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Highlights
Integrated building fault detection and diagnosis using data mod-
eling and Bayesian networks

Tianyun Gao, Sylvain Marié, Patrick Beguery, Simon Thebault, Stéphane
Lecoeuche

• Transfer building system topology and expert knowledge to a Bayesian
network.

• Transform equipment-level fault detection into building-wide fault di-
agnosis.

• Experiments on simulated and real-world buildings.
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Abstract

Heating, ventilation, and air-conditioning (HVAC) equipment faults and op-
erational errors result in comfort issues and waste of energy in buildings.
An Automatic Fault Detection and Diagnosis (AFDD) tool could help fa-
cility managers fix comfort and energy issues more efficiently, by identify-
ing the most probable root causes. Existing AFDD methods mostly focus
on equipment-level fault detection and diagnostics ; almost no attention is
given to building level fault diagnosis, considering inter-dependency between
equipment through the energy distribution chain. In this work we propose a
methodology to automatically derive a Bayesian network from HVAC system
topology description such as Haystack. This Bayesian network models and
estimates the state of all elements in the system, helping users to identify
the most probable root fault. As it is able to ingest evidence from any source
(field data, operators, or other models) and is capable of updating its esti-
mates when new evidence is delivered, such a tool could have a great potential
to be used interactively on the field. We applied the proposed methodology
on simulated and real-world buildings and present in this paper one specific
case.
Keywords: Bayesian network, Fault detection and diagnostics, Building,
Descriptive metadata, Topology, Haystack, Data-driven modeling, BMS,
HVAC
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1. Introduction

Buildings, industry, and transportation are the three main energy con-
sumers in our society. About 40% of energy is consumed in buildings in the
European Union (European Commission, 2020). And within buildings, Heat-
ing, Ventilation and Air-conditioning (HVAC) systems consume the most
energy.

HVAC system faults result in comfort issues and waste of energy. In order
to help facility managers identify and fix faults more efficiently, it is essential
to have an Automatic Fault Detection and Diagnosis (AFDD) tool, which is
able to not only detect issues but also identify the root faults.

Today’s Building Management Systems (BMS) are able to log data from
all the sensors, actuators, and controllers of equipment in a building, which
promises big potential in fault detection and diagnosis. In real-world HVAC
and BMS systems, most alarms are derived from rule-based fault detectors
embedded in HVAC Device controllers, and collected by the BMS. Existing
AFDD methods mostly focus on equipment-level fault detection and diag-
nostics. See Shi and O’Brien (2019) for a complete review.

As a big picture of data-driven approaches, 3 main categories have been
explored, at the sensor level with control charts able to detect and diagnose
specific equipment faults using direct measurement ; at the signal level us-
ing statistics and processing methods to extract time series features able to
characterize and discriminate varieties of faults ; at the level of the building
dynamics, using multivariate model and analysis able to characterize more
complex faults related to building dynamic changes. The first two categories
have been extensively studied and Gunay et al. (2017) give a nice overview
of almost 30 methods applied to detect faults and a wide list of AHU and
VAV faults studied in the literature. The third category is more recently ex-
plored. As an example, Turner et al. (2017) develop a building HVAC fault
detection method based on a data-driven approach and dynamic system mod-
elling. This approach consists in a system identification technique based on
recursive least-squares estimation of time-series data, able to model system
dynamics and to detect residues between estimates and real measurements.
Ajib et al. (2017) also develop a methodology based on data-driven models.
Hybrid system dynamics are here estimated using a PWARX identification
technique, able to extract normal and abnormal modes.

However, systems usually consist of a large number of devices and dy-
namic modes. In practice, analyzing the resulting large number of alarms
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in order to trace root causes involves a significant amount of manual work
and expert knowledge. This includes observing data trend logs (time series)
of specific equipment at specific time periods, as well as navigating between
associated equipment according to the system topology. Solving this prob-
lem automatically requires integrated analysis of the whole system, taking
into account the inter-dependency between devices. In previous research,
almost no attention has been given to such building-level fault diagnosis,
considering inter-dependencies between HVAC devices through the energy
distribution chain. We only found three interesting studies working in this
area. Schein and Bushby (2006) proposed a hierarchical rule-based method
to prioritize duplicated or conflicting alarms. Verbert et al. (2017) proposed a
method based on Bayesian network to deal with equipment inter-dependency
in HVAC systems. But this method highly depends on accurate and exten-
sive building simulation to fit the conditional probability tables ; therefore is
not very easy to deploy in practice. More recently, Chen et al. (2022) devel-
oped a new HVAC system cross-level fault diagnosis using a novel discrete
Bayesian network (DisBN). This consists of causal relations among various
components and sub-systems. It well addresses the challenge of cross-level
fault diagnostics within a complex HVAC system. In this work, the network
model is developed based on physical analysis and domain expert knowledge,
but with a lack of automation exploiting existing topology and building meta-
data.

Our study proposes a new building HVAC AFDD method using a Bayesian
network to achieve building-level integrated fault diagnosis using operation
data collected by BMS. Our methodology is based on the following proposal:

• A new systematic way of transferring building system topology infor-
mation and expert knowledge to a Bayesian network able to infer the
most probable root fault in the whole system based on comfort violation
symptoms and operations data.

• A data-driven approach for extracting Bayesian parameters from BMS
database and for designing a complete building-level fault diagnosis
Bayesian network.

