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Abstract

Model Predictive Control (MPC) is a traditional technique widely employed on the
control of constrained non-linear systems. In light of the increasing popularity of neural
networks, data-driven MPC has emerged as an alternative to alleviate the computation
burden of traditional control strategies. This paper aims to replace the constrained op-
timization problem by training a feed-forward neural network with data collected from
an offline MPC simulation. The network’s performance is then compared to that of tra-
ditional MPC using the Van der Pol oscillator as toy example. Finally, the convergence
of the network training error is analytically proven by extending the analysis of neural
tangent kernels (NTK) to underparameterized networks.
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1 Introduction

The most prevalent type of control strategy in industrial applications is the feedback controller,
which involves the comparison of a reference signal r with a measured variable y to determine
an appropriate value for the manipulated variable u using the error e = r − y. This broad
class of control strategies can be divided into three categories: classical controllers such as
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Proportional-Derivative-Integral (PID), predictive controllers such as Model Predictive Control
(MPC) and Linear Quadratic Regulator (LQR), and repetitive controllers [24].

Within the domain of classical control strategies, the PID controller stands out as the most
renowned, being extensively employed in industrial applications. Over the years, several setup
rules have been proposed to adjust the controller’s parameters, however finding an optimal
parameterization can often be a challenging task. This is especially true for nonlinear and
time-variant systems, where even higher control methods, such as back-stepping controllers,
struggle to yield a suitable performance.

Predictive controllers, on the other hand, use a model of the system (digital twin) to predict
its future behavior, being able to anticipate deviations from the reference. Within this class of
controllers, MPC assumes a prominent role, relying on a repeated real-time optimization of a
mathematical system model. Using the predictions of future states, MPC is able to determine
the optimal trajectory of the manipulated variable u, which is then adjusted at each time step
by subsequent optimizations.

Model Predictive Control offers several advantages over classical control techniques, as it can
anticipate the system’s behavior and naturally consider hard constraints on the optimization
problem. Furthermore, the parameterization of the controller is often more intuitive compared
to other methods: the performance is usually improved at the cost of a higher computational
effort, which is defined by a weighting coefficient.

In certain real-world applications, however, the mathematical model of the system may not
be available due to the complexity of modeling or the lack of a priori knowledge regarding the
phenomenon of interest. In such cases, data-driven models have proven to be effective to perform
predictive control, using data obtained from sensors to identify the underlying dynamics of the
system through auto-regressive, machine learning or physics-guided models [14].

Nonetheless, there has been limited progress in mitigating the computational burden of the
MPC controller on real-time applications. That’s why the present paper investigates the use
of data-driven MPC to achieve fast computation of the control law while providing an analyt-
ical guarantee of the neural networks (NN). The goal is to replace the traditional constrained
optimization problem in MPC by a NN to control a nonlinear system.

In recent years, the interest in neural networks has increased due to its remarkable perfor-
mance across a wide range of applications. However, the comprehension of why such networks
converge when trained via gradient descent, and generalize well over unseen data remained an
open question for a while. Some studies have attempted to characterize the geometric landscape
of objective functions in order to explain training convergence [21, 11].

Another approach consisted in investigating the trajectory of optimization and demonstrat-
ing convergence toward a global minimum [16, 9]. In this context, Zhang et al. [27] were
among the first to study the generalization of neural networks, showing that they can attain
zero training error on sufficiently large nets. This class of NNs are called overparameterized
neural networks, characterized by a number of parameters m much larger than the number of
data n (m ≫ n).

Recently, the notion of Neural Tangent Kernel (NTK) matrix was introduced, providing an
elegant explanation of the linear convergence towards 0 of the training error in overparame-
terized NNs with smooth activation functions [12]. The explanation essentially lies in the fact
that, during the Gradient Descent (GD) procedure, the n × n NTK matrix stays close to its
infinite limit, with all eigenvalues remaining positive.

Thereafter, Du et al. [10, 8] expanded this analysis to prove convergence of neural networks
with non-smooth and non-convex activation functions. Arora et al. [3] also employed this
framework to analyze convergence rates when using random and true labels for gradient descent.

2



Data-driven MPC for real-time applications Martin Xavier, Chamoin and Fribourg

However, most of the focus of these papers lies in the analysis of overparameterized neural
networks, which is not the case of a considerable number of real-world applications.

