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Abstract—The interleaved regulator (implemented by IEEE
TSN Asynchronous Traffic Shaping) is used in time-sensitive
networks for reshaping the flows with per-flow contracts. When
applied to an aggregate of flows that come from a FIFO
system, an interleaved regulator that reshapes the flows with
their initial contracts does not increase the worst-case delay
of the aggregate. This shaping-for-free property supports the
computation of end-to-end latency bounds and the validation
of the network’s timing requirements. A common method to
establish the properties of a network element is to obtain a
network-calculus service-curve model. The existence of such a
model for the interleaved regulator remains an open question. If a
service-curve model were found for the interleaved regulator, then
the analysis of this mechanism would no longer be limited to the
situations where the shaping-for-free holds, which would widen
its use in time-sensitive networks. In this paper, we investigate
if network-calculus service curves can capture the behavior of
the interleaved regulator. We find that an interleaved regulator
placed outside of the shaping-for-free requirements (after a non-
FIFO system) can yield unbounded latencies. Consequently, we
prove that no network-calculus service curve exists to explain the
interleaved regulator’s behavior. It is still possible to find non-
trivial service curves for the interleaved regulator. However, their
long-term rate cannot be large enough to provide any guarantee
(specifically, we prove that for the regulators that process at
least four flows with the same contract, the long-term rate of
any service curve is upper bounded by three times the rate of
the per-flow contract).

Index Terms—Network Calculus, Service Curve, Interleaved
Regulator (IR), Time-Sensitive Networking (TSN), Asynchronous
Traffic Shaping (ATS)

I. INTRODUCTION

Time-sensitive networks, as specified by the time-sensitive
networking (TSN) task group of the Institute of Electrical and
Electronics Engineers (IEEE), support safety-critical applica-
tions in the aerospace, automation, and automotive domains
[1]. To do so, time-sensitive networks provide a deterministic
service with guaranteed bounded latencies.

These guarantees must be validated through a deterministic
worst-case timing analysis that can be performed with network
calculus. This mathematical framework obtains worst-case
performance bounds by modeling the flows with the concept
of arrival curves and the network elements with the concept of
service curves. Service curves constrain the minimum amount
of service that network elements provide to a flow or aggregate
of flows.

Time-sensitive networks can also rely on a set of mecha-
nisms that improve the traditional forwarding process of an

output port. The traffic regulators are such hardware elements
that support higher scalability and efficiency of time-sensitive
networks. Placed after a multiplexing stage, they reshape the
flows with per-flow shaping curves (by delaying packets if
required) and remove the increase of the flows’ burstiness due
to their interference with other flows.

Traffic regulators come in two flavors: per-flow regulators
(PFRs) and interleaved regulators (IRs). A PFR processes a
unique flow. It stores the packets of the flow in a first in, first
out (FIFO) queue and releases the head-of-line packet as soon
as doing so does not violate the configured shaping curve for
the flow. In contrast, the IR processes an aggregate of flows
with a unique FIFO queue. Each flow has its own configured
shaping curve, but the IR analyses only the head-of-line packet
and releases it as soon as doing so does not violate the shaping
curve of the associated flow. The packets in the IR queue are
blocked by the head-of-line even if they belong to other flows.
This second flavor is implemented within IEEE TSN under the
name asynchronous traffic shaping (ATS) [2].

In time-sensitive networks that contain traffic regulators,
end-to-end latency bounds are obtained from the knowledge
of the shaping curves enforced by the regulators and from the
essential “shaping-for-free” property. It states that the traffic
regulators do not increase the worst-case latency of the flow (or
of the flow aggregate) under certain conditions that depend on
the type of the regulator (PFR or IR). Most analyses of traffic
regulators rely on this property.

For the PFR, the shaping-for-free property is well under-
stood because a PFR with a concave shaping curve can be
modeled with a context-agnostic service curve, i.e., a service
curve that only depends on the configuration of the PFR but
not on the context in which the PFR is placed. This service
curve proves the shaping-for-free property when the PFR is
placed in the appropriate context. When the PFR’s context
deviates from the shaping-for-free requirements, the context-
agnostic service curve still provides performance bounds for
the PFR, and slight deviations of the context lead to bounded
delay penalties. On the contrary, the only context-agnostic
service curve known for the IR is the trivial function t 7→ 0.
The non-trivial service-curve models published in the literature
[3], [4] are context dependent and always assume that the
shaping-for-free property holds. Without a context-agnostic
service-curve model, performance bounds cannot be obtained
for an IR placed outside the shaping-for-free requirements,



which restrains its use in time-sensitive networks.
In this paper, we investigate if the behavior of the IR can be

modeled by a context-agnostic network-calculus service curve.
Our contributions are:
• As opposed to the shaping-for-free property when the IR is
placed after a FIFO system, we prove that the IR can yield
unbounded latencies when placed after a non-FIFO system,
even if the latter is FIFO-per-flow and lossless.
• We prove that the shaping-for-free property of the IR cannot
be explained by any network-calculus service-curve model.
• For any IR that processes at least four flows, we prove that
any context-agnostic service curve for an individual flow is
upper bounded by a constant.
• We exhibit a strict service curve of the IR and a function that
upper bounds any other context-agnostic strict service curve.
• For any IR that processes at least four flows, we show that
the long-term rate of any context-agnostic service curve for
the aggregate is upper bounded by three times the rate of the
per-flow contract.