This paper presents this methodology and details its implementation.
First a brief introduction of the methodology based on Bayesian network
theory is given in section 2. Then the method for constructing the fault
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diagnosis network from the building topology and from the BMS database is
explained in section 3 with an example of its implementation on an HVAC
system. Experiments of our methodology on simulated and real buildings
are finally presented in section 4.

2. Motivation and methodology

2.1. Motivation
Building HVAC systems consist of heterogeneous equipment and systems,

from room devices to central equipment, from heating and cooling emitters
to hydraulic and air distribution systems. This represents an important
technical database of various components, a variety of operating conditions
(normal or abnormal, including faulty modes related to all possible degrada-
tion or faults) and a vast number of time series of various kind: setpoints,
measurements, states, etc.

In this study, we propose to use a Bayesian network structure to represent
the HVAC topology of a whole building and to achieve the diagnostic of pos-
sible faults using knowledge modeled by nodes and connections. Each node
indicates the state (such as Normal or Fault) of an HVAC sub-system. The
state of some nodes can be directly extracted from BMS data or provided by
an operator from manual inspection, or also estimated with equipment-level
data-driven fault detection algorithms (Gao, Tianyun et al., 2019). Updating
the Bayesian network through inference leads to finding posterior distribution
of unknown states, leading to finding root causes.

The choice of a diagnostic tool based on Bayesian network is based on
the main following reasons:

• Bayes rule is a natural way of describing causal or probabilistic rela-
tionship between faults and symptoms. The parameters (conditional
and prior probability) have clear statistical meaning, and the capability
to output fault probabilities is more informative compared to binary
fault detection results (normal or fault).

• Expert knowledge and building physics can be embedded into the defi-
nition of conditional and prior probabilities, so that the posterior prob-
abilities calculation can reproduce a building manager reasoning more
quickly and more efficiently.
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• The graphical structure of a Bayesian network is able to mimic the
building HVAC system energy chain and is flexible enough to cover
most HVAC system topologies.

• Bayesian networks are good in dealing with uncertain, incomplete and
even conflicting information, which is very common in building systems.

• Evidence about any node(s) can be provided as input to improve the
current diagnosis, which makes it convenient for operators on site.

• Many efficient methods and tools exist to solve Bayesian network in-
ference and belief updating problems.

2.2. Methodology
A Bayesian network structure representing a whole building system would

contain thousands of nodes, which makes the task of creating or learning it
challenging. Existing literature often limits the model scope to sub-systems
with a few nodes, such as in Verbert et al. (2017) where a boiler-AHU-radiator
system is modeled. We therefore propose a step-wise methodology, leverag-
ing HVAC automation systems knowledge from standard building metadata,
such as Project Haystack (Haystack, 2014).

Our methodology starts with defining a new “control flow diagram” de-
scriptive model (section 3.1), that is both modular and extensible : building
blocks can be simply assembled together to represent a complete system (sec-
tion 3.2). We use this descriptive model as a pivot language to extract and
structure the relevant HVAC system topology description (section 3.3) and
to build the corresponding diagnosis Bayesian network (section 3.4), in a way
that can be automated.

Figure 1: Methodology overview

We finally illustrate in section 3.5 the capability of the resulting network
to diagnose root faults at system level based on given symptoms.
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3. Design of an HVAC fault diagnosis network

This section is dedicated to the presentation of our methodology in the
objective to design a building diagnosis tool.

3.1. Control flow model of a HVAC sub-system
An HVAC sub-system, such as a room radiator system, a hot water heat-

ing system or a ventilation system, is usually designed and operated to main-
tain a controlled variable, such as room temperature, hot water supply tem-
perature, or air flow rate. The HVAC sub-system is regulated according to
an enable (boolean) signal and a setpoint signal. Any generic HVAC sub-
system can be represented by a control flow diagram as shown in Figure 2.
It is composed of three components: the Controller, the HVAC Device, and
the Recipient System.

Figure 2: Generic control flow model of HVAC sub-systems

3.1.1. Controller
The Controller is the component regulating the HVAC Device to main-

tain the controlled variable at the setpoint (regulating controller), or simply
switching on and off the HVAC Device (on-off controller).

Figure 2 shows a regulating close-loop controller. Controllers with other
types of control loops (open-loop), output signals (two-position, floating,
modulating), or control algorithms (dead-band, PI, PID, pulse width modu-
lating) can be represented in a similar way ; see also Montgomery and Mc-
Dowall (2008). The enable and setpoint signals usually come from an HMI
(Human Machine Interface) either at the room thermostat or in the building
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management system. They represent the control signals of the HVAC sub-
system, and provide the basic criteria to evaluate whether the Controlled
Variable is normal or abnormal.

3.1.2. HVAC Device
The HVAC Device refers to a heating / cooling / ventilating equipment.

It is switched on/off or regulated by the Controller to give heating/cooling
power or ventilation to the Recipient System to maintain the controlled vari-
able (temperature, pressure, humidity, CO2, etc.). The correct functioning
of the HVAC Device depends on the HVAC Component Characteristics and
the Energy Sources (if available).

3.1.3. Recipient System
The Recipient System refers to a room, a ventilation recipient system

(air duct), a hot water recipient system (water tank and piping), etc. To
maintain the controlled variable, the Recipient System needs power input
from the HVAC Device. The amount of required power is related to the
Disturbances, the Recipient System dynamics and the chosen setpoint. If the
Recipient System is equipped with Supplemental HVAC, such as ventilation
in addition to a room radiator system, the state of the Supplemental HVAC
may also impact the Recipient System.