In this paper, we address the problem of underparameterized neural networks (m ≪ n),
where the NTK matrix is positive semi-definite. Thus, its nullspace N is no longer reduced to
0, but it is a space of dimension larger than 1. Moreover, the NTK matrix evolves over time
and its coefficients do not remain close to those of initialization. Nevertheless, under certain
assumptions, this paper demonstrates that the training error converges linearly to a constant
which can be accurately evaluated at the beginning of the GD procedure.

The remainder of the paper proceeds follows this structure: Section 2 presents the tradi-
tional MPC strategy and data-driven approaches with preliminary results using the Van der
Pol oscillator as a toy example. Section 3 outlines the theoretical guarantees of the network
convergence and the results are illustrated using the same toy example. Finally, Section 4
contains the conclusions and prospects for this work.

2 Model Predictive Control

Model Predictive Control (MPC) is a receding horizon strategy that uses a model of the sys-
tem being controlled to predict its future states and compute suitable commands through a
constrained optimization problem [24]. This strategy was first applied in chemical plants and
oil refineries in order to deal with constraints in nonlinear systems [23]. Following its successful
industrial implementation in the 1980s, the research community introduced theoretical tools to
mathematically assure the stability and optimality of MPC controllers [19].

The advantage of MPC over other predictive strategies lies in its ability to continuously
recompute a new trajectory based on data measured at each time step. Consequently, the
controller is robust by design, capable of accounting for unexpected disturbances by dynamically
recalculating paths to steer the system back to the desired state.

2.1 Data-driven MPC

Current research focuses on replacing the mathematical model on traditional MPC by data-
driven models, which do not require a priori information about the system dynamics. Draeger
et al. [7], for instance, employed a MPC based on the predictions generated by a neural network
to control the pH levels in a neutralization reactor. Furthermore, Kaiser et al. [15] proposed
the Sparse Identification of Nonlinear Dynamics (SINDY) to determine the prediction model
of the system through a collection of predefined functions.

Alternative approaches concentrate on the derivation of the feasibility set or the cost func-
tion by data-driven methods in order to improve the controller performance. In this context,
Berberich et al. [4] proposed a methodology to compute the terminal cost and terminal set for
data-driven MPC using measured input-output data. Furthermore, Collet et al. [6] presented
a fatigue-oriented MPC approach that employs a data-driven cost function to optimize the
fatigue trade-off on wind turbines.

This paper aims to replace the constrained optimization problem in traditional MPC by a
neural-network to alleviate its computational burden. The proposed strategy involves trading
optimality for a fast computation of the control law. The neural network is trained using data
generated by running MPC simulations offline. As a result, the data-driven MPC controller
proposed in this paper is more suitable for real-time applications.

The majority of works in this topic focus on using neural networks to approximate the
performance of an Explicit MPC controller. Chen et al. [5], for instance, proposed a modified
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reinforcement learning policy for controlling a linear system, ensuring feasibility by projecting
the control inputs onto polytopes. Furthermore, Winqvist et al. [26] developed a 2-layer neural
network with constrained ReLU based activation function, incorporating a projection layer to
guarantee recursive feasibility and asymptotic stability.

An Explicit MPC computes the control law offline in the form of a piecewise affine function
for each control region of the state space. These regions are convex polytopes for linear MPC,
making this strategy unsuited for highly nonlinear systems as the number of regions grows
exponential with the model complexity. This work stands out from the existing literature by
proposing the use of neural networks to replace the optimization problem on the control of
non-linear systems.

To validate this approach, the proposed strategy is tested on a toy example of the Van der
Pol oscillator, which is presented in the following subsection. In the remainder of this paper,
the MPC problem is implemented using the MPC Toolbox in Python [18], which solves the
differential algebraic equations of the nonlinear model through the Sundials CVODE, and the
optimization problem using the Interior-Point Method [20].

