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René S. Kahn4, Roel A. Ophoff4,5,6, An Goris7, Daniel G. Bradley2, Ammar Al-Chalabi8, Leonard H. van den Berg3,
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We have previously shown higher-than-expected rates of schizophrenia in relatives of

patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship

between the diseases. Here, we investigate the genetic relationship between ALS and

schizophrenia using genome-wide association study data from over 100,000 unique

individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation

between ALS and schizophrenia to be 14.3% (7.05–21.6; P¼ 1� 10�4) with schizophrenia

polygenic risk scores explaining up to 0.12% of the variance in ALS (P¼ 8.4� 10� 7).

A modest increase in comorbidity of ALS and schizophrenia is expected given these findings

(odds ratio 1.08–1.26) but this would require very large studies to observe epidemiologically.

We identify five potential novel ALS-associated loci using conditional false discovery rate

analysis. It is likely that shared neurobiological mechanisms between these two disorders will

engender novel hypotheses in future preclinical and clinical studies.
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A
myotrophic lateral sclerosis (ALS) is a late-onset
neurodegenerative condition characterized by progressive
loss of upper and lower motor neurons, leading to death

from respiratory failure in 70% of patients within 3 years of
symptom onset. Although ALS is often described as a primarily
motor-system disease, extramotor involvement occurs in
up to 50% of cases, with prominent executive and behavioural
impairment, and behavioural variant frontotemporal dementia
(FTD) in up to 14% of cases1. A neuropsychiatric prodrome has
been described in some people with ALS–FTD, and higher rates
of schizophrenia and suicide have been reported in first and
second degree relatives of those with ALS, particularly in kindreds
associated with the C9orf72 hexanucleotide repeat expansion2.
These clinical and epidemiological observations suggest that ALS
and schizophrenia may share heritability.

ALS and schizophrenia both have high heritability estimates
(0.65 and 0.64, respectively)3,4; however the underlying genetic
architectures of these heritable components appear to differ.
Analysis of large genome-wide association study (GWAS)
datasets has implicated over 100 independent risk loci for
schizophrenia5 and estimated that a substantial proportion (23%)
of the variance in underlying liability for schizophrenia is
due to additive polygenic risk (many risk-increasing alleles of
low individual effect combining to cause disease) conferred by
common genetic variants6. This proportion, the single nucleotide
polymorphism (SNP)-based heritability, is lower in ALS (8.2%),
in which fewer than ten risk loci have been identified by GWAS7.
Nevertheless, both diseases have polygenic components, but the
extent to which they overlap has not been investigated.

Recently, methods to investigate overlap between polygenic
traits using GWAS data have been developed8–10. These methods
assess either pleiotropy (identical genetic variants influencing
both traits) or genetic correlation (identical alleles influencing
both traits). Genetic correlation is related to heritability; for both
measures, binary traits such as ALS and schizophrenia are
typically modelled as extremes of an underlying continuous scale
of liability to develop the trait. If two binary traits are genetically
correlated, their liabilities covary, and this covariance is
determined by both traits having identical risk alleles at
overlapping risk loci. Studies of pleiotropy and genetic
correlation have provided insights into the overlapping genetics
of numerous traits and disorders, although none to date has
implicated shared polygenic risk between neurodegenerative and
neuropsychiatric disease. Here, we apply several techniques to
identify and dissect the polygenic overlap between ALS and
schizophrenia. We provide evidence for genetic correlation
between the two disorders which is unlikely to be driven by
diagnostic misclassification and we demonstrate a lack of
polygenic overlap between ALS and other neuropsychiatric and
neurological conditions, which could be due to limited power
given the smaller cohort sizes for these studies.

Results
Genetic correlation between ALS and schizophrenia. To
investigate the polygenic overlap between ALS and schizophrenia,
we used individual-level and summary data from GWAS for ALS7

(36,052 individuals) and schizophrenia5 (79,845 individuals). At
least 5,582 control individuals were common to both datasets, but
for some cohorts included in the schizophrenia dataset this could
not be ascertained so this number is likely to be higher. For ALS,
we used summary data from both mixed linear model association
testing11 and meta-analysis of cohort-level logistic regression12.
We first used linkage disequilibrium (LD) score regression with
ALS and schizophrenia summary statistics; this technique models,
for polygenic traits, a linear relationship between a SNP’s LD
score (the amount of genetic variation that it captures) and its