3.2. Connecting sub-systems to model a complete HVAC system
The control flow models of various HVAC sub-systems are presented in

the Appendix A. This list can be easily extended to develop a complete
library covering most common types of HVAC Device.

By connecting corresponding component variables, we can easily build
the control flow model for a whole HVAC system. We use a boiler-pump-
radiator system as an example. The system is composed of one boiler, one
hot water pump and three radiators serving three rooms individually. The
boiler and the pump have on-off control, and the radiator has close loop
regulating control. The control flow model of the full system is shown in
Figure 3.

In the next section we describe a methodology to construct such an entire
model from the building topology descriptive metadata.
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Figure 3: Boiler-pump-radiator system : Topology (left), Control Flow model (right)

3.3. Transforming building metadata into control flow model
In real world buildings, there are very often hundreds of equipment, and

thousands of trend data logged in the BMS. It is a significant challenge to
find the relevant data required to perform fault diagnosis of the complete
system.
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Over recent years, metadata models, taxonomies and ontologies such
as Project Haystack (Haystack, 2014), IFC/BIM (ISO 16739-1:2018), Brick
(Balaji et al., 2016) have been developed to standardize the description of
building topology, HVAC systems, and associated trend data.

We have developed our method based on Haystack. With Haystack, a
building is described by a list of entities that represent all of its constitutive
elements: site, floor, room, equipment, measurement point, setpoint... Each
entity is associated with an id (e.g. ‘@a-001’), descriptive tags that may
contain a value (e.g. ‘equip’ or ‘area: 55000ft²’), and relationships to
other entities (e.g. ‘chilledWaterRef: @a-07b8’). The complete building
description can be exported to various formats such as CSV, or semantic web
formats as JSON-LD or Turtle. An example of such description is illustrated
in Figure 4 below. This description corresponds to the boiler-pump-radiator
example presented previously in Figure 3. For readability purposes, relation-
ships are indicated with arrows.

Figure 4: Haystack description of the boiler-pump-radiator example

We propose to leverage the Haystack description of a building to auto-
mate the process of creating the control flow model presented in 3.2. If the
BMS data points are properly tagged using Haystack, these tags are auto-
matically used to create the control flow diagram of the whole building. They
are also used to associate the BMS data points to the corresponding signals
in this diagram.
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In the following we are going to use the boiler-pump-radiator example to
illustrate how this process is done. Figure 4 shows all the Haystack objects
of this system. Converting this description into a control flow model consists
in the following 3 steps:

Step 1: List HVAC sub-systems and find their type. From the Haystack meta-
data, get a list of all objects which have tag ‘hvac’ and ‘equip’, which means
HVAC Device. Based on the additional tags, use Table 1 to map each equip-
ment to an HVAC sub-system model from the control flow library (see Ap-
pendix A).

Haystack tags Sub-system in control flow model
radiator, hotWaterHeating Room Radiator (Appendix A.1)
pump, secondary Hot Water Pump (Appendix A.3)
hot, water, boiler Hot Water Boiler (Appendix A.2)

Table 1: Creating HVAC sub-systems from Haystack

Step 2: Find all available signals for each HVAC sub-system. For each equip-
ment entity ‘XY’, get a list of all entities which have tag ‘point’, and ‘equip=XY’.
They represent the data points (timeseries) available for this equipment. Use
the mapping table of the appropriate HVAC sub-system model (for example
2 for Room Radiator, 3 for Pump and Boiler) to map these entities to the
control flow signal according to their available tags.

Haystack tags Signal in control flow model
point, zone, air, effective, temp, sp Setpoint
point, valve, cmd Control command
point, zone, air, temp, sensor Room temperature

Table 2: Signals in room radiator sub-system (Appendix A.1)

Haystack tags Signal in control flow model
point, run, cmd Control command

Table 3: Signals in pump (Appendix A.3) and boiler (Appendix A.2) sub-systems
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Step 3: Connect HVAC sub-systems. Based on the reference tags of each
equipment, define the inter-relationship between the HVAC sub-systems.
Figure 4 indicates that the hot water of the three radiators ‘@a-004’, ‘@a-
005’, and ‘@a-006’ are provided by the boiler ‘@a-002’ and pump ‘@a-003’.

With this methodology, we can now convert building descriptive data to
control flow model, if the Haystack tags are correctly set.

3.4. From control flow model to fault diagnostics Bayesian network
In previous sections we described a control flow model (3.1) and a generic

procedure to obtain it from a building description (3.3). We now describe
how to build a Bayesian network according to the control flow model and
perform fault diagnostics.

3.4.1. Bayesian network essentials
Bayesian networks are graph structures used for representing the proba-

bilistic relationships among a large number of variables and for doing prob-
abilistic inference (reasoning) with those variables. It was first developed by
Judea Pearl in 1980s (Pearl, 1988). Nodes and edges form the structure of
a Bayesian network. Each node represents a random variable. In this study
we focus on categorical random variables. Directed edges are added from
parent nodes to child nodes, to indicate direct influence. Parameters are
given to each node to describe the prior (node without parent) or conditional
(node with parents) probabilities. They are defined as prior probability ta-
bles (PPT) and conditional probability tables (CPT) respectively.

