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Abstract—This paper focuses on how to generate digital twins
(DTs) starting from image or video inputs through the use
of modern AI methods. To address the problem of lack of
public datasets, this paper reports on the creation of 2 new
image datasets featuring 244 and 471 images, respectively, of
collaborative robots (Cobots), annotated based on the 3 categories
of Cobots, joints and links. Based on metrics obtained through
the logging of training runs and the real-time visualization of
network parameters, we demonstrate the impact of the number
of images had on the learning capacity of the network. Pre-
trained results have been saved and made available for future
inference as well as transfer learning.

Index Terms—digital twins, cobots, industrial image datasets,
convnets

I. INTRODUCTION

The process of digitization is driving a revolution, among
others, in a variety of industrial sectors, by providing inter-
active methods and tools that reflect real-time processes to
support professionals throughout the life cycle of a project. In
a practical sense, this process is accompanied by a progressive
shift from the use of traditional information vehicles, such as
documents and spreadsheets to the use of interactive digital
models as real-time virtualizations of a project [1].

The range of possibilities within digitization is broad and
often dependent on the application scenario at hand. However,
in general within the landscape of modern digitization, the
concept of digital twins (DTs) has gained increasing ground
in recent years across the board, including in manufacturing,
construction, health care, aerospace, transportation and other
application areas [2, 3, 4]. At the same time, even more
widespread adoption of DTs is hindered by the expertise
required for their deployment. This aim of this research is
to bridge this gap by helping to enable the use of a hybrid
(semi-automated) method of digital twin generation based on
image or video-based datasets and deep learning techniques.
To address the problem of a lack of publicly available datasets
for industrial collaborative robotics applications, this paper
reports the creation and evaluation of 2 public datasets with
images of collaborative robots (Cobots).

The paper is structured as follows. In Section II, a summary
is given of use case scenarios for and standardization efforts
behind DTs. This is followed by a section on the general
design process required for the creation of DTs (Section
III). The two Cobot datasets we have created are described
in Section IV. Finally, experimental results are provided in
Section V.

II. USE CASES OF AND STANDARDIZATION EFFORTS
BEHIND DIGITAL TWINS

According to the earliest definition of digital twins, for-
mulated from the perspective of the aerospace industry by
Glassgen and Stargel, a DT is “an integrated multiphysics,
multiscale, probabilistic simulation of an as-built vehicle or
system that uses the best available physical models, sensor up-
dates, fleet history, etc., to mirror the life of its corresponding
flying twin” [5]. From a more generic point of view, a digital
twin can be any virtual model that is capable of changing its
appearance and / or behavior on the basis of external inputs
representing events that have an impact on the process or
application at hand. This translates into data and information
assimilated by the DT and sent to it from different sources,
including both events generated by manual (user) actions as
well as data from specific sensors (e.g. pressure, temperature,
humitidy, seismic and so on). As a result of the generality of
this framework, DTs are an increasingly hot topic in many
application fields.

DTs can play a fundamental role as tools for the simulation
of a large variety of scenarios. They can facilitate training
activities on the use of expensive or otherwise difficult to
access assets, or for situations that are potentially high risk
and occur rarely, like natural disasters or pandemic situations
[6, 7]. Further, the scarcity of opportunities to access an asset
or situation can also present itself in the form of lack of
available (historical) data, in which case DTs can also be of
paramount importance.

DTs can also serve as tools for guidance of user behavior
in complex situations, such as when navigating through an
unfamiliar building (such as a hospital [7]), or when trying to
reduce energy consumption or perform maintenance interven-
tions in a real estate, industrial or smart city context [8, 9].
In some cases, DTs can even be collaborative, enabling users
from different locations to interact with the same digital twin
from different locations [10].

Depending on the use case, then, DTs can be widely
different interactive models tailored to the needs of those
who will work with them [11]. At the same time, it is no
coincidence that there is strong interest surrounding DTs from
the point of view of standardization, by organizations that take
care of the development of digital standards for the market.
In this regard, the activities carried out by ISO (International
Organization for Standardization) are especially relevant, given



in particular the work carried out by the technical committee
ISO / TC 184 Automation systems and integration, which for
the manufacturing sector includes specific activities precisely
on the topic of digital twins (ISO / TC 184 / AHG 2)[12] .