2.2 Toy Example - Van der Pol Oscillator

The Van der Pol oscillator is a classical proof-of-concept dynamical system for optimal control
applications. It was originally introduced by Balthazar Van der Pol for modeling the triode
oscillations in electrical circuits [2]. The system possesses 2 states x = [x1, x2], a control action
u, and a damping coefficient µ = 1. Its dynamics are described by the following equations:{

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1 + u

(1)

The goal is to use MPC to make the system converge to a desired position xref
1 , and then

get this data to train offline a feed-forward neural network. The MPC problem is formulated
using a time step of Ts = 0.5s, an initial condition of x0 = [1, 0] and a prediction horizon of
N = 5. The command applied to the oscillator is constrained to the interval u ∈ [−1, 1] and
the cost function associated to the optimization problem is defined as:

J(x, u) =

N−1∑
i=0

∥xref
1 (k + i)− x1(k + i)∥2+α∥∆u(k + i)∥2 (2)

s. t. ulb ≤ u(k + i) ≤ uub, ∀i ∈ [0, ..., N − 1] (3)

where ulb and uup represent the lower and upper bounds for the command, respectively,
∆u(k) = u(k) − u(k − 1) the command variation, and α = 0.1 a weighting coefficient that
regulates the trade-off between reducing the error and increasing the command. Furthermore,
the current time step is denoted by k, and the error is represented by ϵ(k) = x1 − xref

1 .

The MPC simulations are conducted offline through the definition of different references
that are randomly created between [-1,1], each reference being applied for 10s. The nonlinear
model of the system is implemented using CasADi [1], being defined using the same time step
as the MPC controller (Ts = 0.5s). The MPC simulation is 1800s long, resulting in a dataset
of S = 3600 data points, which is divided into 3 sets: Strain = 2160 for training, Sval = 720 for
validation, and Stest = 720 for testing.
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Once the data is collected, the neural network is designed seeking a good balance between
model complexity and performance. Its architecture is depicted in Figure 1, being a one-step-
ahead predictive controller with one hidden layer. The network has 4 entries in the input layer,
10 neurons in the hidden layer, and 1 output in the last layer. It was implemented using
PyTorch [22] with a ReLU activation function applied to the hidden layer, and a Hardtanh to
the output layer to constrain the command within the interval [−1, 1].

Input Layer � �� Hidden Layer � �¹� Output Layer � �¹

Figure 1: Architecture of the neural network used to mimic the behavior of an optimization
problem.

The neural network was trained using the AdamW [17] optimization algorithm during 104

epochs with a learning rate of 10−3, and a weight decay of 10−6. The performance of the
trained network is assessed using two metrics: the root mean squared error (RMSE) in (4),
and the coefficient of determination (R2 score) in (5). In these equations, uMPC

i represents the
command computed by MPC, uNN

i the command predicted by the neural network, and ūMPC

an average of MPC commands.

RMSE =

√√√√ 1

Stest

Stest∑
i=1

(
uMPC
i − uNN

i

)2
(4)

R2 = 1−
∑Stest

i=1

(
uMPC
i − uNN

i

)2∑Stest

i=1

(
ūMPC − uNN

i

)2 (5)

The trained network is capable of simulating the MPC behavior over the test dataset with
an error of RMSE = 0.0314, indicating a satisfactory level of generalization over unseen data.
Furthermore, the NN obtains a high coefficient of determination R2 = 0.9975 ∼ 1, showing its
efficiency in the regression task. Figure 2 illustrates the command computed by MPC compared
to the one predicted by the neural network using the test set, highlighting its capacity in learning
the behavior of an optimization problem.
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Figure 2: Comparison between the true command (uMPC) and the command predicted by the
neural network (uNN) using the test dataset.

Finally, to evaluate the performance of the data-driven MPC, the NN is used to control
the Van der Pol oscillator online. The simulation is initialized at x0 = [−0.3, 0], following the
same reference trajectory as in the testing dataset. Figure 3 presents the simulation results,
illustrating the capability of the neural network to effectively steer the system to the desired
reference. In comparison to traditional MPC, the proposed strategy yields a trajectory with
more oscillations, which is empirically verified by the RMSE as shown in Table 1.
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Figure 3: Comparison between traditional and data-driven MPC on following the reference xref
1

on the testing dataset.

Remark 1. These closed-loop oscillations suggest that the traditional MPC was not finely tuned
to achieve zero overshoot. As the NN is trained to reproduce the MPC performance, the network
will learn to oscillate if this is the trajectory yield by MPC. In order to avoid such oscillations,
the traditional MPC should be carefully tuned by adjusting the prediction horizon N and the
weighting coefficient α. Another option is to enforce precision by penalizing the deviations from
the reference in the function being minimized by the GD algorithm.