The paper is organized as follows. We provide the back-
ground on network-calculus service curves and regulators in
Section II. We discuss the related work in Section III and
provide the system model in Section IV. We then analyze the
role of the FIFO assumption in the shaping-for-free property
of the IR in Section V. Afterward, we discuss the context-
agnostic service curves of the IR in Section VI. We provide
our conclusive remarks in Section VII.

II. BACKGROUND

In time-sensitive networks, performance metrics such as
flows’ end-to-end latencies have to be bounded in the worst
case, not in average. The network-calculus framework [5],
[6], [7] can provide such performance bounds. It describes
the data traffic with cumulative functions, such as RA, where
RA(t) is the amount of data that cross the observation point
A between an arbitrary time reference 0 and t. Cumulative
functions belong to F0 = {f : R+ → R+|f(0) = 0}.

A. Network-Calculus Service Curves

A causal network system S offers a service curve β if (a)
β is wide-sense increasing and (b) for any input cumulative
function RA(t), the resulting output traffic RB(t) verifies

∀t ≥ 0, RB(t) ≥ (RA ⊗ β)(t) (1)

where ⊗ describes the min-plus convolution (Table I). Com-
mon service curves are of the form rate latency βR,T : t 7→
R·[t−T ]+ with rate R and latency T , where [·]+ = max(·, 0).

Some network systems provide stronger guarantees through
a strict service curve. A causal network system S offers a
strict service curve βstrict if (a) βstrict is wide-sense increasing
and (b) during any interval ]s, t] in which the system is never
empty (a so-called backlogged period), the output RB verifies

∀t ≥ s ≥ 0, RB(t)−RB(s) ≥ βstrict(t− s) (2)

Such a system then also offers βstrict as a service curve:
βstrict also verifies Inequation (1) [5, Prop. 1.3.5]. We say that

Z Z ′ Packetizer
β

⇔

Fig. 1. Notations of Definition 1. Z offers the fluid service curve β if it can
be modelled as the concatenation of Z′ followed by a packetizer, where Z′

offers the service curve β.

a regulator offers a context-agnostic service curve [resp., strict
service curve] if (1) [resp., (2)] holds for any packetized input
RA(t), without any other assumption on the upstream systems.

Reciprocally, a wide-sense increasing function α ∈ F0 is an
arrival curve for the traffic at A if

∀ t ≥ s ≥ 0, RA(t)−RA(s) ≤ α(t− s) (3)

We also note RA ∼ α and say that the traffic is α-constrained.
Common arrival curves are of the form leaky bucket γr,b with
a rate r and a burst b: ∀t > 0, γr,b(t) = rt+ b.

Given some arrival-curve and service-curve constraints,
network-calculus results provide delay and backlog bounds at
a network element. A common approach for computing end-to-
end performance bounds in time-sensitive networks consists in
obtaining an arrival-curve model for each flow and a service-
curve model for each network element. Service-curve models
for most IEEE TSN mechanisms can be found in [8], [9].

B. The Packetizer and Fluid Service Curves

In packet-switching time-sensitive networks, the stream
of data at an observation point A can either be fluid
(e.g., on the transmission links) or packetized (packet-by-
packet, e.g., within the switches). A packetizer transforms a
fluid stream into a packetized stream by releasing the packet’s
bits only when the last bit is received. It does not increase the
end-to-end latency bounds [5, Thm. 1.7.5].

When a system Z with packetized input and output can
be split into a fluid service-curve element followed by a
packetizer, we say that Z offers a fluid service curve.

Definition 1 (Fluid service curve). Consider a function β ∈ F0

and a system Z with packetized input and output. We say that
Z offers β as a fluid service curve if there exists a system Z ′

that offers the service curve β such that Z can be realized as
the concatenation of Z ′, followed by a packetizer (Figure 1).

C. Individual Service Curve for a Flow

In time-sensitive networks, the service modeled by the
service curves of Sections II-A and II-B is shared between
the flows of the aggregate F . In (1), the cumulative arrival
function RA of the aggregate at A is the sum of the individual
arrival functions {RA

f}f∈F for each flow f in the aggregate
F : ∀t ∈ R+, RA(t) =

∑
f∈F RA

f (t).
We say that a system S offers to flow g the individual

service curve βg if (a) βg is wide-sense increasing, and (b)
for any cumulative function RA

g of the flow g at the input A
of S, the cumulative function RB

g of g at its output B verifies

∀t ≥ 0, RB
g(t) ≥ (RA

g ⊗ βg)(t) (4)
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Fig. 2. Two flavors of traffic regulators. With PFRs, we need one PFR per
flow. In contrast, the IR uses a single FIFO queue to shape several flows.

D. Traffic Regulators and their Shaping-For-Free Properties

Traffic regulators are hardware elements placed before a
multiplexing stage to remove the increased burstiness due to
interference with other flows in previous hops. They enable the
computation of guaranteed latency bounds in networks with
cyclic dependencies [3], [10], [11]. They come in two flavors.

A per-flow regulator (PFR) is a causal, lossless, FIFO
system configured for a unique flow f with a shaping curve
σf (Figure 2a). It stores the packets of f in order of arrival
and releases the head-of-line (HOL) packet at the earliest time
such that the resulting output has σf as an arrival curve. In a
network with multiple flows, there is one PFR per flow.

