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Hyperparameter Optimization for AST Differencing
Matias Martinez, Jean-Rémy Falleri, Martin Monperrus

Abstract—Computing the differences between two versions of
the same program is an essential task for software development
and software evolution research. AST differencing is the most
advanced way of doing so, and an active research area. Yet, AST
differencing algorithms rely on configuration parameters that
may have a strong impact on their effectiveness. In this paper,
we present a novel approach named DAT (Diff Auto Tuning) for
hyperparameter optimization of AST differencing. We thoroughly
state the problem of hyper-configuration for AST differencing.
We evaluate our data-driven approach DAT to optimize the
edit-scripts generated by the state-of-the-art AST differencing
algorithm named GumTree in different scenarios. DAT is able to
find a new configuration for GumTree that improves the edit-
scripts in 18.7% of the evaluated cases.

I. INTRODUCTION

The computation of the differences between two versions
of the same program is an essential task for software develop-
ment. It is done on a daily basis when developers share and
discuss code changes, through pull-requests in development
platforms (eg. Github, Gitlab, etc) or through patches over
mailing lists (patches on the Linux Kernel Mailing List). The
most common differencing strategy of developer tools is line-
based: a diff is a list of chunks where each chunk is a set of
added and/or removed lines. For example, git provides the
widely used command ‘git-diff‘ for computing a line-based
diff script. To push this state-of-practice further, there is an
active line of research on differencing algorithms that work at
the level of Abstract Syntax Trees (AST) instead of lines [8],
[19], [15], [24], [14], [21]. In this case, the differences between
two program versions are expressed in terms of actions over
nodes from the trees under comparison (e.g., Insert, Remove,
Update and Move nodes). AST differencing has been shown
to be significantly better than line differencing for a number
of tasks [15], [13].

AST differencing is of great importance not only for
practitioners but also for software engineering research. AST
differencing algorithms have been extensively used to study
software evolution [27], [18], [48]. Among the key usages of
AST differencing are pattern inference for automated program
repair [32], [30], [31], bug fix analysis [53], [45], [34], code
recommendation [36], [37], [40]. Consequently, it is of great
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Jean-Rémy Falleri is with University of Bordeaux, France and Institut
Universitaire de France, France

Martin Monperrus is with KTH Royal Institute of Technology, Sweden.
Email: monperrus@kth.se

importance for both practitioners and researchers to have
reliable AST differencing tools.

Virtually all AST differencing algorithms can be configured
in some way. That is, they have hyperparameters that control
and guide the differencing process. For example, the state-
of-the-art differencing tool GumTree has one hyperparameter
called BUM_SMT for setting a minimum similarity threshold
between two trees. This parameter has a default value of 0.5.
Changing that value impacts on the produced edit-scripts.

Unfortunately, as shown in previous research [16], [12],
state-of-the-art tools such as GumTree often generate sub-
optimal diffs, that is, edit-scripts that contain spurious AST
operations. In this paper, we show that those hyperparameters
matter and that one can improve AST differencing performance
by finding hyperoptimized values.

In this paper, we present a novel approach named DAT
(Diff Auto Tuning) for hyperparameter optimization of AST
differencing. Given an AST differencing algorithm, DAT finds
the optimal parameter configuration given a set of file-pairs to
be compared. DAT requires neither ground-truth nor labeled
file pairs, the optimization is guided by a widely accepted
quality metric for AST differencing [15], [23], [22], [24], [21],
[14], [35]: the length of the edit-script. To our knowledge, we
are the first to thoroughly study the problem of suboptimal
configuration for AST differencing and to propose a data-
driven approach to solve this problem.

We evaluate DAT by searching for the best configurations
of the AST differencing algorithm GumTree. In particular,
we evaluate it in two scenarios. The first scenario consists
of searching for the configuration that works best on a set
of file pairs. In this case, DAT does global hyperparameter
optimization The configuration found can be used as the new
default configuration when a practitioner aims to apply diffs in
a new programming language or AST meta-model. Secondly,
we evaluate the ability of DAT to find the best configuration for
a particular case (i.e., a single file-pair). In this case, DAT does
local hyperparameter optimization. Our evaluation consists of
executing those optimizations on more than 30,000 pairs of
Java files extracted from real-world commits of open-source
Java projects.

Our experimental results show that 1) DAT is able to find
a hyperoptimized configuration which produces shorter edit-
scripts for 18.7% of the cases using the JDT meta-model
(which is the meta-model used by default by GumTree).
2) Local hyperparameter optimization is effective, as it allows
finding shorter edit-scripts than the default configuration in up
to ≈22% of cases. 3) TPE, a Bayesian optimization approach,
is an effective optimization method which can be used by DAT
on both global and local optimizations.

To sum up, the contributions of this paper are:
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• The novel problem statement of hyperparameter opti-
mization for AST differencing.

• An original data-driven approach, called DAT for hyper-
parameter optimization in the context of AST differenc-
ing.

• An original and sound protocol for studying the per-
formance of AST differencing, with cross-validation
and statistical validation. The results of this experi-
ment are available at: https://github.com/martinezmatias/
dat-experimental-results.

• A publicly available tool for hyper-optimization of AST
differencing. It natively supports the popular GumTree
AST differencing engine and provides extension points
to integrate other differencing tools: https://github.com/
martinezmatias/diff-auto-tuning.

The paper continues as follows. Section II presents three
cases in which state-of-the-art AST differencing produces
incorrect outputs. Section III presents the terminology used in
the paper. Section IV presents DAT, our hyperparameter op-
timization approach for AST differencing. Section V presents
the methodology used to evaluate our approach. Section VI
presents the results of the evaluation. Section VII presents
the threats to validity. Section VIII presents the related work.
Section IX concludes the paper.

II. MOTIVATION

Previous work has revealed that state-of-the-art AST differ-
encing algorithms generate inaccurate mappings, which im-
pacts on the quality of the edit-scripts generated. For example,
Fan et al. [16] show that GumTree [15] generates inaccurate
mappings for 20%-29% of the file pairs analyzed.

In this Section, we present two cases for which GumTree
with its default configuration produces incorrect or non-
optimal edit-scripts. Later, in Section VI, we will show how
autotuning GumTree using our approach DAT allows GumTree
to produce more understandable edit-scripts for these two
cases.

A. Case 1: Spurious Add-Remove

Diff algorithms such as GumTree can produce edit-scripts
with spurious edits [12]. A recurrent case of these edits is pre-
sented in Figure 1, which shows the Interpreter.java
file from the Log4J project. It presents the version from
commit a04d92 (right part) and its previous version (left part).
The figure also shows in a colored box the code affected
by the edits obtained by GumTree after computing the diff
of those two files, using the default configuration and the
JDT metamodel. Each color represents a different edit type
(red corresponds to remove, green to insert). The edit-script
includes, in total, six edits. Three edits remove tree tokens
(public, class and Interpreter), each one represented
by an AST node (left part, in red), and the other three edits
insert the same three tokes (left part, in green). All these are
spurious edits. GumTree should not generate any of these six
edits. As we discuss later in this paper, GumTree using the best
configuration found by DAT does not produce those edits.