GWAS test statistic13. This distinguishes confounding from
polygenicity in GWAS inflation and the regression coefficient
can be used to estimate the SNP-based heritability (hS2) for single
traits13. In the bivariate case, the regression coefficient estimates
genetic covariance (rg) for pairs of traits, from which genetic
correlation (rg) is estimated8; these estimates are unaffected by
sample overlap between traits. Using constrained intercept LD
score regression with mixed linear model ALS summary statistics,
we estimated the liability-scale SNP-based heritability of ALS to
be 8.2% (95% confidence interval¼ 7.2–9.1; mean w2¼ 1.13;
all ranges reported below indicate 95% confidence intervals),
replicating previous estimates based on alternative methods7.
Estimates based on ALS meta-analysis summary statistics and
free-intercept LD score regression with mixed linear model
summary statistics were lower (Supplementary Table 1), resulting
in higher genetic correlation estimates (Supplementary Table 2);
for this reason, we conservatively use constrained intercept
genetic correlation estimates for ALS mixed linear model
summary statistics throughout the remainder of this paper.
Heritability estimates for permuted ALS data were null
(Supplementary Table 1).

LD score regression estimated the genetic correlation between
ALS and schizophrenia to be 14.3% (7.05–21.6; P¼ 1� 10� 4).
Results were similar for a smaller schizophrenia cohort of
European ancestry (21,856 individuals)14, indicating that the
inclusion of individuals of Asian ancestry in the schizophrenia
cohort did not bias this result (Supplementary Fig. 1). In addition
to schizophrenia, we estimated genetic correlation with ALS using
GWAS summary statistics for bipolar disorder15, major
depressive disorder16, attention deficit-hyperactivity disorder17,
autism spectrum disorder17, Alzheimer’s disease (Supplementary
Note 1)18, multiple sclerosis19 and adult height20, finding no
significant genetic correlation between ALS and any secondary
trait other than schizophrenia (Fig. 1; Supplementary Table 2).

Polygenic risk score analysis. We supported the positive genetic
correlation between ALS and schizophrenia by analysis of
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Figure 1 | Genetic correlation between ALS and eight secondary traits.

Error bars indicating 95% confidence intervals and P-values were calculated

by the LD score regression software using a block jackknife procedure.

Secondary traits are: AD, Alzheimer’s disease; ADHD, attention

deficit-hyperactivity disorder; ASD, autism spectrum disorder; BPD, bipolar

disorder; MDD, major depressive disorder; MS, multiple sclerosis;

SCZ, schizophrenia.
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polygenic risk for schizophrenia in the ALS cohort. Polygenic risk
scores (PRS) are per-individual scores based on the sum of alleles
associated with one phenotype, weighted by their effect size,
measured in an independent target sample of the same or a
different phenotype10. PRS calculated on schizophrenia GWAS
summary statistics for twelve P-value thresholds (PT) explained
up to 0.12% (PT¼ 0.2, P¼ 8.4� 10� 7) of the phenotypic
variance in a subset of the individual-level ALS genotype data
that had all individuals removed that were known or suspected to
be present in the schizophrenia cohort (Fig. 2; Supplementary
Table 5). ALS cases had on average higher PRS for schizophrenia
compared to healthy controls and harbouring a high
schizophrenia PRS for PT¼ 0.2 significantly increased the odds
of being an ALS patient in our cohort (Fig. 3; Supplementary
Table 6). Permutation of case–control labels reduced the
explained variance to values near zero (Supplementary Fig. 3).

Modelling misdiagnosis and comorbidity. Using BUHMBOX21,
a tool that distinguishes true genetic relationships between
diseases (pleiotropy) from spurious relationships resulting from
heterogeneous mixing of disease cohorts, we determined that
misdiagnosed cases in the schizophrenia cohort (for example,
young-onset FTD–ALS) did not drive the genetic correlation
estimate between ALS and schizophrenia (P¼ 0.94). Assuming a
true genetic correlation of 0%, we estimated the required rate of
misdiagnosis of ALS as schizophrenia to be 4.86% (2.47–7.13) to
obtain the genetic correlation estimate of 14.3% (7.05–21.6;
Supplementary Table 7), which we consider to be too high to be
likely. However, if ALS and schizophrenia are genetically
correlated, more comorbidity would be expected than if the
genetic correlation was 0%. Modelling our observed genetic
correlation of 14.3% (7.05–21.6), we estimated the odds ratio for
having above-threshold liability for ALS given above-threshold
liability for schizophrenia to be 1.17 (1.08–1.26), and the same for
schizophrenia given ALS (Supplementary Fig. 4). From a clinical