If the state of a node is observed, it is known as evidence. When we are
absolutely sure about the state of the node, we set the probability of this
state to one or zero. This is called hard evidence. Sometimes the information
we have is not absolutely reliable, or the measurement we observe is subject
to uncertainty. In this case we set the states to a probability between zero
and one, and call it uncertain evidence. Mrad et al. (2015) provided a com-
prehensive review of uncertain evidence in Bayesian networks. There are two
types of uncertain evidences (Peng et al., 2010):

• Soft evidence can be interpreted as “evidence of uncertainty”, and is
represented as a probability distribution of one or more variables. This
probability does not get updated in the belief updating process.
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• Virtual evidence can be interpreted as “evidence with uncertainty”, and
is represented as a likelihood ratio. It is used when one is uncertain
about a claim of a hard evidence. In belief updating the posterior
probability is calculated taken into account the likelihood ratio of this
node and the states of other nodes in the network.

The process of computing the posterior distribution of variables given
evidence is known as probabilistic inference (also formerly known as belief
updating). Many inference algorithms exist, including exact methods such
as variable elimination, poly-tree message passing and junction trees, and
approximate methods such as Monte Carlo simulation and belief propagation.
See Neapolitan et al. (2004); Barber (2012).

We now present how each aspect of the Bayesian network is created from
the control flow model: Structure first (nodes and edges), then Parameters:
prior probabilities and conditional probabilities.

3.4.2. Structure
Leveraging the generic control flow model of an HVAC sub-system il-

lustrated in Figure 2 we can easily build a sub-part of the fault diagnos-
tics Bayesian network, abusively defined as “fault diagnostic Bayesian sub-
network” and shown in Figure 5. We now describe the method element by
element, as for the generic control flow model (section 3.1).

1. The Controlled Variable is represented by a node in the Bayesian sub-
network named Symptom node, with state either Normal or Abnormal. The
Abnormal state encompasses all situations where the controlled variable does
not behave as expected by the system. Note that for convenience the Abnormal
state may be renamed with a name related to the actual variable name. For
example Low if the controlled variable is a Pressure, Low (resp. High) if it is
a temperature during heating (resp. cooling) season, etc.

2. Each of the three blocks in the control flow model: Controller, HVAC
Device, and Recipient system, also becomes one node in the Bayesian sub-
network, named Fault node and representing its status:

• the Controller node has states: Normal for normal behaviour; Fault
for abnormal one; Disabled to take into account periods of time where
the control is deactivated (typically based on the BMS Schedule),
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Figure 5: Fault detection Bayesian sub-network of an HVAC sub-system. Dotted lines
indicate optional nodes.

• the HVAC Device node has states: Normal for normal behaviour; Fault
for abnormal one,

• the Recipient system node has states: Zero for no load (for example
when a room does not need heating because the external temperature
and internal gains are sufficient); Normal for normal load (normal need
for heating or cooling); High load for abnormally high loads (for ex-
ample when a window is left open in a room and the heating system
cannot compensate).

3. The vertical arrows on top of the blocks in the control flow model represent
properties and external inputs. Each of these signals becomes an independent
parent node of its associated block node in the Bayesian sub-network:

• For the HVAC Device node (e.g. Radiator), Fault state is likely to be
caused by abnormal HVAC Component characteristic (e.g. Radiator
valve, heat exchanger) or abnormal Energy source (e.g. Supply Water
Temperature, Supply Water Pressure). The first is represented by a
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Fault node with states Normal and Fault. The latter is represented by
the Controlled Variable node of another Bayesian sub-network.

• For the Recipient system node (e.g. Room), the High/Normal/Zero
load state is a function of the System Characteristics (e.g. the Building
Enclosure), Disturbances (e.g. Outdoor air temperature), and Supple-
mental HVAC (if available) states. The first two are represented either
by a Fault node with states Normal and Fault, or by a Disturbance
node with ad-hoc states. The latter is represented by the Controlled
Variable node of another Bayesian sub-network.

3.4.3. Structure properties
The choices described in 3.4.2 lead to the following desirable properties:

• Minimal need for parameter learning. The structure of the Bayesian
network is purposely designed to minimize the necessity of estimating
(or learning) and tuning the prior and conditional probabilities. In-
deed, most of the state variable dependencies are binary logic, which
means the conditional probabilities are either 1 or 0. For example when
a controller has Fault state, controlled variable is Abnormal with a
probability of 1. The only conditional probability that needs to be es-
timated based on expert knowledge is the one of the Recipient System
node. The associated probability tables (PPTs and CPTs) and other
parameters are detailed in 3.4.4 and in 3.4.5.

• Composability. The above standard design of Bayesian sub-network
structure is used to model each HVAC sub-system in the global system.
In the objective to design a diagnosis tool based on a complete Bayesian
network, our method consists in connecting Bayesian sub-networks,
mirroring connections between HVAC sub-systems that compose the
HVAC system in a building. The connections of different sub-systems
are built between the Controlled Variable node of the energy sources
and the HVAC Device node of the energy consumers. As an exam-
ple, the complete fault diagnosis network of the boiler-pump-radiator
topology is given in Figure 6.

Finally, note that the horizontal arrows in the control flow model represent
input and output signals for the three blocks Controller, HVAC Device, and
Recipient system. These do not directly appear in the Bayesian sub-network
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structure, but we will see in next section that the conditional probability
tables (CPT) are designed to reflect these connections. In addition, the
behavior of the outputs reacting to the inputs can be used by an expert or
an algorithm to reveal the state of the blocks (generate evidence).