B. Case 2: Including Updates in the Edit-script

We now focus on the differences that
GumTree detects between the version of the file
PanelWindowContainer.java from the jEdit project
in commit 6867bd and its previous version.

The changes made by the developer were two: updates
the type of variables dockables and buttons from
ArrayList to List. However, the diff produced by
GumTree looks like that produced by a line-based diff such as
GNU diff: The edit-script removes the fields from the left part,
adds the fields from the right part (using the new field’s type
List), and moves the tokens related to the field names. This
edit strip does not clearly express the changes done by the
developers (i.e., update two nodes), and introduces spurious
edits (e.g., the remove and add of tokens ‘private’).

III. TERMINOLOGY

In this section, we present the key terminology related to
our contributions.

AST Differencing Algorithm: computes the differences
between two ASTs (Abstract Syntax Tree). For example,
ChangeDistiller [19] and GumTree [15] are two popular AST
diff algorithms. Typically, an AST diff algorithm has two input
parameters, the two ASTs (AST left and AST right) generated
from two source code files (Fleft and Fright, respectively).
Those ASTs are modeled using a meta-model (defined below).
Finally, the AST algorithm outputs the differences between
the two ASTs in the form of an edit-script (defined below).
An AST differencing algorithm is implemented in a tool, for
example, GumTree [15] is implemented in GumTreeDiff.1

Edit-script: is the output of an AST diff algorithm. It
represents the result of the comparison between the two ASTs
given as input parameters. The edit-script is a sequence of
edit operations applied to the AST nodes of AST left. The
operations are typically typed as {insert, remove, update,
move}, and are meant to represent the transformation from
AST left into AST right.

Matcher: For computing an edit-script between two
ASTs, AST left and AST right, it is necessary to try to match
(i.e., link) some tree nodes of AST left with nodes from
AST right. The algorithm that executes this task is known as
matcher. The criterion for matching two nodes depends on
the matching algorithm, and can consider, for instance, the
node’s type and label, the topology, etc. The list of matched
and unmatched nodes is then used for deducing an edit-script.
For instance, those nodes from AST left and AST right that
could not be matched correspond to removed or inserted nodes,
respectively.

AST Meta-model: defines the structure of an AST. In
particular, the meta-model describes: a) the possible types of
AST nodes (e.g, invocations, assignments, methods); b) the
attributes of each node type (e.g., a label); c) the optional and
mandatory children of each node type, if any.

For example, a simplified meta-model for the Java language
may have 4 node types for classes, methods, fields and

1https://github.com/GumTreeDiff/gumtree
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Figure 1: (Case 1) Example of spurious add-remove edits found when GumTree computes the diff of the file
Interpreter.java from Log4J project (commit a04d92) using the default configuration and JDT meta-model. The best
configuration found by DAT using the global GridSearch strategy does not produce those spurious edits.

Figure 2: (Case 2) Visualization of the edits computed by Gumtree between the file PanelWindowContainer.java (jEdit
project) from commit 6867bd (right part) and its previous version (left part) using default configuration. The AST diff is too
coarse grain and does not focus on the type change.

statements; the method nodes have a) an attribute called name,
b) a list of zero or more statements nodes as children.

Note that there can be several meta-models for represent-
ing ASTs of a same programming language. For example,
GumTree can model a Java AST according to four different
meta-models: JDT, Spoon, JavaParser and srcML. Since the
choice of meta-model has an impact on the topology of the
resulting ASTs, it finally also has an impact on the computed
edit-scripts.

IV. DAT: AN APPROACH FOR HYPERPARAMETER
OPTIMIZATION OF AST DIFFERENCING

We present DAT, an approach for optimizing AST differ-
encing algorithms which have configuration parameters such
as [15], [19], [22], [14]. The main goal of DAT is to find the
optimal algorithm configurations of an AST differencing al-
gorithm in a data-driven manner. DAT finds the best algorithm
configurations with respect to a benchmark of file pairs to diff.

A. AST Differencing Hyperparameters

An AST diff hyperparameter is a parameter whose value
is used to control a particular procedure from an AST diff
algorithm. A hyperparameter has a domain and a default value.
The default configuration of a diff algorithm corresponds to the
default values of the set of hyperparameters. Hyperparameters
can be set using different mechanisms: 1) at compile time,
by writing the values directly in the code; 2) at startup time,
through a command-line option or environment variable; 3) at
run time, through a method call.

To better understand hyperparameters, we take the example
of the GumTree algorithm. At some point, GumTree computes

a mapping between nodes from the ASTs under comparison
that have more than a certain ratio of common children. This
threshold is called BUM_SMT, its domain goes from zero
to one, and its default value is 0.5. This threshold is an
hyperparameter of GumTree.

A diff algorithm configuration for an AST diff algorithm
δ is a set of actual values for all available hyperparameters in
δ, The hyperparameters are noted (h1, h2, . . . , hk) and the hy-
perparemeter values (v1, v2, . . . , vk). A value vi belongs to the
hyperparameter space HSi for hi. The hyperoptimization
space contains the Cartesian product of all hyperparameter
spaces. The hyperoptimization space has n-dimensions, where
each corresponds to a hyperparameter. A point in that space
corresponds to a particular algorithm configuration of a diff
algorithm. For each diff algorithm, there is one single point in
its hyperparameter optimization space that corresponds to the
default configuration.

An important dimension of AST differencing algorithms
is the used AST meta-model. Two meta-models can produce,
for a same source code file, two different ASTs in terms
of topology (such as size or height). However, thresholds
applied on values computed from the topological properties of
the ASTs are very common in AST differencing algorithms.
For instance, in GumTree at some point an optional mapping
phase is launched depending on the number of children of
the node under consideration (the BUM_SZT hyperparameter
which default value is 1000). For instance, as the Spoon Java
parser produces ASTs with more nodes than the JDT Java

3
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Figure 3: Workflow of DAT. It searches for the best AST differencing configuration in a data-driven manner, according to a
set of file-pair.

parser2, it could affect the behavior of the algorithm. For
this reason, we suspect that a first interesting case to apply
hyperparameter optimization is at the level of each AST meta-
model.

Another important dimension is the source code itself. For
instance, a source code with very long methods will also
induce a very different behavior of the algorithm, due to the
previously mentioned threshold, compared to a source code
with very short methods. Therefore, a second interesting case
for hyperparameter optimization is at the level of given file
pair for a given AST meta-model.

We summarize these two use cases in the next section.

B. Use-cases of DAT

There are two main use cases of DAT: global and local
hyperparameter optimization.