However, the primary goal of the proposed strategy is to prioritize fast computation of the
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control law at the expense of optimality, which was satisfactorily achieved using neural networks.
The average run-time of traditional MPC is 2.4201 ms, over 50 times slower than data-driven
MPC, primarily due to the time-consuming nature of the constrained optimization problem.
This difference would only become more pronounced with a larger prediction horizon N > 5,
confirming the suitability of data-driven over traditional MPC for real-time applications.

Table 1: Metrics for the closed-loop simulation.

Strategy RMSE Computation Time (ms)

MPC 0.252 2.420

NN 0.312 0.045

3 Convergence of underparameterized neural networks

In recent years, the interest in neural networks has increased due to its outstanding performance
across a wide range of applications. Nevertheless, they lacked a formal formulation of theoretical
properties regarding their guarantees of convergence for years. Within the existing literature,
Jacot et al. [12] proposed that the convergence of gradient descent could be characterized by
a kernel in the case of overparameterized neural networks with smooth activation functions.
Subsequently, Du et al. [10] expanded this analysis to prove the convergence of neural networks
with non-smooth activation functions.

In this paper, the analysis of convergence using a kernel is further expanded to encom-
pass underparameterized networks, in which the number of trainable parameters are smaller
compared to available data (m ≪ n). After some preliminaries (Subsection 3.2), the proof of
the error convergence on underparameterized neural networks is presented (Subsection 3.3),
followed by some numerical results on the Van der Pol oscillator (Subsection 3.4).

3.1 Notation

In this paper, we denote by R and N the set of real and natural numbers, respectively. These
symbols are annotated with subscripts to restrict them in the usual way, e.g., R>0 denotes the
positive real numbers. We also denote by Rn an n-dimensional Euclidean space, and by Rn×m

a space of real matrices with n rows and m columns.
We use bold letters for vectors and bold capital letters for matrices. Given a matrix A, let

Ai,j be its (i, j)-th entry, λmin(A) its minimal eigenvalue, and A⊤ its transpose. The Euclidean
norm is denoted by ∥·∥, the Frobenius norm by ∥·∥F , and the inner product by ⟨·, ·⟩. Let In be
the n×n identity matrix, [n] the set {1, . . . , n}, and σ(·) the ReLU function σ(z) = max{z, 0}.

We denote by I{E} the indicator function for an event E, by B⊎C the disjoint union of sets
B and C, and by V1⊕V2 the direct sum of vector spaces V1 and V2. We also use the abbreviation
i.i.d. to indicate that a collection of random variables is independent and identically distributed.
Finally, the time-discrete version of a time-continuous object ξ is denoted as ξ̃.

3.2 Preliminaries

We recall from Du et al. [10] some definitions regarding the application of the gradient descent
algorithm to neural networks. We consider a NN of the form:
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f(θ,x) =
1√
m

m∑
r=1

arσ(w
⊤
r x) (6)

where x ∈ Rd represents the input, W = [w1, . . . ,wm] ∈ Rd×m the weight matrix of
the first layer composed by vectors wr ∈ Rd for r ∈ [m], and ar ∈ R the output weight.
Additionally, θ = [w1

⊤, . . . ,wm
⊤, a1

⊤, . . . , am
⊤] denotes a vector containing the parameters

from both layers.
This work focuses on the empirical risk minimization problem with the quadratic loss defined

in (7). Indeed, given a training data set S = {(xi, yi)}ni=1, the objective of the optimization
algorithm is to minimize the following loss function:

L(θ) = 1

2

n∑
i=1

(f(θ,xi)− yi)
2 (7)

In order to do so, Du et al. [10] fixed the parameters of the second layer of the network and
applied the gradient descent algorithm to the weights of the first layer. In this paper, however,
both layers are optimized simultaneously during training through the following update rule:

θk+1 = θk − h
∂L(θk)

∂θk
(8)

The gradient formula for each layer is, then, given by:

∂L(θ)
∂wr

=
1√
m

n∑
i=1

(f(θ,xi)− yi)arxiI{w⊤
r xi ≥ 0} (9)

∂L(θ)
∂ar

=
1√
m

n∑
i=1

(f(θ,xi)− yi)σ(w
⊤
r xi) (10)