The interleaved regulator (IR) is a causal, lossless, and FIFO
system that processes an aggregate F = {f1, f2, . . . } of sev-
eral flows, each one with its own shaping curve (σf1 , σf2 , . . . ,
see Figure 2b). It stores all the packets of the aggregate F in
order of arrival into a single FIFO queue and only looks at the
head-of-line (HOL) packet. The HOL packet p is released as
soon as doing so does not violate the configured shaping curve
for the associated flow fi: Packet p can either be immediately
released (if the resulting traffic for fi at the IR’s output is σfi -
constrained) or delayed to the earliest date that ensures that
fi is σfi -constrained at the IR’s output. This delay depends
on the shaping curve σfi for the associated flow fi and the
history of departure dates for previous packets of the same
flow. During this delay, any other packet p′ in the queue is
blocked by the HOL packet p, even if p′ belongs to another
flow fj and even if p′ could be immediately released without
violating the shaping curve σfj for its flow fj .

Traffic regulators can delay individual packets, but there
exist specific conditions in which they do not increase the
worst-case latency bounds of the flows. This fundamental
shaping-for-free property is central in the analysis of time-
sensitive networks with traffic regulators. It slightly differs for
the two flavors.

Theorem 1 (Shaping-for-free property of the PFR [12, Thm.
3]). Consider a flow f with input arrival curve αf that crosses
in sequence a causal system S followed by a PFR (Figure 3a).
If the PFR is configured with σf ≥ αf and if S is FIFO
for f , then the worst-case delay Wf,S+PFR of f through the
concatenation is equal to the worst-case delay Wf,S of the
flow through the previous system S.

PFRS

FIFO-per-flow

f
αf

Wf,S Wf,S+PFR

σf ≥ αf

(a) For the PFR

IRS

FIFOf1
αf1

f2
αf2

. . . WS WS+IR


σf1 ≥ αf1

σf2 ≥ αf2

. . .

(b) For the IR

Fig. 3. Shaping-for-free properties of the traffic regulators. For the PFR, the
system S only needs to be FIFO-per-flow. For the IR, S must be FIFO for
the aggregate.

Theorem 2 (Shaping-for-free property of the IR [12, Thm. 4]).
Consider an aggregate F = {f1, f2, . . . } with input arrival
curves {αf}f∈F that crosses in sequence a causal system
S followed by an IR (Figure 3b). If the IR is configured
with ∀i, σfi ≥ αfi and if S is FIFO for the aggregate, then
the worst-case delay WS+IR of the aggregate F through the
concatenation is equal to the worst-case delay WS of the
aggregate through the previous system S only.

Theorems 1 and 2 exhibit two fundamental differences.
First, Theorem 2 only ensures that the worst-case delay of
the aggregate is not increased, whereas Theorem 1 guarantees
that the worst-case delay of the individual flow is preserved.
Within an aggregate, the first bound can be larger than the
latter, e.g., when the flows have different packet sizes. Second,
Theorem 1 only requires the previous system S to be FIFO
for each flow individually (FIFO-per-flow), whereas the same
system is required to be globally FIFO for Theorem 2.

III. RELATED WORK ON THE MODELING OF
TRAFFIC REGULATORS

In time-sensitive networks with traffic regulators, end-to-end
latency bounds for the flows are obtained by combining the
shaping-for-free property for traffic regulators with service-
curve-based network-calculus results for other systems. This
differentiated treatment of network elements (traffic regulators
vs. other systems with service-curve models) restrains the
choice of the end-to-end analysis method. Methods based
on total-flow analysis (TFA) [13, §3.2] can be adapted to
networks with traffic regulators [3], [11]. Other approaches,
such as single-flow analysis (SFA) [13, §3.3], pay multiplexing
only once (PMOO) [14] and flow prolongation [15] provide
tighter end-to-end latency bounds than TFA in several types
of networks [16], but they heavily rely on service-curve
models. In addition, service-curve models provide continuity
and differentiability properties, which allows for synthesizing
network designs from the performance requirements, as shown
by Geyer and Bondorf in [17]. Hence, a need exists for ob-
taining service-curve models for all elements of time-sensitive
networks, including traffic regulators such as PFRs and IRs.

The per-flow regulator (PFR) was introduced under the
name packetized greedy shaper in [5, §1.7.4]. Le Boudec and
Thiran proved in [5, §1.7.4] that if σf is concave and such
that limt→0+ σf (t) is larger than the maximum packet size of
f , then the PFR offers σf as a fluid service curve [5, Thm.



1.7.3]. This model proves Theorem 1. In this paper, we say
that the curve σf explains the shaping-for-free property of the
PFR and we formally define this notion in Section V-B. Due to
its network-calculus service-curve model, the behavior of the
PFR can also be studied in situations where Theorem 1 does
not apply. In [18], the consequence of redundancy mechanisms
– that can affect the FIFO property – is studied, and end-to-
end latency bounds are obtained for flows in networks with
redundancy mechanisms and PFRs. In [12, §IV.A], Le Boudec
also provides an input-output characterization of the PFR. This
type of model does not rely on the concept of service curve
but describes the PFR’s output packet sequence as a function
of the input packet sequence.

