem, the interfacial
anisotropy intervenes in the local equilibrium at trijunc-
tions, at which the interphase boundary and the two
solid-liquid interfaces meet. A reference situation con-
sists of a periodic lamellar pattern with a given inter-
facial anisotropy, described with suitable functions and
parameters. It is now known that the system can reach
a steady-state with tilted lamellae exhibiting a constant
and uniform tilt angle [8]. In this view, a mosaicity is
equivalent to a slight variation in space, that is, from
one interphase boundary to another, of the interfacial-
anisotropy parameters. The question is then that of
the existence and the characterization of a steady-state
regime in a mosaic eutectic grain.

II. METHODS

The numerical code has been initially developed by
Karma and Sarkissian for the simulation of lamellar
eutectic patterns in two dimensions, considering an
isotropic system [16]. It is based on a dynamic boundary-
integral (BI) method that permits, within some approx-
imations, to calculate the shape and the time evolution
of the (sharp) solid-liquid interface without computing
the solute diffusion field in the bulk liquid. It is quan-
titatively accurate, as confirmed by direct comparisons
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between BI simulations and in situ experimental obser-
vations [17]. An important point, relevant to the present
study, is that the motion of the trijunctions is treated
separately, in a way that easily allows one to introduce
an anisotropy of the interphase boundaries. In Refs.
[11, 17], for fundamental demonstration purposes, the BI
simulations were performed by considering a single pair
of lamellae in a periodic pattern. A given anisotropy
function was assigned to the two interphase boundaries
in the simulation box, and the two trijunctions behaved
similarly. In the following, the simulation box (of width
W ) was containing 2 or 8 pairs of lamellae. Please note
that W will be used as a unit of length, and W/V as a
unit of time (V is the solidification velocity). The dura-
tion of a simulation, using a standard PC, was of about
30 min for 2 lamella pairs, and several days for 8 lamella
pairs.

The physical parameters were those of the CBr4-C2Cl6
alloy at a concentration of 0.137 (molar fraction of
C2Cl6), which nearly corresponds to a volume fraction
of the β phase in the solid η ≈ 0.49 [16, 17]. The control
parameters correspond to a solidification velocity V of
1 µms−1, a temperature gradient G of 110 Kcm−1, and
a lamellar spacing λ equal to the value of the minimum-
undercooling spacing λm ≈ 13.9 µm.

III. RESULTS

Addressing the problem of the solidification of a mo-
saic eutectic grain obviously imposes to consider a larger
system than a single pair of lamellae. In the simplest sit-
uation, as regards both geometrical and computational
constraints, the simulated system consists of two pairs
of lamellae. Let us call α and β the two eutectic solid
phases. The repeat unit in a lamellar eutectic growth pat-
tern consists of a pair of α and β platelet-like crystals. A
simplistic mosaic, yet periodic system can be constructed
by considering a unit cell made of an arrangement of the
type αβ1αβ2 with the β-phase crystals β1 and β2 pre-
senting a slight misorientation with each other, while the
orientation of the α -phase crystals remains uniform (a
larger system will be also considered later on in this pa-
per). Then there are two kinds of interphase boundaries,
namely the β1-α and β2-α interfaces –which have the
same properties as the α-β1 and α-β2 interfaces, respec-
tively, since we consider centrosymmetric crystals. The
interfacial anisotropy (γ-plot) of both α-β1 and α-β2 in-
terphase boundaries was described with a simple cos2θ
function. More precisely, the surface energies γ1,2 of the
α-β1,2 interphase boundaries are given by:

γ1,2(θ) = γ0[1 − ε1,2cos2(θ1,2 − θ1,2R )], (1)

where θ1,2 are the current inclination angles of the α-
β1,2 interphase boundaries with respect to the main so-
lidification axis z, ε1,2 the anisotropy coefficients, and