perspective, to achieve 80% power to detect a significant
(a¼ 0.05) excess of schizophrenia in the ALS cohort as a result
of this genetic correlation, the required population-based incident
cohort size is 16,448 ALS patients (7,310–66,670).
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Figure 2 | Analysis of PRS for schizophrenia in a target sample of 10,032 ALS cases and 16,627 healthy controls. P-value thresholds (PT) for

schizophrenia SNPs are shown on the x axis, where the number of SNPs increases with a more lenient PT. D Explained variances (Nagelkerke R2, shown

as a %) of a generalized linear model including schizophrenia-based PRS versus a baseline model without polygenic scores (blue bars) are shown for each

PT. � Log10 P-values of D explained variance per PT (red dots) represent P-values from the binomial logistic regression of ALS phenotype on PRS,

accounting for LD (Supplementary Table 4) and including sex and significant principal components as covariates (Supplementary Fig. 2). Values are

provided in Supplementary Table 5.
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Pleiotropic risk loci. We leveraged the genetic correlation
between ALS and schizophrenia to discover novel ALS-associated
genomic loci by conditional false discovery rate (cFDR)
analysis9,22 (Fig. 4; Supplementary Table 8). Five loci already
known to be involved in ALS were identified (corresponding to
MOBP, C9orf72, TBK1, SARM1 and UNC13A) along with five
potential novel loci at cFDRo0.01 (CNTN6, TNIP1, PPP2R2D,
NCKAP5L and ZNF295-AS1). No gene set was significantly
enriched (after Bonferroni correction) in genome-wide cFDR
values when analysed using MAGENTA.

Discussion
There is evolving clinical, epidemiological and biological evidence
for an association between ALS and psychotic illness, particularly
schizophrenia. Genetic evidence of overlap to date has been based
primarily on individual genes showing Mendelian inheritance, in
particular the C9orf72 hexanucleotide repeat expansion, which is
associated with ALS and FTD, and with psychosis in relatives of
ALS patients2. In this study, we have replicated SNP-based
heritability estimates for ALS and schizophrenia using GWAS
summary statistics, and have for the first time demonstrated
significant overlap between the polygenic components of both
diseases, estimating the genetic correlation to be 14.3%. We have
carefully controlled for confounding bias, including population
stratification and shared control samples, and have shown
through analysis of polygenic risk scores that the overlapping
polygenic risk applies to SNPs that are modestly associated
with both diseases. Given that our genetic correlation estimate
relates to the polygenic components of ALS (hS2¼ 8.2%) and
schizophrenia (hS2¼ 23%) and these estimates do not represent all
heritability for both diseases, the accuracy of using schizophrenia-
based PRS to predict ALS status in any patient is expected to be
low (Nagelkerke’s R2¼ 0.12% for PT¼ 0.2), although statistically
significant (P¼ 8.4� 10� 7). Nevertheless, the positive genetic
correlation of 14.3% indicates that the direction of effect of
risk-increasing and protective alleles is consistently aligned
between ALS and schizophrenia, suggesting convergent
biological mechanisms between the two diseases.

Although phenotypically heterogeneous, both ALS and
schizophrenia are clinically recognizable as syndromes23,24.
The common biological mechanisms underlying the association
between the two conditions are not well understood, but are likely
associated with disruption of cortical networks. Schizophrenia is a

polygenic neurodevelopmental disorder characterized by a
combination of positive symptoms (hallucinations and
delusions), negative symptoms (diminished motivation, blunted
affect, reduction in spontaneous speech and poor social
functioning) and impairment over a broad range of cognitive
abilities25. ALS is a late onset complex genetic disease
characterized by a predominantly motor phenotype with
recently recognized extra-motor features in 50% of patients,
including cognitive impairment1. It has been suggested that the
functional effects of risk genes in schizophrenia converge by
modulating synaptic plasticity, and influencing the development
and stabilization of cortical microcircuitry5. In this context,
our identification of CNTN6 (contactin 6, also known as NB-3,
a neural adhesion protein important in axon development)26 as a
novel pleiotropy-informed ALS-associated locus supports neural
network dysregulation as a potential convergent mechanism of
disease in ALS and schizophrenia.