For global hyperparameter optimization, the goal is to
find a default configuration that is expected to work well
for ASTs produced using a given meta-model. The global
hyperparameter optimization is designed to assist AST dif-
ferencing tools maintainers to compute good default values
for the hyperparameters for a given AST meta-model. These
values will then be automatically applied when using the
diff tool to provide an improved end-user experience without
suffering additional cost (the optimized values are computed
on a training set and then stored in the diff tool).

For this use case DAT does a set-based optimization: it
searches for the best-performing configuration over a set of
training file pairs written in a same language and parsed using
a same meta-model.

2We applied a statistical test to ensure that ASTs generated from the JDT
meta-model (JDT) are different from those generated from the Spoon meta-
model. As the distributions of AST’ sizes and heights are not normalized,
we use a Wilcoxon signed-rank test to reject (at 0.05 level) the two null-
hypotheses which state that the size (resp. height) of a AST Spoon is similar
to the size (resp. height) of an AST JDT.

For local hyperparameter optimization, DAT does a case-
based optimization: it searches for the best performing con-
figuration on a given file pair, using a given meta-model. It is
designed for end-users that want to compute the best possible
diff at the expense of computation time (since in this setup
the optimization is computed each time an end-user wants to
diff a file pair).

C. Workflow
DAT takes as input: 1) an unlabelled dataset of file pairs, 2) a

meta-model, 3) an AST diff algorithm, 4) and the specification
of the algorithm’s hyperparameter space. It outputs a sorted list
of algorithm configurations, ordered in ascending order, from
the best to the worst performing according to a given metric.
DAT implements the workflow presented in Figure 3. Given

a set of file pairs (i.e., a training dataset for data-driven
optimization), and a specification of the hyperparameter space,
DAT first selects one algorithm configuration, Ci, to evaluate
(step a). The exploration and selection of other configurations
is done according to a search technique (as described in
Section IV-E).

Then, DAT computes the edit-scripts for each file pair from
the input dataset using the selected configuration Ci (step
b). After having executed all the AST differencing tasks,
DAT computes the fitness value Ci, this fitness value then
guides the search process. As the fitness value, by default DAT
computes the averages of the length of those edit-scripts (step
c), and stores that fitness value together with the configuration
in a list (step d). Note that DAT can be extended to use another
fitness function. Then, it may repeat the aforementioned step
by selecting another algorithm configuration (step e), or it
stops the search (step f). The stopping criterion depends on
the search technique employed by DAT.

Finally, DAT sorts the list with the evaluated configurations
according to their fitness values (i.e., the average edit-script
lengths) in increasing order: DAT considers that whose algo-
rithm configurations which produce shorter edit-scripts have
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better fitness than those algorithm configurations that produce
larger edit-scripts on average.

The best algorithm configuration found by DAT in the
previous phase (the first element from the returned list) can
be used to test the optimization done by DAT on a separate
dataset. For example, we can compare the performance on a
testing dataset of the best configuration found (step g) with
that one from the default configuration (step h). This best
configuration can be used in production as the new default
configuration of the AST diff algorithm under optimization.

In Sections IV-D and IV-E, we detail, respectively, the
fitness function and the search techniques employed by DAT

D. Fitness Function

The main challenge that AST diff hyperparameter optimiza-
tion faces is the definition of a good fitness function. There
is no ground truth on whether a hyperparameter configuration
is good or not. DAT overcomes the lack of ground truth for
hyperparameter optimization by using metrics that compare
the outputs of two algorithm configurations (i.e., two edit-
scripts). Based on the result of that comparison, DAT decides
which of those algorithm configuration produces an edit-script
of higher quality.

In DAT, we use the length of an edit-script as the metric to
guide hyperparameter optimization. As suggested by [15], the
length of the edit-scripts is an indicator of the effort required to
understand the changes between two files, because shorter edit-
scripts are typically easier to understand. The length of edit-
scripts is an accepted proxy of the quality of the edit-scripts:
other researchers have used it to measure the improvements
introduced by new AST diff algorithms (e.g., [23], [22],
[24], [21], [14], [35]). Since the goal of DAT is to find a
configuration that performs best on a set of file pairs, DAT
finds the algorithm configuration that produces, on average,
the shortest edit-scripts from those pairs.

Algorithm 1 fminLengthEditScript function

Input: α: a single algorithm configuration (it contains one
particular value for each hyperparameter)

Input: FP : set of file pairs
Output: fitness: the fitness value of α

1: for pfi in FP do
2: ediα ← computeDiff(α.algorithm, α.configuration,

pf i.left, pf i.right)
3: EDsi ← EDsi ∪ (ediα, α)
4: end for
5: fitness ← computeAverageEditScriptLength(EDs)

Algorithm 1 presents the fitness function
fminLengthEditScript that DAT minimizes. The function
fminLengthEditScript receives as input: 1) single
algorithm configuration α (i.e., a particular value for
each hyperparameter), and 2) a set of file-pairs. It returns
a fitness value for α. The fitness value is computed as
follows. For each pair file received as parameter (line 1), the
function computes the edit-script using an AST diff algorithm
configured with algorithm configuration (line 2) and stores it

Algorithm 2 GridSearch

Input: fmin: Objective function to minimize
Input: SC: set of algorithm configurations
Input: FP : set of file pairs
Output: Lbest : list of sorted algorithm configurations (same

size than SC)
1: Lbest ← []
2: for α in SC do
3: fitnessi ← fmin(αi, FP)
4: Lbest ← Lbest ∪ (α, fitnessi)
5: end for
6: sort(Lbest) . Sorts each tuple (configurationα, fitnessα)

according to the fitness value, in increasing order.

(line 3). Finally, it computes and returns the average of the
lengths of those edit-scripts (line 5).

E. Search Techniques
DAT includes two powerful search-based techniques, also

used in hyperparameter optimization for other software en-
gineering tasks (e.g. [46], [47]). These are grid search and
Bayesian optimization.

1) DAT Grid Search: The grid search, refered as Grid-
Search, consists of exhaustively searching through a specified
slice of the hyperparameter optimization space.

Given the specification of an hyperparameter space, DAT
first creates algorithm configurations by performing the Carte-
sian product between all the selected subsets of hyperparame-
ters. Then, DAT invokes the function GridSearch, presented
in Algorithm 2, passing as parameters: a) the fitness function
fminLengthEditScript, b) the created set of algorithm configu-
rations, and c) a set of file-pairs (the training set). The output
of this function is the algorithm configuration that performs
better on that set. For each algorithm configuration α received
as a parameter (line 2), DAT first invokes the fitness function
fmin passing as a parameter the configuration α and the set of
file pairs FP received as parameter (line 3). Then, it stores the
tuple α and its fitness value in a list Lbest (line 4). Finally, it
sorts the list according to the fitness value in increasing order
(line 2). The first element from that sorted list corresponds
to the algorithm configuration with the best performance on
FP . If there are several best-performing configurations, DAT
returns arbitrarily one of them.