Figure 6: Boiler-pump-radiator system – fault diagnosis Bayesian network

3.4.4. Parameters: prior probabilities
In the HVAC diagnosis sub-network as shown in Figure 5, or network

as shown in Figure 6, the nodes without parents are root cause nodes. We
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propose below two strategies to set prior probabilities for these nodes, de-
pending on their kind: Disturbance nodes or Fault nodes.

1. Disturbance nodes refer to variables such as outdoor air temperature, total
heating demand of the hot water system, etc. They reflect the usage context
of the system. Their prior probability distribution can for example be ob-
tained from historical data, or expert knowledge. Table 4 illustrates a prior
probability table for a Outdoor air temperature node corresponding to a clas-
sical yearly distribution in Europe. In real-life systems, this prior probability
table (PPT) should be updated periodically to better fit to actual conditions
(e.g. one distinct probability table for heating/mid-season/cooling seasons
or quarterly, monthly, weekly...). Finally note that some Disturbance state
variables can be actually monitored. The state derived from live observations
can be posted as evidence on the node to further refine its status.

Lower than Between Larger than
10◦C 10◦C and 20◦C 20◦C

Outdoor air temperature 0.4 0.2 0.4

Table 4: Prior probabilities of the disturbance node in the boiler-pump-radiator example

2. Fault nodes correspond to the failure of a specific equipment or building
component. The relative importance of prior probabilities set for the various
Fault nodes across the entire network has a significant impact on the final
diagnosis result (most probable fault for a given set of symptoms); these
should therefore be carefully defined. The prior probability of equipment
fault can be derived from a failure rate model if one is available, such as the
well-known bathtub failure rate (see Signoret and Leroy (2021) or Finkelstein
(2008) for a review).

When no such model is known, prior probabilities of faults may be esti-
mated based on field experience. In the boiler-pump-radiator example, the
prior probability of all root fault nodes are empirically set to 0.1.

3.4.5. Parameters: conditional probabilities
All nodes with parents have to be associated with conditional probabil-

ity tables (CPT) representing their probabilistic relationship with the parent
nodes. We propose below one strategy for each type of node, to define these
tables.
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1. Symptom nodes represent the fault status of controlled variables. We
propose to assume a logical causal relationship between the states of these
nodes and their parents, encoded by the following expert rules:

• When the load of the Recipient System is High (higher than the maxi-
mum power output of the HVAC Device), the Symptom node is Abnormal
(e.g. temperature is Low in heating season) in any case, as the controlled
variable can’t possibly reach the normal range even if the entire HVAC
system is working properly.

• When the load of the Recipient System is Normal (above zero and
smaller than the maximum power output of the HVAC Device), the
controlled variable needs to be regulated by a working HVAC system
to be normal. Therefore the Symptom node is only Normal when the
Controller and the HVAC Device are both Normal. A Controller fault
(including disability) or a HVAC Device failure will all cause Symptom
node to be Abnormal.

• When the load of the Recipient System is Zero, the controlled variable
does not need to be regulated to be normal. The Symptom node is
therefore Normal in any case. This is the case typically for room and
air heating or cooling systems in transition seasons. This however does
not apply to Air fans and pumps: they usually don’t have ’zero load’
status, since power is always needed to maintain water pressure and air
pressure.

The above proposed logic translates into the conditional probability table
in Table 5.
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System Controller HVAC Controlled Variable
Abnormal Normal

High Fault Fault 1 0
High Fault Normal 1 0
High Normal Fault 1 0
High Normal Normal 1 0
Normal Fault Fault 1 0
Normal Fault Normal 1 0
Normal Normal Fault 1 0
Normal Normal Normal 0 1
Zero Fault Fault 0 1
Zero Fault Normal 0 1
Zero Normal Fault 0 1
Zero Normal Normal 0 1

Table 5: Conditional probabilities of Symptom nodes

2. For HVAC Device nodes we also propose to assume a logical causal rela-
tionship between the states of these nodes and their parents, encoded by the
following expert rule: if HVAC Component Characteristics has state Fault
or Energy Source (when applicable) has state Abnormal, then HVAC De-
vice has state Fault. For example in the case of the room radiator system,
HVAC Component Characteristics has state Fault when the valve is stuck
close or the heat exchanger is blocked. Abnormal Energy Source refers to
either abnormal hot water temperature or abnormal pressure, which are the
Symptom nodes of two other HVAC sub-systems (Hot water sub-system and
Hydraulic sub-system), and therefore are themselves caused by other faults.
By connecting the HVAC Device node to the Energy Source parent node, the
inter-dependency between HVAC sub-systems, or the causal relationship be-
tween faults in different HVAC sub-systems are represented in the Bayesian
network.

The above proposed logic translates into the conditional probability table
in Table 6.
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HVAC component Energy HVAC Device
characteristics source Abnormal Normal
Fault Abnormal 1 0
Fault Normal 1 0
Normal Abnormal 1 0
Normal Normal 0 1

Table 6: Conditional probabilities of HVAC Device nodes

3. For Recipient System nodes we propose to learn their conditional prob-
abilities from historical data. In correctly sized HVAC sub-systems, High
recipient system load is caused by Abnormal System Characteristics, subject
to certain conditions related to Disturbances. In the room radiator system
example, Disturbances refer to weather (outside temperature, solar radiation,
etc.) and internal heat gains, System Characteristics refer to the building
enclosure heat transfer coefficient and heat capacity. If the radiator has the
right size, in normal situations, the heat capacity should always be able to
cover the system load. High system loads are caused by building enclosure
fault, such as an open window or a damaged insulation, and only appears
when the outside temperature is low.