The interleaved regulator (IR) was introduced by Specht
and Samii under the name Urgency-Based Scheduler [10]. As
opposed to the PFR, its shaping-for-free property was proved
without the concept of service curves: with a trajectorial
approach in [10] and with an input-output characterization
in [12, §V]. The equivalence between the theoretical model
of the IR and the TSN implementation (Asynchronous Traffic
Shaping, [2]) was proved by Boyer in [19], who also provides
a second input-output characterization [19, §3.3]. The only
useful service curves that are known for the IR are only
valid when the IR is placed in a context that meets the
conditions of Theorem 2. A first context-dependent service
curve is provided in [3, §IV.A.1] and then slightly improved
in [4, §III.B.1]. In contrast, the only context-agnostic service
curve known for the IR is the trivial function t 7→ 0. In
[20], Hamscher mentions the first conjecture on a non-trivial
context-agnostic service curve for the IR and uses a linear-
programming approach for hardening their conjecture pending
formal proof. The conjecture was not shared (and, to our
knowledge, has not been published at the time of this writing).
However, the presentation triggered discussions on whether the
IR’s behavior could be captured by context-agnostic service
curves. These discussions motivated this paper.

Hence, two questions remain open: Beyond the function
β : t 7→ 0, what other context-agnostic service curves does the
IR provide? Do any of them explain Theorem 2? We address
these two questions in this paper.

IV. SYSTEM MODEL AND NOTATIONS

We consider an asynchronous packet-switching time-
sensitive network that contains traffic regulators. We focus on
a particular traffic regulator within this network. It can either
be a per-flow regulator (PFR) that processes a single flow
F = {f} with shaping curve σf or an interleaved regulator
(IR) that processes an aggregate F with leaky-bucket shaping
curves {σf}f∈F = {γrf ,bf }f∈F . We focus on the subset of
flows F that cross the regulator. We model any other network
elements (queues, schedulers, switching fabrics, transmission
links, . . . ) or sequence of network elements crossed by the
flows F between their sources, the regulator, and their desti-
nations as black-box systems. Each system has a traffic input
and a traffic output and is only assumed to be causal and
lossless: it neither produces nor loses any data internally. Data

TABLE I
NOTATIONS

Common Operators
a ∨ b = max(a, b) Maximum of a and b.
a ∧ b = min(a, b) Minimum of a and b.
[c]+ = max(0, c)
⌊x⌋ = max{n ∈ Z|n ≤ x} Floor function.

f⊗ g t 7→ infs≤t f(s) + g(t− s) Min-plus convolution
f ⊗ g t 7→ sups≤t f(s) + g(t− s) Max-plus convolution
f ⊘ g t 7→ infu≥0 f(t+ u) + g(u) Max-plus deconvolution

F0 = {f : R+ → R+|f(0) = 0} Set of curves
Common Curves

γr,b t 7→
{

0 if t = 0

rt+ b if t > 0
Leaky-bucket curve.

βR,T t 7→ R[t− T ]+ Rate-latency curve.
Flows

f ∈ F A flow f in the set of flows F
{σf}f∈F A set of shaping curves for the flows F

Lmin
f , Lmax

f Minimum [resp., maximum] packet size of flow f

Trajectory Description
x A trajectory: Description of all the events in the network
M An observation point

M x Packet sequence at M in trajectory x
Rx,M Cumulative function of the aggregate. . .

[resp., Rx,M
f ] . . . [resp., of f ] at M in Trajectory x.

Rx,M ∼ α Rx,M is constrained by α, Equation (3)
Parameters of the Spring adversary (Section V-A)
I Expected spacing for same-flow packets after the IR
d Maximum delay in the Spring-controlled system S1

ϵ Margin (minimum packet spacing after S1)
τ Period of the six-packet-long profile

Regulator
B D

Fig. 4. Input [resp., output] observation point B [resp., D] for a regulator.

is produced at the flows’ sources and consumed at the flows’
destinations.

A trajectory x is a description of all the events in the
network (packet arrival, packet departure). It is acceptable if
all known constraints are satisfied. For an observation point
M, we denote by Rx,M [resp., Rx,M

f ] the cumulative function of
the aggregate [resp., of the flow f ∈ F] at observation point
M in trajectory x. If the stream is packetized at M, we call M x

the packet sequence that describes the packets’ arrival date,
size, and associated flow at M in trajectory x.

For an input packet sequence Bx at the input B of the
regulator (Figure 4), we use the equivalent input-output char-
acterizations of traffic regulators from [12] and [19] to obtain
the output packet sequence Dx at the output D of the regulator.

We list the notations in Table I. Each result in this paper
is associated with an intuition of the proof, and the formal
proofs are available in [21].

V. LIMITS OF THE SHAPING-FOR-FREE PROPERTY FOR
THE INTERLEAVED REGULATOR

The shaping-for-free property is a strong attribute of the
interleaved regulator (IR). However, it is context dependent: It
makes assumptions on the context in which the IR is placed.
In this section, we investigate the limits of these assumptions.
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Fig. 5. The network N1 and the Spring-generated Trajectory 1 that yields
unbounded latencies in the IR when S1 is not assumed FIFO.

First, we observe that Theorem 2 requires the upstream
system to be FIFO. In Section V-A, we prove that removing
this assumption makes the IR unstable: it can yield unbounded
latencies. We then prove in Section V-B that there exists no
service-curve model of the IR that can explain Theorem 2.