2) DAT Bayesian Optimization with TPE: DAT provides hy-
perparameter optimization based on Tree-of-Parzen-Estimators
(TPE) algorithm [7]. TPE has been used, for example, by [46],
[33] to optimize defect prediction models.

TPE is a Bayesian optimization approach [43], more con-
crete a Sequential Model-Based Optimization [25]). The latter
builds a probability model p(score|hyperparameter) (aka
the “surrogate” function) of the objective (fitness) function
and uses it to select the most promising hyperparameters to
evaluate in the objective function. In other words, the model
maps hyperparameters to a probability on the objective func-
tion, and acts as an estimation of the objective function. This
model is built iteratively using the results of the evaluation of
previously selected and evaluated hyperparameters.

5



Algorithm 3 TPE Search

Input: fmin: Objective function to minimize
Input: shs: Specification of hyperparameter space
Input: FP : set of file pairs
Input: NR EV : number of configurations to evaluate
Output: best: the evaluated configuration with better fitness

1: model ← init(shs)
2: for i from 1 to NR EV do
3: αi ← model.getConfigurationToEval()
4: fitnessi ← fmin(αi,FP)
5: model.updateModel(αi, fitnessi)
6: end for
7: best ← model.getBest()

The advantage of this algorithm when evaluating expensive
fitness functions (such as the function we use presented in
Algorithm 1) is its execution cost [7]: It is less expensive than
GridSearch. Rather than exhaustively exploring the hyperpa-
rameter space (which invokes the objective function per each
point of the space), it only evaluates the hyperparameters that
are selected according to the probabilistic model. TPE uses a
“selection function” which selects the next hyperparameter to
be evaluated from the probabilistic model. This selection is
based on the Expected Improvement (EI) criterion for a set
of hyperparameters (which form a single algorithm configu-
ration). TPE aims at optimizing (maximizing) that criterion
bu using a Tree-structured Parzen Estimator. A more detailed
description of TPE can be found in [7].
DAT implements TPE to find the algorithm configuration α

that minimizes (or eventually maximize) a fitness function (for
example, one that minimizes the average lengths of the edit-
scripts computed using configuration α on a set of file-pairs).
Algorithm 3 presents its workflow. TPE has four main input
parameters: 1) specification of the hyperparameters space,
2) objective function to minimize (fminLengthEditScript),
3) training data, and 4) number of evaluation executions (this
corresponds to the budget of the search). TPE from DAT
performs n evaluations of algorithm configurations (line 2).
In each, TPE selects one algorithm configuration α included
in the hyperparameter space (line 3) using the probabilistic
model (initialized in line 1), Then, TPE computes the fitness
of α in the training data FP using the function fmin.
By default, the fmin value passed as parameter by DAT is
fminLengthEditScript (Algorithm 1). Then, TPE upgrades the
model given the latest fitness value (line 5), and continues
with the next evaluation. Finally, it returns the algorithm
configuration with the best fitness (line 7). More details on
how TPE uses and updates the probability model can be found
in [7].

V. EXPERIMENTAL METHODOLOGY

In this section, we present our methodology for evaluating
DAT and answerinr the following three research questions.

• RQ1: To what extent does hyperparameter optimization
improve the performance of AST differencing?

• RQ2: To what extent can one speed up hyperoptimization
with TPE compared to and exhaustive search technique?

• RQ3: To what extent is local hyperparameter optimization
effective?

A. Differencing Algorithm under Study

In this paper, we select the state-of-the-art AST differencing
algorithm GumTree [15] has been used in hundreds of research
works relying on AST differencing, according to the citations
of the GumTree paper [15])collected by Google Scholar.

1) Hyperparameters: First, we specify the hyperparameter
space of GumTree. This is done by analyzing the source code
and discussing it with the lead developers of GumTree, one of
which is also co-author of this paper. Table I lists and explains
the hyperparameters of GumTree. For each hyperparameter,
the column Default shows the default value used in the
implementation in version 2.1.2.3

a) Bottom-up Matcher: The first hyperparameter of
GumTree is the bottom-up matching algorithm. GumTree
sequentially applies two types of matchers [15]:

1) Top-down matchers (also known as subtree matcher): find
isomorphic subtrees of decreasing height or size. Mappings
are established between the nodes of these isomorphic sub-
trees. They are called anchors mappings.

2) Bottom-up matchers: navigate a tree in post-order (e.g.,
visit first leaves, then their parents, etc.) in order to match
nodes not previously matched in the top-down phase. Two
nodes match if their descendants (children of the nodes)
include a large number of common anchors. Whenever a
new mapping is established during this phase, a recovery
phase is applied as the last chance to find mappings of the
descendants of the nodes.

There is only one stable top-down matcher in GumTree
while there are three different stable bottom-up matchers:
classic, simple, and hybrid. These three matchers differ only
in the way they apply the recovery phase.

b) Priority calculator: During top-down matching,
GumTree greedily matches whole isomorphic subtrees. To
establish the priority of the chosen subtrees, it uses a metric
based upon the topology of the subtree: either its size (number
of nodes in the subtree) or its height (length of the longest
path from one leave to the root of the subtree). For example,
when using size, GumTree will first try to find an isomorphic
subtree for the subtrees with the largest number of nodes. This
hyperparameter is called STM_PC

c) Minimum priority threshold: As explained in the
previous paragraph, GumTree uses a topological metric to
order the subtrees to be matched by the top-down matcher.
However, subtrees that have a too small such metric are not
considered by the matcher. The effect of the value depends
on the chosen priority calculator. For instance, with size and
3, GumTree will not consider subtrees with two nodes or less
during the top-down matching. This hyperparameter is called
STM_MPTH.

3GumTree version considered: https://github.com/GumTreeDiff/gumtree/
commit/ed3beeab1e00a31f23ab5e9a8292c3168221a1ca (July 2020).
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Table I: Hyperparameter space for the GumTree AST Differencing Algorithm.