No significantly enriched biological pathway or ontological
term was identified within genome-wide cFDR values using
MAGENTA. Low inflation in ALS GWAS statistics, coupled with
a rare variant genetic architecture7, render enrichment-based
biological pathway analyses with current sample sizes challenging.
Nevertheless, nine further loci were associated with ALS risk at
cFDR o0.01. Of these, MOBP, C9orf72, TBK1, SARM1 and
UNC13A have been described previously in ALS and were
associated by cFDR analysis in this study owing to their strong
association with ALS through GWAS7. The remaining four loci
(TNIP1, PPP2R2D, NCKAP5L and ZNF295-AS1) are novel
associations and may represent pleiotropic disease loci. TNIP1
encodes TNFAIP3 interacting protein 1 and is involved in
autoimmunity and tissue homoeostasis27. The protein product of
PPP2R2D is a regulatory subunit of protein phosphatase 2 and
has a role in PI3K-Akt signalling and mitosis28. NCKAP5L is a
homologue of NCKAP5, encoding NAP5, a proline-rich protein
that has previously been implicated in schizophrenia, bipolar
disorder and autism29,30. ZNF295-AS1 is a noncoding RNA31.
Further investigation into the biological roles of these genes may
yield novel insight into the pathophysiology of certain subtypes
of ALS and schizophrenia, and as whole-genome and exome
datasets become available in the future for appropriately large
ALS case–control cohorts, testing for burden of rare genetic
variation across these genes will be particularly instructive,
especially given the role that rare variants appear to play in the
pathophysiology of ALS7.
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Our data suggest that other neuropsychiatric conditions
(bipolar disorder, autism and major depression) do not share
polygenic risk with ALS. This finding contrasts with our recent
observations from family aggregation studies and may be
unexpected given the extensive genetic correlation between
neuropsychiatric conditions6. This could relate to statistical
power conferred by secondary phenotype cohort sizes, and
future studies with larger sample sizes will shed further light on
the relationship between ALS and neuropsychiatric disease. It is
also possible that the current study underestimates genetic
correlations due to the substantial role that rare variants play in
the genetic architecture of ALS7 and future fine-grained studies
examining heritability and genetic correlation in low-minor
allele frequency and low-LD regions may identify a broader
relationship between ALS and neuropsychiatric diseases.

A potential criticism of this study is that the polygenic overlap
between ALS and schizophrenia could be driven by misdiagnosis,
particularly in cases of ALS–FTD, which can present in later life
as a psychotic illness and could be misdiagnosed as schizo-
phrenia. This is unlikely, as strict diagnostic criteria are required
for inclusion of samples in the schizophrenia GWAS dataset5.
Furthermore, since core schizophrenia symptoms are usually
diagnosed during late adolescence, a misdiagnosis of FTD-onset
ALS–FTD as schizophrenia is unlikely. In this study, we found no
evidence for misdiagnosis of ALS as schizophrenia (BUHMBOX
P¼ 0.94) and we estimated that a misdiagnosis of 4.86% of
ALS cases would be required to spuriously observe a genetic
correlation of 14.3%, which is not likely to occur in clinical
practice. We are therefore confident that this genetic correlation
estimate reflects a genuine polygenic overlap between the two
diseases and is not a feature of cohort ascertainment, but the
possibility of some misdiagnosis in either cohort cannot be
entirely excluded based on available data.

A positive genetic correlation between ALS and schizophrenia
predicts an excess of patients presenting with both diseases.
Most neurologists and psychiatrists, however, will not readily
acknowledge that these conditions co-occur frequently. Our
genetic correlation estimate confers an odds ratio of 1.17
(1.08–1.26) for harbouring above-threshold liability for ALS
given schizophrenia (or vice versa) and a lifetime risk of 1:34,336
for both phenotypes together. Thus, a very large incident cohort
of 16,448 ALS patients (7,310–66,670), with detailed phenotype
information, would be required to have sufficient power to detect
an excess of schizophrenia within an ALS cohort. Coupled with
reduced life expectancy in patients with schizophrenia32, this may
explain the relative dearth of epidemiological studies to date
providing clinical evidence of excess comorbidity. Moreover, it
has also been proposed that prolonged use of antipsychotic
medication may protect against developing all of the clinical
features of ALS33, which would reduce the rate of observed
comorbidity. Considering our novel evidence for a genetic
relationship between ALS and schizophrenia, this underscores
the intriguing possibility that therapeutic strategies for each
condition may be useful in the other, and our findings provide
rationale to consider the biology of ALS and schizophrenia
as related in future drug development studies. Indeed, the
glutamate-modulating ALS therapy riluzole has shown efficacy as
an adjunct to risperidone, an antipsychotic medication, in
reducing the negative symptoms of schizophrenia34.