θ1,2R the local orientation angle of the γ-plots. The co-
efficient γ0 was set to 1 (see Ref. [17]). For the sake
of simplicity, we set ε1 = ε2 = 0.2. The misorientation
angle θ1R = 20 deg was kept constant, while θ2R was var-
ied, from one simulation to another, from 0 to 30 deg.
Figure 1a shows the evolution of the αβ1αβ2 pattern for
θ2R = 0. It can be seen that, after a transient regime, the
four interphase boundaries are tilted, and parallel with
each other, which signals a steady-state growth regime.

a ab1 b2

a)

b)

FIG. 1. a) Dynamic BI simulation of a eutectic growth pat-
tern made of two pairs of lamellae of the type αβ1αβ2 with
a nonuniform anisotropy (blue lines: solid-liquid interfaces;
black lines: interphase boundaries). b) Variation of the lamel-
lar tilt angle θt as a function of dimensionless time t = t̂V/W ,
where t̂ is the real time. See text for details.

This is more clearly evidenced in the graph of Fig. 1b,
in which the tilt angle θt of the four interphase bound-
aries are reported as a function of time t. It can be
seen that the tilt angle of the two interphase boundaries
with θ1R = 20 deg (on the left of the pattern) decreases,
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starting from a relatively large value of θt. On the oppo-
site, the tilt angle of the two interphase boundaries with
θ2R = 0 deg (on the right of the pattern) increases from
a θt value close to zero. Let us remark that the initial
values of θt, and the details of the transient depend on
the initial guessed shape of the pattern. The four tilt
angles eventually converge to a unique, constant value
θmos (the subscript “mos” refers to “mosaic”) of about
3.7 deg. A major feature is that the lamellae present
different widths, the trijunctions are not at the same z
positions, and the solid-liquid interfaces present symme-
try broken shapes with asymmetry factors of alternating
signs between neighboring lamellae. Nevertheless, the
total volume fraction of the β phase remains equal to
≈ 0.49, as expected in steady-state.

Steady-state patterns with qualitatively similar char-
acteristics were observed for the various values of θ2R ex-
plored in this study. The variation of the converged tilt
angle θmos as a function of θ2R is shown in the graph of
Fig. 2. The value of the steady-state tilt angle θst(θR) in
a uniform eutectic grain, extracted from BI simulations
of a single lamella pair with the same physical param-
eters as in Fig. 1, is also reported in the graph. With
no surprise, θmt and θt(θR) are equal for θ2R = θ1R = 20o.
For other values of θ2R below or above θ1R, θmos takes an
intermediate value between θst(θ

1
R = 20o) and θst(θ

2
R).

FIG. 2. Lamellar tilt angle as a function of the orientation
angle θR. Disks: steady-state angle θmos in mosaic patterns
of the same kind as in Fig. 1 as a function of θ2R. Squares:
steady-state tilt angle θst in a uniform system. Dotted line:
value of the steady-state tile angle θst for a uniform eutectic
grain with θR = 20o.

For a more realistic representation of a mosaic eutec-
tic grain, we performed a BI simulation with 8 lamella
pairs. The anisotropy functions were of the same form
as in Eq. 1. We set a “random” distribution of both the
anisotropy coefficients εi and θiR (the i = 1, ..., 16 num-
ber serving as a label for the interphase boundaries in
the pattern) about average values < ε > and < θR > of
about 0.2 and 2o, respectively. The departure of εi (θiR)
from < ε > (< θR >) was less than about 25% (10%).
The mosaic pattern at the end of the simulation (over a
length of about 7W ) is shown in Fig. 3a. The image does

not present any spectacular feature –the converged tilt
angle (≈ 0.66o) is small because < θR > is small as well–
but it brings a quite convincing piece of demonstration.
The graph in Figs. 3b shows the evolution in time of the
spacing distribution λ(x). It can be seen that the spacing
in the lamellar pattern is slightly nonuniform. Neverthe-
less, the λ(x) curve converges toward a fixed profile in a
reference frame drifting with the tilted-lamellar pattern.
The graph in Fig. 3c shows the distribution of θimos as the
function of the label i of the interphase boundaries (more
or less equivalent to the x position). It is essentially flat,
which, again, demonstrates that the system reached a
steady-state. This appears even more clearly when com-
paring the value of θimos to that of the steady-state tilt
angle θist that was calculated for periodic patterns with
a uniform anisotropy of the same kind as the interphase
boundary numbered i.