Hyperparameter Description Default Values
Min Max Step Total

Bottom-up Matcher Bottom-up matcher used to compute the diff Classic {Classic, Simple, Hybrid} 3
STM PC Indicates the priority calculator used by the subtree matchers Height {Size, Height} 2
STM MPTH Threshold on the minimum priority value computed using

STM PC
1 1 5 1 5

BUM SMT Threshold on the minimum similarity between two AST nodes 0.5 0.1 1 0.1 10
BUM SZT Threshold on the maximum size of AST nodes to match 1000 100 2000 100 20

d) Minimum similarity threshold: A bottom-up matcher
matches two AST nodes if 1) they have the same type,
and 2) have a similarity greater than a threshold. Similar-
ity is computed based on the common number of mapped
descendants that both nodes have. Increasing this threshold
implies that a bottom-up matcher increases the minimum ratio
of common descendants, and consequently, tries to match
more similar subtrees. The bottom-up matchers of GumTree
obtain the similarity threshold in different ways. The greedy
matcher uses the hyperparameter BUM_SMT to establish the
similarity threshold. The default value is 0.5, which means
that a bottom-up matcher only consider nodes that have, at
least, a 50% of common descendants. The other two bottom-
up matchers (Simple and Hybrid) automatically compute the
threshold by using the following formula: threshold(t1, t2) =
1/(1 + log(desc(t1) + desc(t2))), where t1, t2 are subtrees,
and desc(t) gives the number of descendants of subtree t.

e) Maximum size threshold: As explained previously,
once a bottom-up matcher finds, from a subtree on tree t1, the
most similar subtree from tree t2, it applies a recovery phase
(Section V-A1a), which relies on an algorithm that searches
for matches among the descendants of both subtrees that
are still unmapped. Classic uses an optimal tree-edit distance
algorithm which has a cubic complexity and, therefore, is slow
on large subtrees. Simple uses an heuristic which is much
faster than the optimal algorithm. Hybrid applies the algorithm
of classic or simple, depending on the size of the subtree
under consideration. Given the fact that classic and hybrid
matchers can have a large running time if they try to apply the
optimal tree-distance algorithm on large subtrees, they use the
maximum size threshold hyperparameter which value sets the
maximum size of a subtree for which this algorithm is applied.
This hyperparameter is called BUM_SZT and its default value
is 1000.

2) Defining the Hyperparameter Domain: Table I shows
the domain of each hyperparameter space. Some hyperparam-
eters are numeric; in this case, we give the minimum and
maximum values. In addition, we give a reasonable step value
to explore the input domain for this parameter, this value was
suggested and agreed on with the GumTree lead developer.
For example, the hyperparameter BUM_SMT goes from 0.1 to
1, with steps 0.1, giving as a result the hyperparameters {0.1,
0.2, 0.3, . . . , 0.9, 1}. For the hyperparameters with categorical
scale, we give a list of possible values. For example, the
bottom-up matcher hyperparameter could receive three values:
Classic, Simple, or Hybrid. The ‘Total’ column gives the
number of values to explore per hyperparameter.

We recall that the Cartesian product on all hyperparam-

eters creates all possible algorithm configurations that DAT
evaluates. In total, we obtain 2210 different configurations in
GumTree. Note that this total is not equivalent to the scalar
multiplication of the values of each hyperparameter (shown
in the last column of Table I because there are dependen-
cies between the hyperparameters. For example, the hyper-
parameter BUM_SZT is used by (GreedyBottomUpMatcher
matcher but not by SimpleBottomUpMatcher. Thus, 2000
configurations correspond to ClassicGumTreeMatcher, 200 to
HybridGumTreeMatcher and 10 to SimpleGumTreeMatcher,

3) Metamodels: In our experiments, we perform AST dif-
ferencing on Java programs, as done in the original publication
of GumTree [15]. GumTree supports multiple AST meta-
models for Java code. The default one is called JDT, it is
based on the Eclipse JDT Parser. The other meta-model we
choose is the one defined using Spoon [42], an open-source
library to analyze, rewrite, transform, and transpile Java source
code.

4) Evaluation Dataset: The evaluation of DAT consists in
running the hyperparameter optimization GumTree on a set of
file-pairs. We create a dataset of file-pairs used in the evalua-
tion as follows. First, we choose software repositories in order
to extract revisions of files done by developers on open-source
projects. We choose CVSVintage [38], a dataset composed of
14 CVS repositories of open-source projects written in Java,
because GumTree [15], the differencing algorithm that we
hyper-optimise in this paper, was initially evaluated on that
dataset [15].

To create the set of file pairs, we first convert each CVS
repository to a GIT repository using the tool cvs2git4. We
were able to successfully convert 13 out of the 14 repositories.
Then, we navigate the history of each GIT repository, commit
by commit and for each one, we store the Java files that have
been updated according to the command git diff. More
precisely, for each file f updated by commit C, we create a
pair file (fp, f, ), where fp is the previous version of file f
(i.e., the version before commit C). All file pairs are publicly
available in our appendix.

We exclusively study on file-pairs that introduce AST
changes. File-pairs that only differ on the code format (e.g.,
indentation) are not considered, since the number of AST
changes between the pair is equal to zero. For detecting those
file-pairs to discard, we compute the edit-script GumTree
(using the default configuration) on each pair and we keep
those that have an edit-script longer or equal to one.

4cvs2git: https://www.mcs.anl.gov/∼jacob/cvs2svn/cvs2git.html
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As the number of file-pairs we obtained is larger than
100000, and our computational resources are limited, given
the magnitude of this experiment (run different configurations
on each of those pairs), we take a subset of them. We randomly
select up to 5000 file-pairs per project. Note that 9 out of 13
projects have less than 5000 file-pairs, so we consider all of
them. In total, we consider 31,543 file-pairs. Given this amount
of data, we perform 69,710,030 unique executions of GumTree
(i.e., 31,543 file-pairs × 2210 different configurations).

B. Protocols

1) Protocol for RQ1: To answer this research question, we
execute the global hyperparameter optimization from DAT on
the evaluation dataset described in Section V-A4, composed
of 31,543 file-pairs. We performed this hyper-optimization for
the two considered AST meta-models (JDT and Spoon) using
the GridSearch technique implemented in DAT.

To minimize the risk of data overfitting, we apply a 10-fold
cross-validation. For each fold, we generate two sets (training
and testing) for the complete dataset. To create these sets, we
split the data into 10 groups. Then, each fold uses one of
those groups as testing (10% of the data) and the remaining
as training (90% of the data).

For each fold, we hyperoptimize GumTree using the training
dataset with the goal of finding the configuration with the
best performance CBest. Then, using the testing dataset, we
calculate the performance of: a) the best configuration (CBest),
and b) the default configuration (CDefault). Next, we compute
the proportion of file pairs where: a) hyper-optimization (CBest)
improves the edit-script w.r.t. default configuration (CDefault)
(Metric I), b) hyper-optimization produces an equivalent edit-
script (Metric E), c) hyper-optimization produces a worse edit-
script (Metric W). Finally, we report the average of I, E and
W over all folds.

We also proceed to a statistical assessment of the results
using a Wilcoxon signed rank test against the size of the edit-
scripts produced by two different configurations: the default
and the best one found using the GridSearch technique. We use
this test since we have no assumption about the distribution of
the edit-script sizes. Our null and alternative hypotheses that
we focus on this RQ are as follows:

• H1
null There is no difference between the median length

of the edit-scripts produced using the global and default
configuration (alternative H1

alt the edit-scripts produced
using global have a median shorter length than the ones
produced using default).

We also report the effect size Rosenthal’s R, whose value
varies from 0 (small effect) to close to 1 (large effect).

2) Protocol for RQ2: In the previous research question,
we execute DAT to compute global optimization of GumTree
using the GridSearch technique. This technique evaluates all
possible configurations on the complete evaluation dataset. In
this research question, we study two potential optimizations
on DAT: 1) the use of another search technique, and 2) the
use of less training data.