III. DEVELOPMENT PROCESS BEHIND DIGITAL TWINS

As highlighted in [10], DTs that have practical value are
often data driven, therefore the creation of DTs involves
challenges such as finding the most useful information within
large quantities of data; integrating the filtered information
into a presentable, actionable form; being able to respond to
incoming data in real time; and being able to predict future
events based on the past. At the same time, modern DTs also
have a strongly visual element to them: in order to engage
users in the most effective ways possible, 2D web technologies
and increasingly 3D applications (both VR and AR) are being
developed [13, 14, 15, 16].

Therefore, the first step of creating DTs is generally to
use a CAD or other 3D modeling tool – or alternatively
a 3D scanning approach – to virtualize the physical entity
or entities being represented [17, 18]. This is followed by
the development of a suitable data processing pipeline, the
development of simulation capabilities (i.e. affordances of the
virtualized copy to be driven by user interactions and data),
development of control affordances for the physical entity or
entities being modeled (so that lessons learned from the DT
can be used to control their physical counterpart), and the
establishment of real-time secure connections between the DT
and the physical entity [10].

Clearly, the development of DTs requires know-how from
many domains, without even considering the target domain
of the DT application itself. Most small- and medium-sized
enterprises do not have the know-how or resources to engage
in graphical modeling or DT-oriented data modeling activities.
Therefore, it will be essential to develop high-level tools
that facilitate the creation and customization of DTs in an
application agnostic way.

IV. CREATION OF A DATASET FOR IMAGE-BASED COBOT
STRUCTURE RECOGNITION

The development of AI software based on artificial learning
requires the creation of data sets dedicated to training and
system validation. Collecting and preparing data in sufficient
quantities for these purposes is a difficult task. It can take
sufficient domain-specific knowledge and a long time for the
data scientist to be able to select the most relevant informa-
tion. From a CogInfoCom perspective, human and artificial
capabilities are both essential in achieving the desired result
[19, 20].

The creation of training datasets has great value in the field
of data science, because it is closely correlated with the ability
to solve problems through AI software, by helping to guide the
deep learning neural network in extracting the useful features
from the training set, allowing it to generalize on unknown
data. Further, a well-designed dataset can contribute to the

Fig. 1. Sample images used in our datasets. The images represent a variety of
configurations, with different Cobot joint configurations and with or without
human presence.

development of new applications that are tangentially related
to the original one, through so-called transfer learning.

A. Cobot Database

The dataset introduced in this paper is based on a collection
of images of collaborative robots (Cobots). To understand the
suitability of our approach towards the creation of the dataset,
we created two versions of the dataset: one with only 106 raw
images, and a second one that consists of 211 raw images
before data augmentation. Figure 1 shows some examples of
the images included in the datasets.

A second, perhaps even more important challenge involved
the creation of suitable labels for the samples. With a view
towards applying the various YOLO architectures for both
object recognition and object localization [21, 22], we used
the LabelImg app [23] to annotate the location of Cobots,
joints and links in each sample image. Annotations were saved
as XML files in PASCAL VOC format, the format used by
ImageNet. The three object types are shown on Figure 2.

Our general assumption in our selection of labels was
that the resulting classifier would perform better with just
3 categories, while the categories of cobot, joint and link
would provide sufficient information for the Cobots to be
reproducible in as a DT. Further details on the two datasets
are provided in Section IV-C and shown in Figures 3 and 4.

B. YOLOv5 in Pytorch

The YOLOv5 algorithm is natively available in PyTorch,
which makes the loading of data and experimentation with dif-
ferent hyperparameters straightforward [22]. The architecture



Fig. 2. Labels created for classification represent the location and identity of
cobots, joints and links.

comes pretrained on the COCO dataset. Although the model
architecture of YOLOv5 remains close to YOLOv4, it has a
smaller size (27 MB instead of 244 MB) and presents further
advantages in speed, accuracy and performance alike.

The YOLO family belongs to single shot object detectors;
unlike the RCNN family it does not have a separate network
for Regional Proposals (RPN) and depends on anchors at
various scales [24]. The YOLO architecture can be divided
into three parts: the backbone, neck and head as follows:

1) The backbone is a convolutional neural network that
aggregates and forms image features at different granu-
larities;

2) The neck is a series of layers to mix and combine image
features to pass them forward to prediction;

3) The head consumes features from the neck and takes
box and class prediction steps

C. Data Augmentation

In order to obtain larger datasets and improve the models
that could be trained using the datasets, we performed data
augmentation as well, thus expanding our datasets to include
244 (based on 106 raw images) and 471 (based on 211 raw
images) samples.