A. Instability of the IR when Placed after a Non-FIFO System

In this subsection, we discuss the role of the FIFO assump-
tion in Theorem 2. When removed, we prove that the IR can
yield unbounded latencies. Specifically, we prove

Theorem 3 (Instability of the IR after a non-FIFO system).
Consider an IR that processes three or more flows with the
same leaky-bucket shaping curve for the first three flows:
∀fi ∈ {f1, f2, f3}, σfi = γr,b with r > 0 and b greater than
the maximum packet size of f1, f2, f3. For any W > 0, there
exists a system S1 and a source ϕ (Figure 5), such that:

1/ each flow fi is σfi -constrained at the source ϕ,
2/ S1 is causal, lossless and FIFO-per-flow (but globally

non-FIFO),
3/ when the system S1 is placed after the source as in

Figure 5, then the delay of each flow within S1 is upper-
bounded by W ,

4/ when the IR is placed after S1 as in Figure 5, then the
delay of any flow within the IR is not bounded.

The proof of Theorem 3 in [21, Appendix B.A] relies on an
adversarial traffic generation that we call “Spring”. Spring is
an adversary that knows the values of b, r and W in Theorem 3
and controls the source ϕ and the system S1 of Figure 5
such that Properties 1/ to 4/ of Theorem 3 hold. It defines
the constants I, d, ϵ and τ as follows

I ≜ b
r ; 0 < d < min (I,W ) ; 0 < ϵ < min(I − d, d

3 ); τ ≜ 3I + 3ϵ− d

(5)

Intuition: Trajectory 1 generated by Spring is illustrated
in Figure 5. All packets have the size b. The far-left timeline
shows the packet sequence A 1 for the three flows at the output
of the Spring-controlled source. A sequence of six packets is
repeated with period τ . Only the period k = 0 is shown.

The dotted arrows that lead to the second timeline highlight
each packet’s delay in the Spring-controlled system S1 and the
resulting packet sequence B1. The main property of Trajectory
1 is that the first packet of the dash-dotted red flow f2 and the
second packet of the solid blue flow f1 have exchanged their
order at B compared to their order at A. This is because the
former suffers a delay d through S1, but the latter does not
suffer any delay. Note that the Spring-controlled system S1 is
not FIFO but remains causal, lossless, and FIFO-per-flow with
a delay bound d < W .

The dotted arrows that link the second to the third timeline
describe the behavior of the IR (not controlled by Spring)
when provided with the input sequence B1. For example, the
first packet of f1 is immediately released by the IR because the
network was previously empty. However, the second solid blue
packet of f1 is shaped (delayed) by the IR because releasing it
would violate the γr,b shaping constraint for f1 at the output
of the IR. This packet is released as soon as doing so does
not violate the γr,b constraint, i.e., I seconds after the previous
packet. Because of this, the first dash-dotted red packet of the
flow f2 is blocked by the head-of-line (HOL). And the second
packet of f2 is shaped and delayed to ensure a distance of I
from the previous packet of f2.

As a result, it takes 3I seconds for the IR to output the six
packets of the first period, whereas they entered the IR within
τ seconds. As τ < 3I , we can generate a constant build-up of
delay and backlog in the IR by repeating the six-packet-long
profile every τ seconds.

B. The Shaping-for-Free Property of the Interleaved Regulator
Cannot be Explained by a Service Curve

Theorem 3 shows that the IR does not provide any context-
agnostic delay guarantees as a stand-alone network element. In
contrast, if a system Z offers a context-agnostic service curve
β that explains a context-dependent property (e.g., shaping-for-
free), then β continues to hold when Z is placed in a context
that differs from the assumptions of the context-dependent
property. β can be used to compute the consequences of the
deviation from the assumptions and their resulting penalties
on performance bounds. For such a system, slight deviations
from the assumptions should lead to small delay penalties.

This is the case for the PFR, for which we can find a service-
curve model that explains its shaping-for-free property. We
formally define this notion as follows.

Definition 2 (A curve explains the shaping-for-free property).
Consider a set of flows F and a set of shaping curves σ =
{σf}f∈F . We say that βσ ∈ F0 explains the shaping-for-free
property if and only if: For any causal, lossless and FIFO
systems Z ′ and S, if Z ′ offers βσ as a service curve, then the
worst-case delay of the aggregate between A and B (Figure 6)
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Fig. 6. Notations of Definition 2. βσ explains the shaping-for-free property
if any system Z′ that offers βσ as a service curve does not increase the
worst-case delay of the flows when placed after any FIFO system S.
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Fig. 7. Application of Proposition 1 to prove Theorem 1. (a) A PFR placed in
the conditions of Theorem 1. (b) The equivalent model as per Proposition 1.

over all the trajectories X = {x|∀f ∈ F , RA,x
f ∼ σf} equals

the worst-case delay between A and C over the same set X .

As per this definition, a function βσ explains the shaping-
for-free property if any system Z ′ that offers βσ as a service
curve does not increase the worst-case delay of the aggregate
F when placed in a context that meets the assumptions of
Theorems 1 and 2 (i.e., placed after a FIFO system S with
flows that are initially constrained by their shaping curves).
For the PFR, we have a positive result:

Proposition 1. Consider a PFR that shapes a single flow
F = {f} with a concave shaping curve σf such that
limt→0 σf (t) ≥ Lmax

f . Then the PFR offers the fluid service
curve βσ = σf that explains the shaping-for-free property.

The formal proof in [21, Appendix B.B] directly derives
from [5, Thm. 1.7.3]. Note that Proposition 1 contains two
statements: (1) σf is a fluid service curve of the PFR. (2) σf

explains the shaping-for-free (Definition 2).
Let us discuss why these two statements prove Theorem 1.