We first analyze the impact of using another search tech-
nique, TPE described in Section IV-E2, which requires as input

a search budget. In the context of this research, the budget
corresponds to the number of diff executions (each uses a
different configuration) that TPE applies.

To study the impact of different budget values, we follow
the protocol applied for responding to RQ 1 (Section V-B1)
to execute TPE instead of GridSearch. We execute that ex-
periment four times, each time with a different budget B: 10,
25, 50 and 100. A budget of, for instance, 50 means that TPE
evaluates 50 different diff configurations in the training data.
We recall that the budget B has an upper limit equal to 2210,
which corresponds to the Cartesian product on all GumTree
hyperparameters (described in SectionV-A2). We report the
percentages of improvement given by the best configuration
found by TPE using a particular budget.

Secondly, we analyze the impact on the improvement ac-
cording to the amount of data used during the training. Instead
of running DAT on all data (31,543 file-pairs), we run it on
samples of different sizes. In this paper, after analyzing the
results obtained from dataset different sizes, we report those
from two sizes: 100 file pairs and 1000 file pairs. For each of
these sizes, we take five samples and for each of them apply
the protocol exampled in RQ 1 (i.e., 10-fold cross validation).
Finally, we report the mean improvement.

3) Protocol for RQ3: To answer this research question,
we extend the protocol used to answer research question 1
(Section V-B1) based on 10-fold cross-validation. In each fold,
in addition to compute the best global configuration, we find,
using GridSearch and TPE, the best local configuration for
each file pair from the testing set.

Then, for each of those training points, we compare the
fitness value (i.e., length of the edit-script) given by the local
search on a data-point with the value obtained using the
default default configuration on the same data-point. Similarly,
we compare the fitness value from the local search with the
obtained using the best configuration (found using GridSearch
on the training set from the fold). We configure TPE with 25
evaluations per each file pair from the testing set, because,
as shown in RQ2, that value shows a good trade-off between
the number of evaluations and % of improvement. Finally, we
report the average of I, E and W over all folds, similarly to
the previous research question.

We also proceed to a statistical assessment of the results
using a Wilcoxon signed rank test against the size of the edit-
scripts produced by the different configurations. Our null and
alternative hypotheses are study in this research questions are:

• H2
null: There is no difference between the median length

of the edit-scripts produced using the local and default
configuration (alternative H2

alt the edit-scripts produced
using length have a median shorter length than those
produced using default).

VI. EXPERIMENTAL RESULTS

A. RQ1: To what extent does hyperparameter optimization
improve the performance of AST differencing?

Table II presents the results of this research question. It
displays three columns that present the percentage of cases
from the testing set where hyperoptimized GumTree finds:
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Table II: RQ1: Comparison between the performance of glob-
ally hyperoptimized GumTree and default GumTree.

Meta-model % cases where GridSearch optimization p-value

Improves (I) Equals (E) Worse (W)

JDT 18.7% 78.7% 2.21% 2.2e− 16

Spoon 13.12% 84.9% 1.68% 2.2e− 16

a) a shorter edit-script than default GumTree, meaning that
the hyperoptimization improves the performance of GumTree
(column I), b) the same length edit-script (column E) c) a
larger edit-script, meaning that the hyperoptimization harms
the default configuration of the differencing algorithm (column
W).

To diff ASTs from JDT, the optimization of GumTree
improves the performance of default GumTree for 18.7% of
cases. The detriment of applying global optimization is much
lower: in only 2.21% of the cases, hyperoptimized GumTree
produces larger edit-scripts. For the rest of the cases (78.7%),
hyperoptimization has no impact on the length of edit-script
produced by GumTree. Table III shows the best configurations
found by DAT for the JDT and Spoon meta-models, and the
default value used by GumTree. We observe that for JDT
the best configuration uses a different matching algorithm
(Hybrid) than the default configuration (Classic).

We use a Wilcoxon signed rank test to statistically assess
the differences of edit-script lengths produced using the hyper-
optimized configuration versus the default configuration. The
obtained P-value is 2.2e − 16, therefore, we reject the null
hypothesis H1

null. The effect size, calculated using Rosenthal’s
R, is−0.536, which can be considered between medium and
large.

To diff ASTs designed with the Spoon meta-model, hyper-
optimization with DAT has less impact on the number of im-
proved cases (13.12%). It means that the default configuration
of GumTree works already well in most cases. We observe
from Table III that the best configuration for Spoon has the
same matching algorithm as the default (Classic). However,
there are three parameters that receive different values: STM
PC, BUM SMT and BUM SZT.

Again, we run a Wilcoxon signed rank test on the edit-
script length distribution and the obtained P-value is inferior
to 2.2e−16, therefore, we reject the null hypothesis H1

null. The
effect size, computed using Rosenthal’s R is −0.668, which
can be considered between medium and large.

Figure 4 shows the distribution of the percentage of reduc-
tion in the size of the edit-scripts calculated with the optimized
configuration compared to the edit-script calculated with the
default configuration. The figure considers the cases that
present improvement due to the optimization process (these
have % positive and correspond to 18.8% in JDT and 13.12%
in Spoon), cases for which optimization produces worse results
(% negative, 2.21% in JDT and 1.68% in Spoon), but ignores
those with equal results to facilitate visualization. For JDT,
half of the optimization-affected cases have a reduction of at
least 20%, and there is a considerable number of cases with
an improvement greater than 75%. In contrast, for Spoon, the
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Figure 4: Distribution of the percentage of reduction of the
edit-script size using the optimized configuration w.r.t. the de-
fault configuration. (Cases with no improvement or detriment
are ignored).

Hyperparameter Default Best for JDT Best for Spoon

Matching Algorithm Classic Hybrid Classic
STM PC Height Size Size
STM MPTH 1 1 1
BUM SMT 0.5 - 0.2
BUM SZT 1000 200 600

Table III: (RQ 1) Best global configurations found by DAT
using GridSearch for JDT and Spoon Java meta-models. The
symbol ‘-’ means that the configuration does not use the hyper-
parameter.

reduction in the size of the edit-scripts is less than for JDT,
and there are fewer cases that are reduced by more than 50%.

This shows that the effect of the optimization is different
according to the meta-model used: for JDT, the optimization
a) affected more cases, and b) for those affected cases, the
reduction is more significant.

Answer to RQ1: Global hyperparameter optimization
improves the performance of GumTree by providing a
better configuration than the default configuration. The
hyperoptimized configuration produces the shortest edit-
scripts for 18.7% of the cases using the JDT meta-
model and 13.12% using the Spoon meta-model, in a
statistically significant manner.