a)

b)

c)

FIG. 3. Dynamic BI simulation of 8 pairs of lamellae. a)
Final pattern in steady-state. b) Spacing λ as function of
the space variable x for different times (dimensionless time
interval: 1.25) during the simulation. Dark-grey data: initial
distribution. Colored data: time increases from lighter to
darker blue profiles. c) Lamellar tilt angle as a function of
the interphase boundary label i. Green: θimos (measured from
the pattern in a). Blue: θist.
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IV. CONCLUSION

In this study, we performed BI numerical simulations
of mosaic-like lamellar eutectic patterns in a realistic al-
loy. We used smooth anisotropy functions, and more or
less steep spatial variations of their parameters. Sim-
ulations of a 2-pair lamellar array were used to show
the existence of, and provide a first characterization of
basic steady-state shapes in the presence of spatially
nonuniform anisotropy functions. A simulation with 8
lamella pairs with a random mosaicity also evidences,

at least punctually, that a crystallographically imperfect
lamellar-eutectic grain can grow with a uniform lamellar
tilt, but a nonuniform spacing distribution. Further sim-
ulations are needed for a deeper insight into larger sys-
tems with a more realistic mosaicity. It will be of great
use to compare the simulated growth dynamics and mi-
crostructures with experimental observations [18].
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Faivre, Lamellar eutectic growth with anisotropic inter-
phase boundaries: Experimental study using the rotating
directional solidification method, Acta Mater., 60 (2012)
3206-3214.

[10] S. Bottin-Rousseau, O. Senninger, G. Faivre & S. Aka-
matsu, Special interphase orientation relationships and

locked lamellar growth in thin In-In2Bi eutectics, Acta
Mater., 150 (2018) 16-24.

[11] S. Ghosh, A. Choudhury, M. Plapp, S. Bottin-Rousseau,
G. Faivre & S. Akamatsu, Interphase anisotropy effects
on lamellar eutectics: a numerical study, Phys. Rev. E,
91, 022407 (2015).

[12] Z. Tu, J. Zhou, L. Tong & Z. Guo, A phase-field study
of lamellar eutectic growth with solid-solid boundary
anisotropy, J. Cryst. Growth, 532 (2020) 125439.

[13] Z. Tu, J. Zhou, Y. Zhang, W. Li & W. Yu, An an-
alytic theory for the symmetry breaking of growth-
front in lamellar eutectic growth influenced by solid-solid
anisotropy, J. Cryst. Growth, 549 (2020) 125851.

[14] I. G. Davies & A. Hellawell, Phase orientations in the
lamellar and non-lamellar regions of the Al-CuAl2 eutec-
tic alloy, Phil. Mag., 20 (1970) 1255-1259

[15] U. Hecht, V.T. Witusiewicz & A. Drevermann, Coupled
growth of Al-Al2Cu eutectics in Al-Cu-Ag alloys, IOP
Conference Series: Mat. Sci. Eng., 27 (2012) 012029.

[16] A. Karma & A. Sarkissian, Morphological instabilities of
lamellar eutectics, Met. Trans. A, 27 (1996) 635-656.

[17] S. Akamatsu & S. Bottin-Rousseau, Numerical simula-
tions of locked lamellar eutectic growth patterns, Metal.
Mater. Trans. A, 52 (2021) 4533-4545.

[18] S. Bottin-Rousseau, M. Medjkoune, O. Senninger, L.
Carroz, R. Soucek, U. Hecht & S. Akamatsu, Locked-
lamellar eutectic growth in thin Al-Al2Cu samples: in
situ directional solidification and crystal orientation anal-
ysis, J. Cryst. Growth, 570 (2021) 126203.