Consider a causal, lossless, and FIFO system S and a PFR
configured with σf placed after S (Figure 7a). By combining
the first statement of Proposition 1 with Definition 1, the
PFR can be realized as the concatenation of Z ′ followed
by a packetizer (Figure 7b), where Z ′ is a causal, lossless,
and FIFO system that offers βσ = σf as a service curve.
We then combine the second statement of Proposition 1 with
Definition 2. We obtain that if σf is an arrival curve for f
at the input of S, then the worst-case delay of the flow f
through S equals the worst-case delay of the flow through
the concatenation of S and Z ′. Finally, the packetizer does
not increase the worst-case latency bounds [12, Thm. 1.7.1],
which proves Theorem 1.

As opposed to the PFR, we prove that no fluid service curve
can explain the shaping-for-free property of the IR:

Theorem 4. An IR that processes at least three flows with
the same leaky-bucket shaping curve does not have any fluid
service curve that explains its shaping-for-free property.

To prove Theorem 4, we rely on the following lemma, that
we prove in [21, Appendix B.C].

Lemma 1. If βσ explains the shaping-for-free (Definition 2),
then βσ ≥

∑
f∈F σf

By reusing Spring (from the proof of Theorem 3), we then
exhibit a trajectory that shows that a function larger than∑

f∈F σf cannot be a fluid service curve of the IR. The formal
proof of Theorem 4 is in [21, Appendix B.D].

VI. SERVICE CURVES OF THE INTERLEAVED REGULATOR

In the previous section, we use the sensitivity of the inter-
leaved regulator (IR) to the FIFO assumption in Theorem 2 to
prove that the IR has no fluid service curve that can explain
its shaping-for-free property.

In this section, we show that the IR still offers a family
of non-trivial context-agnostic service curves. In particular,
we exhibit a non-bounded strict service curve for the IR
(Theorem 5). This strict-service-curve model is of interest for
understanding the behavior of the IR in situations that differ
from the shaping-for-free property. It can be used to model the
IR in service-curve-oriented analysis like SFA and PMOO.

However, any service curves of the IR are also fluid service
curves of the IR, and we know from Theorem 4 that they
must be weak because they cannot explain its shaping-for-free
property. Indeed, their long-term rate is upper bounded: For
an IR that processes more than four flows, the long-term rate
of any of its service curves is upper bounded by three times
the rate enforced for a single flow, as we show in Theorem 7.

For an IR that processes at least four flows, we also prove
that any individual service curve βg offered to a single flow g is
upper bounded by its minimum packet size Lmin

g (Theorem 6).
The section is organized as follows. First, we obtain a strict

service curve of the IR (Theorem 5) by using the input/output
models of [12], [19]. Then, we use the Spring trajectory from
Section V to obtain upper bounds on the individual service
curve of the IR for a single flow (Theorem 6). Last, we use
Theorem 6 to upper-bound the long-term rate of any context-
agnostic service curve of the IR for the aggregate (Theorem 7).

A. A Strict Service Curve for the Aggregate

Even though Spring’s Trajectory from Section V-A gener-
ates a constant build-up of delay in the IR, we can observe in
Figure 5 that the IR continuously outputs two packets every I
seconds. In fact, we can find a minimum output rate whenever
the IR is non-empty. This shows that the IR offers a strict
service curve as defined in Section II-A:

Theorem 5 (IR strict service curve). Consider an IR that
processes an aggregate of flows F with leaky-bucket shaping
curves: ∀f ∈ F , σf = γrf ,bf with rf > 0 and bf ≥ Lmax

f ,
where Lmin

f [resp., Lmax
f ] is the minimum [resp., maximum]

packet size of f . Define

Lmin = min
f∈F

Lmin
f Imax = max

f∈F

Lmax
f

rf
(6)

Then the staircase curve βsc : t 7→ ⌊t/Imax⌋ · Lmin (with ⌊·⌋
the floor function, Table I) and the rate-latency curve βR,T
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Fig. 8. Three different strict service curves of the IR (Theorem 5). The step
dashed blue function β0 is the first curve obtained in the theorem’s proof. Its
supper-additive closure, the solid red function βsc is then also a strict service
curve, as well as the dash-dotted green rate-latency curve βLmin

Imax ,Imax
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and T = Imax and R = Lmin/Imax (Figure 7) are context-
agnostic strict service curves of the IR for the aggregate.

To prove this result, we consider a non-empty IR. The output
time of the head-of-line packet is given by the input/output
characterizations of [12], [19]. It can be upper-bounded. From
this we obtain that the dashed-blue curve β0 in Figure 8 is
a strict service curve of the IR, and so is its supper-additive
closure [7, Prop 5.6], defined as the function

β0 ∨ (β0⊗β0) ∨ ((β0⊗β0)⊗β0) ∨ . . . (7)

where ∨ is the maximum and ⊗ is the max-plus convolution
(Table I). The computation of (7) gives βsc, shown in solid
red in Figure 8. Any wide-sense increasing curve that remains
below the βsc service curve is also a strict service curve of the
IR [7, Prop 5.6]. This is the case for the rate-latency service
curve βLmin/Imax,Imax shown with a dash-dotted green line in
Figure 8. The formal proof of Theorem 5 is in [21, Appendix
B.E].