The conditional probability table of Recipient System nodes can be learned
from disturbances data and corresponding system load data in normal case
and fault case. An alternative when historical data is missing is to simplify
the network by removing the Disturbance and System characteristics nodes,
such that only prior distribution needs to be learnt for Recipient System from
past data.

Table 7 gives an example of the heat load distribution of building en-
closure Normal (window closed) and Fault (window opened) case, for the
boiler-pump-radiator example.
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Building enclosure Outdoor air temperature Room
(System Character.) (Disturbances) (Recipient System)

High Normal Zero
load load load

Fault Lower than 10◦C 0.85 0.15 0
Fault Between 10◦C and 20◦C 0.4 0.4 0.2
Fault Higher than 20◦C 0 0 1
Normal Lower than 10◦C 0 1 0
Normal Between 10◦C and 20◦C 0 0.5 0.5
Normal Higher than 20◦C 0 0 1

Table 7: Conditional probabilities of Room nodes in the boiler-pump-radiator example.

3.5. Fault diagnosis decision
A big advantage of Bayesian network is its flexibility in data availabil-

ity: any node can receive evidence, and all available evidence is leveraged
for inference. Fault diagnosis can thus be performed in an incremental fash-
ion: users or systems provide evidence, then inference is executed to get the
probability of all root fault nodes and find out the most possible one. New
evidence can then be posted and the probabilities updated, etc. We propose
that indubitable observations such as low temperature are posted as hard ev-
idence, while uncertain observations or results, such as individual equipment
fault detection results from another system or algorithm (when available) are
posted as virtual evidence.

We now present an example of such a diagnosis process, starting with
an observed symptom: a low room temperature in room 1, posted as hard
evidence on the associated Symptom node of the network (Case 1). We then
consider situations with an increasing amount of evidence posted into the
network, mimicking the progress of an assisted human inspection (Cases 2
to 5). Inference results after each new evidence are shown in Table 8, one
column per inference run. Room 1 Temperature Symptom node is listed,
as well as Symptom nodes of the sub-systems which are served by the same
energy source (room temperature of other rooms). Updated probabilities are
provided for all root fault nodes and intermediate fault nodes that are direct
or indirect parents of the symptom nodes.
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Case1 Case2 Case3 Case4 Case5 Case5’
Symptom nodes
Room radiator 01
Room temperature Low Low Low Low Low Low
Room radiator 02
Room temperature Normal Normal Normal Normal
Room radiator 03
Room temperature Normal Normal Normal Normal
Disturbance nodes
Outdoor air temperature Medium Medium Medium Medium Medium
Virtual Evidence
Room radiator 01
Radiator fault 0.8 0.2
Intermediate fault nodes
Room radiator 01
Radiator fault 0.86 0.86 0.70 0.79 0.94 0.48
Room high load 0.14 0.13 0.19 0.27 0.13 0.56
Hot water system
Hot water temperature low 0.44 0.44 0.29 0.26 0.30 0.16
Hot water system load high 0.15 0.15 0.10 0.13 0.15 0.08
Hydraulic system
Hot water pressure low 0.45 0.45 0.30 0.27 0.32 0.16
Hydraulic system load high 0.17 0.17 0.11 0.14 0.17 0.09
Root fault nodes
Room radiator 01
Controller fault 0.17 0.17 0.25 0 0 0
Valve heat exchanger fault 0.17 0.17 0.25 0.36 0.43 0.22
Building enclosure fault 0.16 0.20 0.25 0.33 0.20 0.59
Hot water system
Controller fault 0.17 0.17 0.11 0 0 0
Boiler mechanical fault 0.17 0.17 0.11 0.14 0.17 0.09
Tank piping heat loss fault 0.16 0.16 0.11 0.14 0.16 0.09
Hydraulic system
Controller fault 0.17 0.17 0.11 0 0 0
Pump mechanical fault 0.17 0.17 0.11 0.14 0.17 0.09
Piping resistance fault 0.17 0.17 0.11 0.14 0.17 0.09

Table 8: Fault diagnosis inference results. Posted evidence is marked in gray, changes with
previous case in bold font. Root faults are marked in red (most probable: dark red ; less
probable: light red).

As we can see, with only the ‘Room 1 low temperature’ evidence, all possi-
ble root faults have similar probabilities (Case1). We can check the outdoor
air temperature to see if it is the direct cause. Observing ‘Medium’ exter-
nal temperature does not change the diagnosis as this is not a direct valid
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reason for a low temperature in rooms (Case2). Once it is known that the
other rooms served by the same hot water system all have normal tempera-
ture, although the hot water system temperature and water flow information
are not available, the Bayesian network is able to infer that the root fault
is most probably located in room 1 (Case3). By observing the room tem-
perature control signals, we can identify whether they are normal or not.
Assuming that the valve control signal is already at maximum, which is cor-
rect reaction to the temperature deviation to the setpoint, we can set the
controller fault node probability to zero. Now the most probable fault is
either radiator mechanical fault (valve or heat exchanger ), or building en-
closure fault (such as the window in room 1 is open) (Case4). By observing
how room temperature is reacting to the heating valve opening degree, we
can create virtual evidence representing how likely it is that the radiator has
a mechanical problem: likely (0.8, Case5) or not (0.2, alternate Case5’) ;
posting this evidence in the network results in the correct fault being isolated.