In conclusion, we have estimated the genetic correlation
between ALS and schizophrenia to be 14.3% (7.05–21.6),
providing molecular genetic support for our epidemiological
observation of psychiatric endophenotypes within ALS kindreds.
To our knowledge, this is the first study to show genetic
correlation derived from polygenic overlap between neuro-
degenerative and neuropsychiatric phenotypes. The presence of

both apparent monogenic C9orf72-driven overlap2 and polygenic
overlap in the aetiology of ALS and schizophrenia suggests the
presence of common biological processes, which may relate to
disruption of cortical circuitry. As both ALS and schizophrenia
are heterogeneous conditions, further genomic, biological
and clinical studies are likely to yield novel insights into
the pathological processes for both diseases and will provide
clinical sub-stratification parameters that could drive novel
drug development for both neurodegenerative and psychiatric
conditions.

Methods
Study population and genetic data. For ALS, 7,740,343 SNPs genotyped in
12,577 ALS patients and 23,475 healthy controls of European ancestry organized in
27 platform- and country-defined strata were used7. The schizophrenia dataset
comprised GWAS summary statistics for 9,444,230 SNPs originally genotyped in
34,241 patients and 45,604 controls of European and Asian ancestry5. For LD score
regression, GWAS summary statistics were generated for the ALS cohort using
mixed linear model association testing implemented in Genome-wide Complex
Trait Analysis11 or logistic regression combined with cross-stratum meta-analysis
using METAL12. To evaluate sample overlap for PRS and cFDR analyses, we also
obtained individual-level genotype data for 27,647 schizophrenia cases and 33,675
controls from the schizophrenia GWAS (Psychiatric Genomics Consortium5 and
dbGaP accession number phs000021.v3.p2). Using 88,971 LD-pruned (window size
200 SNPs; shift 20 SNPs; r240.25) SNPs in both datasets (INFO score40.8;
MAF40.2), with SNPs in high-LD regions removed (Supplementary Table 4),
samples were removed from the ALS dataset if they were duplicated or had a
cryptically related counterpart (PLINK p̂40.1; 5,582 individuals) in the
schizophrenia cohort and whole strata (representing Finnish and German samples;
3,811 individuals) were also removed if commonality with the schizophrenia cohort
could not be ascertained (due to unavailability of individual-level genotype data in
the schizophrenia cohort) and in which a sample overlap was suspected
(Supplementary Table 3).

LD score regression. We calculated LD scores using LDSC v1.0.0 in 1
centiMorgan windows around 13,307,412 non-singleton variants genotyped in 379
European individuals (CEU, FIN, GBR, IBS and TSI populations) in the phase 1
integrated release of the 1,000 Genomes Project35. For regression weights13,
we restricted LD score calculation to SNPs included in both the GWAS summary
statistics and HapMap phase 3; for rg estimation in pairs of traits this was the
intersection of SNPs for both traits and HapMap. Because population structure and
confounding were highly controlled in the ALS summary statistics by the use of
mixed linear model association tests, we constrained the LD score regression
intercept to 1 for hS2 estimation in ALS, and we also estimated hS2 with a free
intercept. For hS2 estimation in all other traits and for rg estimation the intercept
was a free parameter. We also estimated rg using ALS meta-analysis results7 with
free and constrained intercepts and with permuted data conserving population
structure. Briefly, principal component analysis was carried out for each stratum
using smartpca36 and the three-dimensional space defined by principal
components 1–3 was equally subdivided into 1,000 cubes. Within each cube,
case–control labels were randomly swapped and association statistics were
re-calculated for the entire stratum using logistic regression. Study-level P-values
were then calculated using inverse variance weighted fixed effect meta-analysis
implemented in METAL7,12. hS2 was estimated for these meta-analysed permuted
data using LD score regression (Supplementary Table 1).