Application to the Situation of Section V-A. Figure 9 shows
the cumulative arrival function RB at the input of the IR as
well as the cumulative departure function RD at the output of
the IR, in Spring’s trajectory1 described in Section V-A and
Figure 5. We also provide the arrival curve αB of the aggregate
at the input of the IR.

In Section V-A, all packets of the aggregate have the same
size L and all three flows have the same leaky-bucket shaping
curve σf1 = σf2 = σf3 = γr,b with b = L. The application of
Theorem 5 gives that βL

I ,I = βr, br
is a context-agnostic strict

service curve of the IR for the aggregate. In Figure 5, we place
this curve in green at the beginning of the backlog period. We
confirm that when the IR is non-empty, the cumulative output

1With the notations of (5), the parameters used in Figure 9 are: W =
0.86I, d = 0.85I , ϵ = 0.05I .
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Fig. 9. Application of Theorem 5 to the Spring trajectory of Section V-A. The
dotted red [resp., blue] curve is the cumulative function at the input [resp.,
output] of the IR. The dash-dotted orange leaky-bucket curve is an arrival
curve of the aggregate at the input of the IR. The solid green rate-latency
curve is a strict service curve of the IR, as proved by Theorem 5.

RB is larger than the strict service curve. Also, it is clear
that the horizontal deviation between the arrival curve αB and
the service curve βL

I ,I is not bounded. This means that the
network-calculus theory cannot provide a latency bound with
this service-curve model, which is consistent with Theorem 3.

In Figure 9, the rate L
I = r of the green service curve βL

I ,I

does not follow the long-term rate 2L
I = 2r of the output

cumulative function RD. However, no better rate for the rate-
latency context-agnostic strict service curve can be achieved:

Proposition 2 (Upper Bound on the Strict Service Curve).
Consider an IR that processes an aggregate F with leaky-
bucket shaping curves {σf}f∈F = {γrf ,bf }f∈F . Consider a
curve βstrict and assume that βstrict is a context-agnostic strict
service curve of the IR. Then

∀t ≥ 0, βstrict(t) ≤ min
f∈F

σf (t) (8)

In particular, if βstrict = βR,T is a rate-latency curve, then
R ≤ minf∈F rf .

To prove this result, we consider a set of trajectories
{xf}f∈F . For each flow f ∈ F , the trajectory xf is obtained
by having only flow f send packets of size bf to the IR at twice
the frequency allowed by its shaping curve. Then the backlog
of the IR quickly becomes non-empty, but the cumulative
output of the IR, Rxf ,D = R

xf ,D
f is constrained by the shaping

curve σf : ∀0 ≤ s ≤ t, Rxf ,D(t) − Rxf ,D(s) ≤ σf (t − s).
Combined with the definition of a strict service curve (2), this
gives βstrict ≤ σf . This is valid for all trajectories {xf}f∈F ,
hence the result. The formal proof is in [21, Appendix B.F].

Figure 10 shows the areas of proven, possible, and impossi-
ble strict service curves of an IR that processes the flows with
the same leaky-bucket shaping curve γr,b, assuming that all the
packets have the size b. Any wide-sense increasing function
that remains in the green area is a strict service curve of the
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Fig. 10. Areas of proven, possible, and impossible strict service curves for
an IR that processes the flows with the same shaping curve γr,b and if all
packets have size b.

IR, as proven by Theorem 5. In contrast, any function that
enters the red area cannot be a strict service curve of the IR,
as proven by Proposition 2.

Incidentally, any wide-sense increasing function that re-
mains within the green area is also a service curve of the
IR. So far, as opposed to the strict-service-curve property, we
have not obtained any limit for the service curve (1). To obtain
this limit, we first need to consider the individual service
curve offered to any flow by the IR, which we analyze in
the following subsection.

B. Upper-Bound on the Individual Service Curve

Consider an IR that processes an aggregate F and take a
flow g ∈ F . In this section, we are interested in the service
the IR guarantees to g, i.e., in an individual service curve of
the IR for g.

If each flow f ∈ F\{g} enters the IR with an arrival curve
αB
f that is equal or smaller than its shaping curve σf , then

none of the packets of the flows F\{g} is ever delayed by the
IR. In this case, the IR acts as a PFR for g and provides an
individual fluid service curve σg to g.

In a more likely setting, though, the IR reshapes flows
that exhibit an input arrival curve (strictly) larger than their
configured shaping curve. In such a case, and if the IR
processes more than four flows, no useful individual service
curve for g can be obtained:

Theorem 6 (Upper-Bound on the Individual Service Curve).
Consider an IR that processes an aggregate F of at least four
flows and with the same leaky-bucket shaping curve for at
least three of them: ∀fi ∈ {f1, f2, f3}, σfi = γr,b. Consider
a flow g ∈ F\{f1, f2, f3} and assume that for each fi ∈
{f1, f2, f3}, γr,bi is an arrival curve for fi at the input B of
the IR (Figure 4), with b1 > b, b2 ≥ b, b3 ≥ b (permutating
the indexes if required). Last, consider a curve βg ∈ F0 that
can depend on {σf}f∈F and on {αB

h}h∈F\{g}.
If βg is an individual service curve of the IR for the flow g,

then βg is upper-bounded by g’s minimum packet size Lmin
g .