4. Experiment and discussion on real case studies

In this session we apply our methodology to build the fault diagnosis
network of HVAC system of one real office building ‘Retz’ located in Nantes,
France. The building is equipped with heat pumps and air handling units
(AHU) as central HVAC devices, and with floor heating, fan coil units (FCU)
and variable air volume box (VAV) in the rooms. The system topology is
shown in Figure 7. There are 55 rooms, more than 800 points with data
trends in total.

The corresponding building information Haystack model is illustrated in
Figure 8. Because of the space limitation, the points are not included in the
diagram.

4.1. Network structure and parameters
We create the fault diagnosis network based on the Haystack model, fol-

lowing the procedure described in 3.4. We removed the AHUs to simplify
the Bayesian network structure for the purpose of the experiment, to fo-
cus on the FCUs in rooms, the associated heat pumps and the distribution
pumps. We manually checked that removing AHUs had no impact in the
timespan of the dataset. As heating and cooling seasons are independent
we model each equipment by two HVAC sub-systems (two Bayesian sub-
networks) representing heating and cooling functions respectively, and shar-
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Figure 7: HVAC system topology of Retz building

ing common Recipient System and HVAC Device Characteristic. The fault
diagnosis network is shown in Figure 9.
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Figure 8: Haystack model of the Retz building
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Figure 9: Fault diagnosis network of the ‘Retz’ building

25

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4544954

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



4.2. Evidence and inference results
In this case study, hard evidence is obtained every hour from real op-

eration supervision data. The state of controlled temperature variables is
obtained by comparing the actual room temperature to the setpoint during
building operation hours with a 0.5°C tolerance. The general heat pump
controller state is obtained from the heating season status. Pump controller
states are obtained from the corresponding data point. Finally, we simulate
availability of virtual evidence about the Fan Coil Units with a pre-recorded
evidence signal.

Probabilities of all possible fault nodes are calculated through inference
to find out the most probable root fault cause. The whole process is exe-
cuted automatically in a Python program using the SMILE reasoning engine
from BayesFusion, through its PySMILE Python wrapper (Tungkasthan et al.,
2010). Fault diagnostics for one specific hour takes less than a second. Going
through a whole year of data takes about half an hour, which is reasonable
speed.

Using this method, we have successfully revealed some issues, even with
incomplete historical data. Below is one example.

On July the 6th, during the cooling season, heat pump data missing. It is
unknown whether the heat pumps were running or not. We now investigate
this case to see if the Bayesian network is tolerant to missing data and still
able to correctly identify that heats pumps are not running correctly.

The symptoms are abnormally high temperatures in rooms 21, 33, 45,
and 46. An extract of the inference results for these four rooms is shown
in Figure 10. In all four rooms, the valve correctly opens to cool down and
maintain room temperature at the setpoint. Based on this evidence as well
as all others, the Bayesian network was able to correctly identify that the
heat pump is not in cooling mode (probability 90%). This indicates that
the high temperature in four rooms are caused by the conflict between room
FCU and heat pump heating / cooling mode.

4.3. Other experimental results
We conducted two other experiments to test the generalization capabili-

ties of our approach.

• with a "digital twin" simulation model of one Schneider Electric build-
ing (GreenOValley 38TEC-T11) in Grenoble. The model was created
with IDA-ICE and simplified by removing some rooms and replacing
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Figure 10: ‘Retz’ building, building level diagnosis inference results with missing data:
heat pump off causing high room temperatures.

the heat pump models with simple boiler and chiller models. The final
model results in 56 FCU-equipped rooms, 3 AHUs, 1 chiller with 2
pumps and 1 boiler with 2 pumps.

• with the real GreenOValley 38TEC-T11 building

In both cases we were able to successfully describe the entire system using
the control flow approach (Figure 11) and to use resulting Bayesian networks
to detect root faults based on available evidence (Figure 12).
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Figure 11: Simulated GreenOValley building, control flow diagram.
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Figure 12: GreenOValley building, building level diagnosis inference example: AHU04
mechanical fault (valve) causing low supply air temperature

5. Conclusion

In this study we propose a new method to design a diagnosis tool for
HVAC faults at the whole building level, based on the use of a Bayesian
network. This Bayesian network has a flexible and modular structure, with
“Bayesian sub-networks” modeling HVAC sub-systems so that whole systems
can be represented easily. As this construction heavily relies on expert knowl-
edge, we propose a generic “control flow” system description that makes it
easier for experts to describe sub-systems, and that is used as an interme-
diate step in the Bayesian network construction. An initial library of such
“control flow” sub-systems, used in this study, is provided in Appendix A.
Assuming that such a library is available and that the building topology is
correctly described – for example by Haystack tags – we propose a step-wise
approach to create the complete Bayesian network in an automated way. Its
parameters (PPTs and CPTs) are defined either from rules or historical data.
The resulting model fusions different type of data from sensors to field ob-
servations, and can integrate virtual evidence for example from other fault
detection systems. It is able to deal with inter-dependencies between vari-
ous HVAC devices in order to perform global fault diagnosis and isolation of
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root cause faults. The method has been tested on data from real and simu-
lated office buildings. It revealed to be flexible with HVAC system topology
and data availability, requires small computational effort, and provides good
diagnosis accuracy.