Note that as described in Section IV-D, the YOLOv5 ar-
chitecture also automatically augments the training data using
scaling, color space adjustments, as well as a mosaic-like tiling
of multiple training images. Therefore, we applied a different
set of augmentation methods as described below.

To execute the pre-processing steps, we used Roboflow as
follows:

• We first resized all images by downscaling them to a size
of 416-by-416 pixels. We scalled annotations accordingly.

• We then stripped all images of their EXIF data in order
to remove orientation information [25]

• Finally, we augmented the datasets to hopefully increase
the generalization capability of the model, by increas-
ing the diversity of training samples. The following
approaches were used:

Fig. 3. Datasets parameters

Fig. 4. Class balance

– manipulation of exposure of images
– manipulation of Gaussian blur with a kernel of up to

2 pixels
Following augmentation, we obtained the following number

of representatives for each category:
• Dataset471 class balance: 408 for Joint, 328 for Link. and

286 for Cobot
• Dataset244 class balance: 155 for Joint, 55 for Link. and

18 for Cobot
Regarding Dataset471, Figures 3 and 4 show various pa-

rameters of and summary information on the class balance.
Figures 5 and 6 provide further information on the distribution
and correlation of various label parameters with the dataset.

D. Automatic Data Augmentation YOLOv5

With each training batch, YOLOv5s passes training data
through a data loader, which augments data online. The data
loader makes three kinds of augmentations: scaling, color
space adjustments, and mosaic augmentation. The most novel
of these being mosaic data augmentation, which combines four
images into four tiles of random ratio.

Mosaic augmentation is especially useful helping the model
learn to address the well-known “small object problem”.

Some examples of ground truth data are shown in Figure 7.

V. EXPERIMENTAL RESULTS

Following the training procedure, the performance has been
evaluated by looking at the validation metrics and considering
a new video with a Cobot working in real time. In particular,
weights & biases were used for real-time visualization and
cloud logging was performed of training runs.



Fig. 5. Labels distribution for Dataset471

Fig. 6. Labels correlogram for Dataset471

As mentioned at the beginning, we considered 2 datasets.
For each of the datasets, the metrics are reported in Figures 8
and 9. Each figure shows the relevant bounding box location,
confidence and classification related losses.

Figures 10 and 11 both pertain to Dataset471 and show the
training and validation errors for location (box), classification
(cls) and confidence (objectness). Similarly, Figures 12 and V
show the precision, recall, precision-recall and F1 curves, as
well as the confusion matrix for the whole Dataset471.

Generally, precision-recall curves are used in binary classi-

Fig. 7. Ground truth augmented data for Dataset471

Fig. 8. Metrics for Dataset244

Fig. 9. Metrics for Dataset471.

Fig. 10. Metrics train

fication, however, they can be extended for multi-class cases
as well, in which case a separate curve can be drawn for
each label. The results, especially in Figure 12 show that
the dataset and associated model are a good start towards
identifying cobots and cobot parts in images, however, there
is a tradeoff between precision and recall depending on the
decision threshold chosen.

Finally, some examples of performance on test images are



Fig. 11. Metric val

Fig. 12. P,R, PR and F1 Curves.

Fig. 13. Examples of performance on held-out test images

shown in Figure 13.
It remains to be seen whether the tradeoff is due to the

limited size of the dataset or the inadequacy of the model.
At the same time, it seems that the created Dataset471 and
trained model can be useful when applied to videos in that a
low recall but high precision can help the detection of cobots
at least in some frames. This was the case in our experiment
with a separate video, as shown on Figure 14.

Fig. 14. Results of object detection using the weight of our dataset in a video
showing Cobots working in real time.

At the end, the YOLOv5 weights based on our dataset have
been saved for future inference1.

VI. CONCLUSION

This paper focused on how to generate digital twins (DTs)
starting from image or video inputs through the use of modern
AI methods. To address the problem of lack of public datasets,
this paper reported on the creation of 2 new image datasets
featuring 244 and 471 images, respectively, of collaborative
robots (Cobots), annotated based on the 3 categories of Cobots,
joints and links. Based on metrics obtained through the logging
of training runs and the real-time visualization of network
parameters, we demonstrated the impact of the number of
images had on the learning capacity of the network. Pre-trained
results have been saved and made available for future inference
as well as transfer learning.
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