Theorem 6 shows that any individual-service-curve model
of the IR for a flow g can only guarantee that one single
packet of g will ever cross the IR over the entire network’s
lifetime. Hence, no useful context-agnostic service curve exists
to model the service offered to a single flow by the IR (each
flow is likely to send many packets).

To prove Theorem 6, we reuse the Spring trajectory of
Theorem 3 for the three flows f1, f2, f3. This trajectory creates
a constant build-up of delay and backlog inside the IR. We
then consider a fourth flow, g, and its first packet of size L.
On one hand, if βg is an individual service curve of the IR
for the flow g, then the delay of the first packet of g through
the IR can be upper bounded by inf{t ∈ R+|βg(t) ≥ L}. On
the other hand, the first packet of g can suffer a delay as large
as desired within the Spring trajectory: We send it when the
accumulated delay in the IR is large enough. The combination
of the two above observations provides the result. The formal
proof is in [21, Appendix B.G].

C. Limits on the Aggregate Service Curve

Let us go back to the analysis of the service offered to the
aggregate, by focusing on (non-strict) service-curve models.
One consequence of Theorem 6 is that the long-term rate of
the service curve for the aggregate is upper-bounded by three
times the rate of a single contract.

Theorem 7 (Maximum long-term rate of any service curve).
Consider an IR that processes an aggregate F of at least four
flows and with the same leaky-bucket shaping curve for at
least three of them: ∀fi ∈ {f1, f2, f3}, σfi = γr,b. Consider a
curve β ∈ F0 that can depend on {σf}f∈F . If the IR offers β
as a context-agnostic service curve, then

lim inf
t→+∞

β(t)

t
≤ 3r (9)

To prove Theorem 7, we pick one flow g ∈ F\{f1, f2, f3}
and a traffic arrival for h ∈ F\{g} that meets the requirements
of Theorem 6. The IR is a FIFO system. Hence, if β is a
service curve of the IR, then for any θ ∈ R+, the curve βθ

g

defined by

βθ
g : t 7→

β(t)− ∑
f∈F\{g}

αf (t− θ)

+

· 1{t>θ} (10)

verifies Inequation (4) [5, Prop. 6.4.1]. Note that βθ
g may not

be wide-sense increasing, thus not an individual arrival curve
for g. Inspired by [7, §5.2.1], we resolve this by considering
the curve βθ

g⊘0 : t 7→ infs≥t β
θ
g(s), where ⊘ is the max-plus

deconvolution (Table I) and 0 is the zero function t 7→ 0. The
function βθ

g⊘0 is wide-sense increasing, smaller than βθ
g , thus

an individual service curve for g. From Theorem 6, we obtain
∀θ ≥ 0,∀t ≥ 0, (βθ

g⊘0)(t) ≤ Lmin
g . The left-hand side of

this inequation is an infimum, but the result is valid for any
θ ≥ 0, t ≥ 0. Hence, we can derive a bound on the long-term
rate of β. The formal proof is in [21, Appendix B.H].

With Theorem 7, we can conclude that for an IR that
processes more than four flows, no useful context-agnostic



TABLE II
CONTEXT-AGNOSTIC SERVICE CURVES FOR AN IR THAT PROCESSES AT
LEAST FOUR FLOWS WITH THE SAME LEAKY-BUCKET SHAPING CURVE

γr,b , ASSUMING ALL PACKETS HAVE SIZE b.

Service-curve
type

Curve exhibited
in this paper

Limit exhibited
in this paper

Service curve
β

β
r, b

r
lim inft→+∞

β(t)
t

≤ 3r

Strict service
curve βstrict β

r, b
r

∀t ≥ 0, βstrict(t) ≤ γr,b(t)

Individual service
curve βg , ∀g ∈ F

None
(t 7→ 0) ∀t ≥ 0, βg(t) ≤ Lmin

g

service curve exists to model the IR. Indeed, the aggregate
of the four flows can exhibit a sustained rate of four times
the rate of a single-flow contract, whereas a context-agnostic
service curve can only guarantee a long-term service rate of
three times this value. Hence, Theorem 7 concludes our search
of context-agnostic service-curve models for the IR and the
results of Section VI are summarized in Table II.

VII. CONCLUSION

Network calculus is a framework for obtaining worst-case
performance bounds of time-sensitive networks, as required
for their validation. Most of the mechanisms standardized by
the time-sensitive networking (TSN) task group of the IEEE
enjoy a network-calculus service-curve model published in
the literature. The interleaved regulator (IR), standardized as
asynchronous traffic shaping (ATS) in TSN, is an exception.
Its shaping-for-free property is instrumental in designing and
analyzing time-sensitive networks but was proved without
network-calculus service curves. The existence of a service-
curve model that explains the IR’s behavior and its shaping-
for-free property remained an open question. If such a model
existed, network engineers could use the IR outside of the
shaping-for-free requirements and still compute end-to-end
performance bounds with service-curve-oriented tools.

In this paper, we settled the question: Network-calculus
service curves cannot explain the behavior of the IR. We show
that the IR still offers non-trivial functions as (strict) service
curves, but (a) none of them can explain the shaping-for-free
property of the IR and (b) these curves are too weak to be
helpful and cannot offer any delay guarantee in most cases.
Consequently, performance bounds cannot be obtained with
service-curve-oriented approaches when the IR is used in a
context that differs from the shaping-for-free requirements,
e.g., after a non-FIFO system. We prove that these bounds
do not even exist: The IR can yield unbounded latencies after
a non-FIFO system.
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