To enable this tool to be used operationally, remaining work need to be
done, as :

• an exhaustive “control flow” library of possible HVAC Systems (see
Appendix A), associated with a clear way to map them from the
Haystack topology description (similar to part 3.3)

• a prior data quality check and pre-process, in particular on time series
data to avoid diagnosis errors

• an "interactive wizard" tool for the Facility Manager, with intuitive
user-friendly results display overlayed on the actual system synoptics,
as well as easy-to-enter field evidence inputs

In real-world systems, manual inspection of room temperatures or ma-
chine states is not always simple and fast ; it can become intractable as
the building size grows, or even unfeasible for state variables that are not
monitored. Future work will explore how users could leverage data-driven
methods – in particular equipment-level fault detection models – to derive
virtual evidence and eventually ease the diagnosis process. For example, us-
ing supervised machine learning regression models to detect faults on Air
Handling Units (Gao, Tianyun et al., 2019) and generate virtual evidence.

6. Acknowledgements

The authors would like to thank Henri Obara and the Facility Manage-
ment team from GreenOValley 38TEC for their help and feedback.

30

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4544954

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Appendix A. Examples of specific HVAC sub-systems

In this section, the generic control flow model is created for several specific
HVAC sub-system, and the fault diagnostics Bayesian sub-networks are de-
rived accordingly, following the methodology presented in section 3. Finally,
a summary is given in Table A.1.

Appendix A.1. Room Radiator
Figure A.1 illustrates the control flow model of a room radiator sub-

system. The radiator valve is regulated by the controller according to the
room temperature and the setpoint. The heating power provided by the
radiator to the room depends on the valve status and heat exchanger, but also
on the hot water supplied as input to the radiator. Finally, the amount of heat
required by the room is dependent on weather and building enclosure. The
associated fault diagnostic Bayesian sub-network is illustrated in Figure A.2.

Figure A.1: Control flow model of a room radiator sub-system

Appendix A.2. Hot Water
Figure A.3 illustrates the control flow model of a hot water sub-system.

The boiler is regulated by the controller to maintain the supply water tem-
perature at the setpoint. The boiler gives heating power to the hot water
system to cover the heating demand of all associated rooms and the tank
and piping heat loss. The associated fault diagnostic Bayesian sub-network
is illustrated in Figure A.4.
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Figure A.2: Fault diagnosis Bayesian sub-network of a room radiator sub-system

Figure A.3: Control flow model of a hot water sub-system

Appendix A.3. Hydraulic
Figure A.5 illustrates the control flow model of a hydraulic sub-system.

The pump is regulated by the controller to maintain the supply water pres-
sure at the setpoint. The pump gives hydraulic power, which refers to the
combined pressure and flow rate the pump is able to provide to the piping,
as can be illustrated in a pump curve shown in Figure A.7.

The pressure and corresponding flow rate is given by the pump speed.
Disturbances are the resistances given by the position of all the valves in
the piping. If the piping system is blocked or has leakage (Piping Resis-
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Figure A.4: Fault diagnosis Bayesian network of a hot water sub-system

tance status is Abnormal), the pump would not be able to provide enough
power to maintain the water pressure and water flow (Piping System sta-
tus is High load). The associated fault diagnostic Bayesian sub-network is
illustrated in Figure A.6.

Figure A.5: Control flow model of a hydraulic sub-system

Appendix A.4. Ventilation
Figure A.8 illustrates the control flow model of a ventilation sub-system.

The ventilation power refers to the combined pressure and flow rate the air fan
is able to provide. It is defined by the fan curve (similar to the pump curve).
If the duct is blocked or has leakage (Duct Resistance status is Abnormal),
the fan would not be able to provide enough power to maintain the air
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Figure A.6: Fault diagnosis Bayesian sub-network of a pump hydraulic sub-system

Figure A.7: Example of VFD pump curve

pressure and air flow (Duct System status is High load). The associated
fault diagnostic Bayesian sub-network is illustrated in Figure A.9.

Appendix A.5. Chilled Water
Figure A.10 illustrates the control flow model of a chilled water sub-

system. The chiller is regulated by the controller to maintain the chilled water
temperature at the setpoint. The chiller gives cooling power to the chilled
water system. The cooling function is dependent on the functioning of the
compressor, heat exchanger, and expansion valve, as well as the condenser
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Figure A.8: Control flow model of a ventilation sub-system

Figure A.9: Fault diagnosis Bayesian sub-network of a ventilation sub-system

water temperature and water flow. The chilled water cooling load is given by
the total cooling demand from all served equipment to the system and tank
and piping heat loss. The associated fault diagnostic Bayesian sub-network
is illustrated in Figure A.11.
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Figure A.10: Control flow model of a chilled water sub-system

Figure A.11: Fault diagnosis Bayesian sub-network of a chilled water sub-system

Appendix A.6. Summary
Table A.1 summarizes the representation of the systems described previ-

ously.
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HVAC sub-system Room Radiator Hot Water Hydraulic Ventilation Chilled Water
Controlled Room Hot Water Water Air Chilled Water
Variable Temperature Temperature Pressure Pressure Temperature
HVAC device Radiator Boiler Pump Air Fan Chiller
Recipient system Room Hot Water Piping Duct Chilled Water
HVAC component1 Valve Compressor
HVAC component2 Heat exchanger Heat exchanger
HVAC component3 Expansion
System Building Tank Piping Piping Duct Tank Piping
Characteristics Enclosure Heat Loss Resistance Resistance Heat Loss
Energy source1 Hot Water Condensing

Temperature Temperature
Energy source2 Hot Water Condensing

Pressure Water Flow
Disturbances Outdoor air temp. Heat Demand Flow Demand Cool Demand

Table A.1: Summary of HVAC sub-system fault diagnostics Bayesian sub-networks
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