Given the discontinuous nature of the ReLU activation function, one may consider ∂L(θ)
∂θ as

a convenient notation for the right hand side of (9) and (10). Lastly, the discrete equation (8)
corresponds to the Euler discretization, with a step size h, of the set of ordinary differential
equations defined by:

dθ(t)

dt
= −∂L(θ(t))

∂θ(t)
. (11)

3.3 Gradient Descent for Neural Networks

When training a neural network, the convergence of the GD algorithm to a globally optimal
solution comes down to showing the convergence of the error (i.e. difference between the
prediction of the NN and the ground truth) to zero [10]. For this reason, the rest of this paper
will focus on the analysis of the error dynamics v : R≥0 → Rn, defined by:

v = p− y. (12)

where p = (p1, . . . , pn)
⊤ ∈ Rn is a vector with all n predictions pi = f(θ,xi) and y =

(y1, . . . , yn)
⊤ ∈ Rn. As demonstrated by Du et al. [10], the continuous dynamics of the error v

can be written in a compact way:

8
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d

dt
v(t) = −H[θ(t)]v(t), v(0) = v0 (13)

where H[θ] : R≥0 → Rn×n is the NTK matrix from a kernel associated with the ReLU
function, being symmetric positive semi-definite as follows:

Hij [θ] =

〈
∂f(θ,xi)

∂θ
,
∂f(θ,xj)

∂θ

〉
The discrete version resulting from the Euler discretization of (13), corresponding to the

GD algorithm of ṽ, reads:

ṽk+1 − ṽk = −hH[θ̃k]ṽk (14)

where h is the step size, and ṽ(0) = ṽ0. We are now ready to formalize the problem:

Problem 1. Given the discrete time system in (14), provide conditions over the matrix H[θ] :
R≥0 → Rn×n, the loss function L : Rd → R≥0 and the step size h to ensure the convergence of
ṽk to zero, together with an explicit bound on its convergence rate.

In the literature, Jerray et al. [13] provided a solution to Problem 1 under the following
assumptions:

Assumption 1. The gradient descent algorithm used for updating the weights of the neural

network in (8) converges to a local minima θ∗, i.e. ∂L(θ̃k)
∂θ converges to 0 as k goes to the

infinity.

Assumption 2. There exist λ∗ > 0 and t0 ≥ 0 such that, for all t ≥ t0: λmin(H[θ(t)]) ≥ λ∗,
where the time-varying matrix H[θ](t) is given in (13).

Assumption 3. L is locally strongly convex around every local minimizer θ∗ of L, that is: for
every local minimizer θ∗, there is a neighborhood around θ∗ on which L is strongly convex.1

These assumptions are natural in the context of overparameterized NNs, as discussed in
[13], leading to:

Theorem 1. Under Assumptions 1 and 3, if the step size h satisfies h < 2
L , where L is the

Lipschitz constant of the loss function L, then the sequence ∥θ̃k − θk∥, k ∈ N converges to
0, where θ̃k is defined by (8) and θk = [w⊤

1 (kh), . . . ,w
⊤
m(kh), a1(kh), . . . , am(kh)] with θ(t)

defined by (11).

Besides the above theorem, Jerray et al. [13] used Assumption 2 to derive the following
theorem:

1Remark: The local strong convexity property is equivalent to the fact that − ∂L(θ̃k)
∂θ

belongs to a contractive

region, i.e, there exists k0 ∈ N, a convex region D and a positive real γ > 0 such that θ̃k ∈ D for all k ≥ k0,
θ ∈ D and θ′ ∈ D the following relation is true:〈

∂L(θ)
∂θ

−
∂L(θ′)

∂θ
,θ − θ′

〉
≥ γ∥θ − θ′∥2

This is also equivalent to the positive definiteness of the Hessian of L in the neighborhood of each local
minimizer θ∗. Moreover, in view of [25], the strong convexity corresponds to the special case of contracting
gradient descent in the identity metric.

9
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Theorem 2. Under Assumptions 1, 2 and 3, if the step size h satisfies h < 2
L , where L is the

Lipschitz constant of the loss function L, then there exist µ ∈ (0, 1) and k0 ∈ N such that, for
all k ≥ k0:

∥ṽk∥ ≤ ∥ṽk0∥µk−k0 .