Implications for practitioners: Maintainers and users
of AST differencing tools such as GumTree have a new
tool in their toolbox. When they apply AST differencing
to a new programming language, they can first perform
a global hyperparameter optimization, which would
identify a new configuration that is 1) better than the
default, and 2) tuned to a given AST meta-model.
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Dataset
DAT GridSearch DAT TPE with budget (# evaluations per training sample)

2210 evals 10 25 50 100

All 18.7% (Stdev 1%) 14.5% (Stdev 0.5%) 16.3 (Stdev 0.9%) 18.24% (Stdev 0.15%) 18.21% (Stdev 0.16%)

Reduced1000 18.8% (Stdev 3.9%) 13.9% (Stdev 3.2%) 17.03% (Stdev 3.98%) 17.2% (Stdev 4.05%) 17.5% (Stdev 3.9%)

Reduced100 13.6% (Stdev 11%) 12.3% (Stdev 10.6%) 15.5% (Stdev 11.2%) 15.4% (Stdev 11.2%) 15.5% (Stdev 11.2%)

Table IV: (RQ2) Percentage of improvement of GumTree using the best configurations found by DAT GridSearch and DAT
TPE vs default configuration under different scenarios: a) less evaluations (10, 25, 50 and 100), and b) less training data
(Reduced100 and Reduced1000).

B. RQ2: To what extent can one speed up hyperoptimization
with TPE compared to and exhaustive search technique?

We now study the impact of using another search technique
on the search for the best configuration: the TPE technique.

Table VI-B shows the percentage of improvement of
GumTree using the best configuration found by TPE and
GridSearch compared to the default configuration. There is one
column for GridSeach, which corresponds to the exhaustive
evaluation of the space (2210 evaluation per case), and four
columns for TPE: each one corresponds to the search budget
passed to TPE (10, 25, 50 and 100 evaluations per case).

We focus on the first row (All), in which both techniques are
trained on the complete data. We observe that it is enough for
TPE to consider 100 evaluations per training sample in order to
obtain the same improvement as GridSearch: GumTree using
the best configuration found by TPE using 100 evaluations
improves the 18% of the testing samples with respect to
GumTree using the default configuration. Notably, the number
of evaluations performed by TPE to achieve that improvement
is much lower: 100 vs. 2210, that is, a reduction of ≈ 95%
of the evaluations.

We observe that even by reducing the number of evaluations
more, TPE is still able to find a configuration that produces
improvements. For example, using 25 configurations (that
is, inspecting the 1.13% of the hyperparameter space) TPE
produces improvements of 16%, while GridSearch, which
inspects the 100% of the hyperparameter space, arrives at 18%.

Now, we focus on the impact of the improvement when we
reduce the training dataset. Table shows the results obtained
using a dataset composed of 1000 and 100 samples. As
we perform cross-validation (Section V-B2) the number of
samples for training is 900 and 90, respectively, where those
used for testing are 100 and 10, respectively.

We observe that using Reduced1000 (that is, 900 samples for
training), we obtain improvements similar to those obtained
using all data (≈ 29000 samples). Moreover, if we use even
fewer samples for training and testing from Reduced1000 pro-
duces a lower mean improvement (e.g., 12.3% using TPE with
100 evaluations / sample). However, the standard deviation of
the improvement is much higher (e.g., 11% for GridSearch)
than that obtained using all data (1%). The reason is that the
small training samples used in the cross-validation may not
represent all the population.

Answer to RQ2: Using TPE, DAT can significantly
reduce the number of evaluations executed to find the
best configuration of GumTree w.r.t. the chosen fitness
function, meaning a faster hyperoptimization.

Implications for practitioners: To perform a global
hyperparameter optimization for a new programming
language or meta-model, it is enough to collect 1000
file-pairs (diffs) and use TPE with 50 evals/diff.

C. RQ3: To what extent is local hyperparameter optimization
effective?

Now, we compare the effectiveness of hyperparameter op-
timization on the global and local scales. Recall that the
local scale means hyperoptimizing a single AST diff. Table V
presents the results of this experiment. It contains three sets
of columns which present, for both the JDT and Spoon meta-
models, the percentages of file-pairs for which hyperoptimiza-
tion improves the results (I), produces equal results (E), or
produces worsened AST diffs (W). We compare all possible
setups between default configuration, globally hyperoptimized
configuration and locally hyperoptimized configuration.

The row DAT Local GridSearch vs. Default presents the
results obtained from local optimization. Local optimization
positively impacts the performance on GumTree, producing
shorter edit-scripts than those from the default configuration
for 22.2% of cases with JDT and for 15.6% of cases with
Spoon. We note that the improvement in local hyperoptimiza-
tion is larger than that provided by global hyperoptimization
(22.3% >> 18.7%). Using the Wilcoxon signed rank test,
we reject the null hypothesis H2

null for both the JDT and
the SPOON meta-models. The effect size computed using
Rosenthal’s R are -0.533 and -0.664 respectively, which can
considered between medium and large.

Notably, local optimization never worsens the performance
of AST differencing. This is by construction, as it optimizes a
single file-pair, if the technique does not find a configuration
that improves the default, then the default is used.

The DAT Local TPE vs Default from Table V shows the
results of using TPE instead of GridSearch as the optimization
approach. We compare the results using the configuration
found locally by DAT-TPE and the default configuration. We
observe that using TPE the percentage of improved cases is
a bit lower than those using GridSearch. In particular, the
configurations found by DAT using TPE improve 21.44% of
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Comparison

Percentage of cases Percentage of cases Percentage of cases

improved (I) equal (E) worsened (W)

JDT Spoon JDT Spoon JDT Spoon

DAT Local GridSearch vs Default 22.2% 15.6% 77.8% 84.4% 0% 0%

DAT Local TPE vs Default 21.4% 14.8% 78.3% 85.17% 0.23% 0.24%

Table V: (RQ3) Percentages of cases improved by applying local optimization with DAT vs. default configuration.

Hyperparameter Default JDT Spoon
Matching Algorithm Classic Classic Classic
STM PC Height Size Size
STM MPTH 1 1 1
BUM SMT 0.5 0.1 0.1
BUM SZT 1000 1000 900

Table VI: (RQ 3) Most frequent local Hyperoptimized Con-
figurations found by DAT for the JDT and Spoon Java meta-
models.

the cases, while that found using GridSearch improves 22.2%.
For JDT, the percentage of improvements follows the same
trend: 14.48% using TPE, 15.6% using GridSearch. However,
the number of evaluations (i.e., executions of diff) per file-
pair is much lower using TPE than GridSearch: 25 for TPE
(value chosen just before) vs. 2210 for GridSearch (we recall
that it does an exhaustive search on the configuration space).
Developers and practitioners can decide the search method
used by DAT according to the scenario they apply DAT, for
example, a scenario with limited budget or where they need to
optimize fast, thus TPE would be more convenient, or another
where they need to obtain the best result and do not have
budget restrictions, thus GridSearch would be a better option.