Polygenic risk score analysis. We calculated PRS for 10,032 cases and 16,627
healthy controls in the ALS dataset (duplicate and suspected or confirmed
related samples with the schizophrenia dataset removed), based on schizophrenia-
associated alleles and effect sizes reported in the GWAS summary statistics for
6,843,674 SNPs included in both studies and in the phase 1 integrated release of the
1,000 Genomes Project35 (imputation INFO score o0.3; minor allele frequency
o0.01; A/T and G/C SNPs removed). SNPs were clumped in two rounds (physical
distance threshold of 250 kb and a LD threshold (R2) of40.5 in the first round and
a distance of 5,000 kb and LD threshold of40.2 in the second round) using PLINK
v1.90b3y, removing high-LD regions (Supplementary Table 4), resulting in a final
set of 496,548 SNPs for PRS calculations. Odds ratios for autosomal SNPs reported
in the schizophrenia summary statistics were log-converted to beta values and PRS
were calculated using PLINK’s score function for twelve schizophrenia GWAS
P-value thresholds (PT): 5� 10� 8, 5� 10� 7, 5� 10� 6, 5� 10� 5, 5� 10� 4,
5� 10� 3, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. A total of 100 principal components (PCs)
were generated for the ALS sample using GCTA version 1.24.4. Using R version
3.2.2, a generalized linear model was applied to model the phenotype of individuals
in the ALS dataset. PCs that had a significant effect on the phenotype (Po0.0005,
Bonferroni-corrected for 100 PCs) were selected (PCs 1, 4, 5, 7, 8, 10, 11, 12, 14,
36, 49).
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To estimate explained variance of PRS on the phenotype, a baseline linear
relationship including only sex and significant PCs as variables was modelled first:

y ¼ aþ bsexxsex þ
X

n

bpcn xpcn ;

where y is the phenotype in the ALS dataset, a is the intercept of the model with a
slope b for each variable x.

Subsequently, a linear model including polygenic scores for each schizophrenia
PT was calculated:

y ¼ aþbsexxsex þ
X

n

bpcn xpcn þ bprsxprs:

A Nagelkerke R2 value was obtained for every model and the baseline Nagelkerke
R2 value was subtracted, resulting in a D explained variance that describes the
contribution of schizophrenia-based PRS to the phenotype in the ALS dataset. PRS
analysis was also performed in permuted case–control data (1,000 permutations,
conserving case–control ratio) to assess whether the increased D explained variance
was a true signal associated with phenotype. D explained variances and P-values
were averaged across permutation analyses.

To ensure we did not over- or under-correct for population effects in our
model, we tested the inclusion of up to a total of 30 PCs in the model, starting with
the PC with the most significant effect on the ALS phenotype (Supplementary
Fig. 2). Increasing the number of PCs initially had a large effect on the D explained
variance, but this effect levelled out after 11 PCs. On the basis of this test we are
confident that adding the 11 PCs that had a significant effect on the phenotype
sufficiently accounted for possible confounding due to population differences.

For the schizophrenia PT for which we obtained the highest D explained
variance (0.2), we subdivided observed schizophrenia-based PRS in the ALS cohort
into deciles and calculated the odds ratio for being an ALS case in each decile
compared to the first decile using a similar generalized linear model:

y ¼ aþ bsexxsex þ
X

n

bpcn xpcn þbdecilexdecile:

Odds ratios and 95% confidence intervals for ALS were derived by calculating the
exponential function of the beta estimate of the model for each of the deciles 2–10.

Diagnostic misclassification. To distinguish the contribution of misdiagnosis
from true genetic pleiotropy we used BUHMBOX21 with 417 independent ALS risk
alleles in a sample of 27,647 schizophrenia patients for which individual-level
genotype data were available. We also estimated the required misdiagnosis rate M
of FTD–ALS as schizophrenia that would lead to the observed genetic correlation
estimate as C/(Cþ 1), where C¼ rgNSCZ/NALS and NSCZ and NALS are the number
of cases in the schizophrenia and ALS datasets, respectively37 (derived in
Supplementary Methods 1).