In this paper, the Assumption 2 does not hold, and without loss of generality, we suppose
that the space V(t) of eigenvectors of H[θ(t)] decomposes as V1(t)⊕V2(t), where V1 (resp. V2)
is the cluster of eigenvectors of eigenvalues λi(t) greater than (resp. less than or equal to) some
α > 0. Formally Assumption 2 is replaced by:

Assumption 4. There exist λ∗ ∈ R>0, t0 ≥ 0, I1 = {0, . . . , n1 − 1} and I2 = {n1, . . . , n1 +
n2 − 1} with n1 + n2 = n such that the eigenvalues can be divided into:

• λi(t) ≥ λ∗ for all i ∈ I1, t ≥ t0,

• λi(t) = 0 for all i ∈ I2, t ≥ t0.

where {λi(t)}i∈I1⊎I2 is the eigenvalues set of the NTK matrix H[θ(t)], and I1 (resp. I2)
the index set of eigenvectors spanning V1(t) (resp. V2(t)).

Under Assumption 4 instead of Assumption 2, the result of Theorem 2 becomes:

Theorem 3. Under Assumptions 1, 3 and 4, if the step size h satisfies h < 2
L and h < 2

λ∗ ,
where L is the Lipschitz constant of the loss function L, then there exists k0 such that for all
k ≥ k0:

∥ṽk∥ ≤
√
(1− 1

2
λ∗h)2(k−k0)∥ṽ1

k0
∥2 + ∥ṽ2

k0
∥2 (15)

where ṽi
k (i = 1, 2) is the projection of the vector ṽk on the span of the ni eigenvectors of

H[θ̃(k)]. The right-hand side of (15) thus converges to the constant b = ∥ṽ2
k0
∥.

Proof. By Theorem 1, which relies on Assumptions 1 and 3, but not Assumption 2, we know
that for h < 2

L , ∥θ̃k −θk∥ converges to 0 as k → ∞. Let λ̃i(kh) (i ∈ [n]) denote the eigenvalues

of the matrix H[θ̃k] obtained from GD, which is discrete in time. Recall that Assumption
4 specifies that the eigenvalues λi(t) of H[θ(t)] with i ∈ [n1] are in [λ∗,∞), and those with
i ∈ [n2] are null. It follows by continuity, using the fact that H[θ̃k] is positive semi-definite,
that there exists k0 such that for all k ≥ k0:

λ̃i(kh) ∈ [
λ∗

2
,∞) for all i ∈ I1, (16)

λ̃i(kh) ∈ [0,
λ∗

2
) for all i ∈ I2. (17)

We know that for k ≥ k0, V1
k and V2

k are orthogonal (since all the eigenvalues λ̃i(kh) with

i ∈ I1 are different from the eigenvalues λ̃j(kh) with j ∈ I2). The discretized dynamics of the
error in (14) then writes:

ṽk+1 = (In − hH[θ̃k])ṽk. (18)

We also know that the NTK matrix H[θ̃k] can be decomposed as:

H[θ̃k] = P kDkP
⊤
k (19)

10
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where P k is the transition matrix whose columns are the eigenvectors of H[θ̃k], and Dk is the
diagonal eigenvalue matrix with first n1 elements in [λ

∗

2 ,∞), and last n2 elements in [0, λ∗

2 ).
From (18), it follows:

P⊤
k ṽk+1 = (In − hDk)P

⊤
k ṽk (20)

The n×n matrix P⊤
k is made of an upper n1×n matrix P⊤

k,1 and a lower n2×n matrix P⊤
k,2.

The rows of the matrix P⊤
k,1 are the n1 eigenvectors of H[θ̃k] associated with eigenvalues in

[λ
∗

2 ,∞], and those of P⊤
k,2 are the n2 other eigenvectors. Hence, for a vector v, P⊤

k,iv (i = 1, 2)

corresponds to the projection ṽi
k of v on the span Vi

k of the ni eigenvectors of H[θ̃k]. Equation
(20) thus decomposes as:

ṽ1
k+1 = (In1

− hD1
k)ṽ

1
k (21)

ṽ2
k+1 = (In2 − hD2

k)ṽ
2
k (22)

where D1
k is the n1×n1 top left submatrix of Dk, and D2

k the n2×n2 bottom right submatrix.
For k ≥ k0 and h < 2

λ∗ , equations (21) and (22) lead to:

∥ṽ1
k+1∥ ≤ ∥In1 − hD1

k∥∥ṽ1
k∥ ≤ (1− 1

2
λ∗h)∥ṽ1

k∥ (23)

