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Abstract: Sparse modeling arises in various applied mathematical fields such as machine
learning or signal processing [1]. In this context, addressing `0-penalized problems of the form

x? ∈ arg minx f(x) + λ‖x‖0 + h(x)

is of particular interest. The function f(·) is a loss linked to the considered model, the `0-norm
enforces sparsity in the optimizer by counting the number of non-zeros in its input and the
penalty term h(·) promotes other desirable properties that may be relevant for the application
at hand. Problems involving the `0-norm are NP-hard in the general case but they can be
tackled using mixed-integer optimization methods. On the one hand, off-the-shelf solvers can
handle a large variety of instances [2] but suffer from bad numerical performance since they are
not fully able to exploit the sparse structure of the problem. On the other hand, specialized
Branch-and-Bound (BnB) methods achieve more reasonable solving time but can only address
specific instances of the problem, namely with a quadratic loss function and a penalty term
either encoding a Big-M constraint [3] and/or an `2-norm [4].

We propose a generic framework for specialized BnB solvers that can handle any instance of
`0-penalized problems verifying some mild hypotheses and which achieves competitive numerical
performance. Through new theoretical results, we show that all the ingredients required for its
implementation can be obtained in closed form, even though we do not require the explicit
expression of f(·) and h(·). Interestingly, we show that our approach encompasses prior works
as a special case. Capitalizing on the genericity of our framework, we provide El0ps, a flexible
implementation of our BnB solver with a plug-and-play workflow allowing user-defined functions
f(·) and h(·) to best fit the practitioner’s needs. Through different experiments, we show that our
solver achieves state-of-the-art performance on classical instances of the problem and can address
new instances for which no specialized solvers exist so far and that have therefore been out of
computational reach. Our contribution thus paves the way for new application opportunities.
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