Expected comorbidity. To investigate the expected comorbidity of ALS and
schizophrenia given the observed genetic correlation, we modelled the distribution
in liability for ALS and schizophrenia as a bivariate normal distribution with the
liability-scale covariance determined by LD score regression (Supplementary
Methods 2). Lifetime risks for ALS38 and schizophrenia25 of 1/400 and 1/100,
respectively, were used to calculate liability thresholds above which individuals
develop ALS or schizophrenia, or both. The expected proportions of individuals
above these thresholds were used to calculate the odds ratio of developing ALS
given schizophrenia, or vice versa (Supplementary Methods 2). The required
population size to observe a significant excess of comorbidity was calculated using
the binomial power equation.

Pleiotropy-informed risk loci for ALS. Using an adapted cFDR method9 that
allows shared controls between cohorts22, we estimated per-SNP cFDR given LD
score-corrected8 schizophrenia GWAS P-values for ALS mixed linear model
summary statistics calculated in a dataset excluding Finnish and German cohorts
(in which suspected control overlap could not be determined), but including all
other overlapping samples (totalling 5,582). To correct for the relationship between
LD and GWAS test statistics, schizophrenia summary statistics were residualized
on LD score by subtracting the product of each SNP’s LD score and the univariate
LD score regression coefficient for schizophrenia. cFDR values conditioned on
these residualized schizophrenia GWAS P-values were calculated for mixed linear
model association statistics calculated at 6,843,670 SNPs genotyped in 10,147 ALS
cases and 22,094 controls. Pleiotropic genomic loci were considered statistically
significant if cFDRo0.01 (following Andreassen et al.9) and were clumped with all
neighbouring SNPs based on LD (r240.1) in the complete ALS dataset. Associated
cFDR genomic regions were then mapped to the locations of known RefSeq
transcripts in human genome build GRCh37. Genome-wide cFDR values were also
tested for enrichment in 9,711 gene sets included in the MAGENTA software
package (version 2.4, July 2011) and derived from databases such as Gene Ontology
(GO, http://geneontology.org/), Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.kegg.jp/), Protein ANalysis THrough Evolutionary
Relationships (PANTHER, http://www.pantherdb.org/) and INGENUITY
(http://www.ingenuity.com/). SNPs were mapped to genes including 20 kb up- and
downstream regions to include regulatory elements. The enrichment cutoff applied

in our analysis was based on the 95th percentile of gene scores for all genes in the
genome. The null distribution of gene scores for each gene set was based on 10,000
randomly sampled gene sets with equal size. MAGENTA uses a Mann–Whitney
rank-sum test to assess gene-set enrichment39.

Data availability. All data used in this study are publically available and can be
accessed via the studies cited in the text. Other data are available from the authors
upon reasonable request.
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de Santé, Hopital Peupliers, Centre SLA Ile de France, Paris, France. 20Institute of Physiology and Institute of Molecular Medicine, University of Lisbon, Lisbon,
Portugal. 21Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal. 22Department of Neurology, Hospital Carlos III, Madrid, Spain.
23Neurology Department, Hospital de la Santa Creu i Sant Pau de Barcelona, Autonomous University of Barcelona, Barcelona, Spain. 24Department Neurology
and Emory ALS Center, Emory University School of Medicine, Atlanta, Georgia, USA. 25Euan MacDonald Centre for Motor Neurone Disease Research,
Edinburgh, UK. 26Centre for Neuroregeneration and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
27School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. 28Queen Elizabeth
Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. 29Sheffield Institute for Translational Neuroscience (SITraN), University of
Sheffield, Sheffield, UK. 30Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK. 31Department of Clinical
Neuroscience, Institute of Neurology, University College London, London, UK. 32Reta Lila Weston Institute, Institute of Neurology, University College London,
London, UK. 33Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK. 34Centre for Neuroscience and
Trauma, Blizard Institute, Queen Mary University of London, London, UK. 35North-East London and Essex Regional Motor Neuron Disease Care Centre,
London, London, UK. 36Department of Neurology, Medical School Hannover, Hannover, Germany. 37Department of Neurology, Otto-von-Guericke University
Magdeburg, Magdeburg, Germany. 38Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany. 39Charité University Hospital,
Humboldt-University, Berlin, Germany. 40Department of Neurology, University of California, San Francisco, California, USA. 41Center for Neurodegenerative
Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA. 42Department of Neurology, Perelman
School of Medicine at the University of Pennsylvania, Pennsylvania, USA. 43Neurodegeneration Research Laboratory, Bogazici University, Istanbul, Turkey.
44Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany. 45INSERM U930, Université François Rabelais, Tours, France.
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