∥ṽ2
k+1∥ ≤ ∥In2 − hD2

k∥∥ṽ2
k∥ ≤ ∥ṽ2

k∥ (24)

It follows from (23) and (24) that there exists k0 such that for all k ≥ k0 and h < 2
λ∗ :

∥ṽ1
k∥ ≤ (1− 1

2
λ∗h)k−k0∥ṽ1

k0
∥

∥ṽ2
k∥ ≤ ∥ṽ2

k0
∥

Finally, using the fact that V1
k and V2

k are orthogonal:

∥ṽk∥2 = ∥ṽ1
k∥2 + ∥ṽ2

k∥2

≤ (1− 1

2
λ∗h)2(k−k0)∥ṽ1

k0
∥2 + ∥ṽ2

k0
∥2

(25)

Remark 2. In practice k0 is small, which means that ∥ṽ2
k∥ is rapidly constant from t0 = k0h.

The training error ∥ṽk∥ is thus asymptotically equal to b = ∥ṽ2
k0
∥. The constant b depends on

the initial value θ̃(0) of the NN parameters. Note that, apart from the choice of initial weight
θ̃(0), the GD procedure considered here is deterministic.

3.4 Numerical Results

In order to validate the above analysis, a toy example using the Van der Pol oscillator is used.
The same NN architecture presented in Figure 1 is used, but this time only 1 batch of 20 data
points are employed for training using the SGD (Stochastic Gradient Descent) optimization
algorithm with a learning rate of 10−2. The goal is to demonstrate that the error can be
decomposed into two subsets (V1 and V2), the projection of the error onto V1 converges to 0 as
t → ∞, and the projection of the error onto V2 remains nearly constant during training.

Figure 4 illustrates the evolution of the eigenvalues during gradient descent, in which λ∗ =
10−3 is the threshold separating both space of eigenvalues: λi > λ∗. Furthermore, it can be

11
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Figure 4: Evolution of the 11 positive eigenvalues (λ̃0, . . . , λ̃10) of the NTK matrix H[θ̃k](the
9 other eigenvalues being approximately 0).

noticed that the eigenvalues evolve in time as the network is underparameterized, which makes
the derivation of convergence bounds a difficult task. However, from the projection of the error
on V2, a lower bound of convergence can be derived as depicted in Figure 5.

From the evolution of ||v2||, it is possible to verify that the lower bound is not zero, remaining
nearly constant (b = 0.04) during training. We can also verify some small oscillations of ||v2||
due to the evolution of eigenvectors V2 during training as their associated eigenvalues. Despite
the fact that the network error v is unable to converge to zero, the lower bound b is small,
leading to good performances.

0 25000 50000 75000 100000 125000 150000 175000 200000
Iterations

10−1

100

Er
ro
r

|| ̃vk||
|| ̃v2k||

Figure 5: Log-scale evolution of the training error ∥ṽk∥ (blue) and it’s projection over V2

resulting in ∥ṽ2
k∥ (orange), which is a lower bound for the error.

4 Conclusion

In this paper we were interested in reducing the computational burden of MPC for the real-
time synthesis of a control law. The method consists in training a neural network on the data

12
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generated by a MPC controller, then using this neural network to control the system in real
time. The theoretical guarantees of convergence are derived by expanding the analysis of neural
tangent kernels to underparameterized networks.

From the results in Section 2, we conclude that data-driven MPC is a viable solution for
simulating the behavior of a traditional MPc controller. It shifts the computational burden of
MPC to offline training, speeding up the computation of a control law. Regarding performance,
the traditional MPC is capable of following the reference more accurately than the data-driven
approach, however this gap can be reduced by increasing the neural network complexity.

One of the main focuses of future research is the integration of hard constraints to the neural
network, which is not evident as just adding a penalization factor to the cost function as it is
done for soft constraints. Furthermore, other applications will be studied as the forging process,
which is highly non-linear, and, finally, a proof-of-concept will be carried out in the context of
Structural Health Monitoring (SHM) applications.

Regarding the theoretical aspects of network convergence, future work consists in deriving
an upper bound of convergence. Moreover, this analysis can be extended to derive guarantees
of convergence using Federative Learning for underparameterized neural networks. The interest
in this particular type of learning is that training can be performed separately over different
datasets, opening the opportunity for parallelization to improve computational time.
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