Answer to RQ3: Local hyperparameter optimization is
effective: it allows practitioners to find shorter edit-
scripts than the default configuration in up to 22% of
cases.

Implications for practitioners: In sensitive down-
stream tasks, we strongly advise to use local hyperpa-
rameter optimization for AST differencing in order to
obtain the best edit-script according to a fitness function
specific to the downstream task.

D. Analysis of the cases studies

In this section, we discuss how the best global hyperparam-
eter configuration found by DAT helps GumTree produce a
different output from the default configuration in each of the
cases presented in Section II.

1) Case 1: Spurious Add-Remove: As described in Section
II-A, GumTree produces six spurious edits that must not be
produced. GumTree using the best configuration found by DAT
does not produce them. The reason for having different edit-
scripts when GumTree uses default and the best configuration
is the following.

The three AST nodes in Section II-A cannot be mapped
during the first phase (top-down matching explained in Section
V-A1a). Both Classic (default) and Hybrid (the matcher used
by the best configuration found by DAT) matchers apply the
same top-down matching strategy: Greedy subtree matching.
In the second matching phase (bottom-up), the Hybrid matcher
is able to map those nodes during recovery phase (a last step
done by a matcher which tries to map the unmapped children
of two subtrees whose roots are mapped). However, the Classic
matcher does not map them because it invokes recovery phase
only if the size of the trees to match is smaller than the
hyperparameter BUM_SZT (by default 1000). The size of the
parent tree of these three mentioned nodes (which corresponds
to the class Interpreter) is greater than BUM_SZT=1000,
so the recovery phase is never called and the three nodes
remain unmapped.

2) Case 2: Including updates in the edit-script: As de-
scribed in Section II-B, GumTree generates an edit-script
that removes the fields from the left part, adds the fields in
the right part (this time, the fields have a new field’s type
List), and includes a move of the tokens related to the field
names. However, the edit-script generated by GumTree using
the best configuration found in Section VI is much shorter and
understandable: as Figure 6 shows, it only includes one update
of each field declaration statement.

The reason for having different edit-scripts when GumTree
uses the default and best configurations is the following.
During the top-down matching phase using the default con-
figuration, GumTree maps two nodes (one from the left tree,
the other from the right tree) if their labels are equal and,
following the default values of hyperparameters STM_PC and
STM_MPTH, their heights are >= 1. Note that using this
configuration, all leaf nodes (even those that are not modified)
from the left tree are not mapped to any from the right
tree because their heights are 0. For example, the node that
represents the modifier private in the left tree is not mapped
to the corresponding private node in the right tree, even if
it is not affected by the changes made by the developer.

Then, during the bottom-up matching match, Gumtree can-
not match any of the nodes corresponding to the field dec-
laration statements private ArrayList dockables;
and private ArrayList buttons; from the left part
with those corresponding to the field declarations from
the right (private List dockables; and private
List buttons;). This is because the similarity value
between the field declarations from the left and right
(e.g., private ArrayList dockables; and private
List dockables;, respectively) is 0.4, which is lower
than the default threshold BUM_SMT (i.e. 0.5), which controls
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Figure 5: (Case 3) Visualization of edits computed by Gumtree between the file PanelWindowContainer.java (jEdit
project) from commit 6867bd (right part) and its previous version (left part) using the best global configuration.

Figure 6: Diff computed using default configuration.
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Figure 7: Distribution of execution time of GumTree (in
milliseconds). The rightmost bar groups the values larger than
1250 milliseconds.

the mapping of two nodes. This low similarity value is due to
the fact that most of the descendants have not been mapped
(such as the modifier private, the simple type ArrayList,
the simple name dockable). As a result, the edit-script
generated using the algorithm of Chawathe et al. [8] and shown
in Figure 2, includes remove and add edits that affect these
unmapped nodes, including the field declaration.

Gumtree tuned with the best configuration, which uses
the Hybrid Bottom-up matcher, finds the expected edit-script.
When the tuned version of GumTree uses “size’ = 1, it arrives
to match leaves nodes that are not mapped using the default
configuration (‘height’ = 1), such as the node corresponding
to modifier private. (The map is possible because the size
of a leaf node is 1).

These mappings produced by GumTree with the tuned ver-
sion of GumTree but not with the default, impact the bottom-
up matching: Now, the similarity score between the declaration
statements (e.g., private ArrayList dockables; and
private List dockables;) is 0.6, greater than the
threshold BUM_SMT 0.5. For this reason, both statements are
mapped, and the edit-script generator does not generate the
spurious add and remove edits on these mapped nodes.

E. Execution Time of AST Differencing

Figure 7 shows the distribution of the execution times (in
milliseconds) of GumTree, executed on each pair of GumTree
configuration and file-pair. We recall that, in total, we exe-
cute GumTree 69,710,030 times. As the distribution is right-

skewed, in order to facilitate the visualization, the rightmost
bar groups all executions with execution time greater than
1250 milliseconds.

The distribution shows that most executions (41,129,161,
that is, 59%) take less than 10 milliseconds. This shows the
feasibility of performing the hyperparameter optimization of
GumTree. Nevertheless, there are still executions that take
longer, as the rightmost bar shows. In particular, 3,830,084
diff executions (5.5%) take more than 250 milliseconds. This
situation is caused by the high values of the hyperparameter
BUM_SZT. As explained in Section VI-D1, BUM_SZT controls
the size of two trees under matching: if the tree’s sizes
are smaller than the value BUM_SZT, it executes a recovery
phase, which is computationally expensive in large threes.
Consequently, when DAT tries large values for BUM_SZT on
large trees, the execution times increase. For example, let
us focus on the revision of file LinkTag.java in commit
2bc1fb using JDT meta-model. When DAT sets to BUM_SZT
a value less than 1000, the GumTree computes the edit-
script very fast, in less than 4 milliseconds. However, as
long as the value of BUM_SZT increases, so do the execution
times. For example, with a value of 1000, GumTree takes ≈
860 milliseconds, and with values greater than 1100 it takes
≈ 1900 milliseconds.
DAT provides two mechanisms to avoid large executions.

First, it provides a timeout on each diff execution, which
can be set by the user. Secondly, it provides an option to
prune the search: Once DAT detects a configuration that
produces a timeout on a file-pair, then it does not execute
other configurations with similar values on that file-pair. Both
mechanisms can be activated by the user.

VII. THREATS TO VALIDITY

Hyperoptimization techniques. We implemented in DAT
two hyperparameter optimization techniques (GridSearch and
TPE), because all of them were proven to be successful in
hyperparameter optimization for software engineering tasks
[33], [47]. There may exist other search techniques that
produce better results.

Quantization of the hyperparameter space We quantize the
hyperparameter space of GumTree using initial, end and step
values (all presented Table I). It could be the case that there
are values not included in the selected subset that produce
better values.
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AST metamodeling Our results show the importance of
AST metamodeling on differencing. We selected two meta-
models for modeling Java ASTs. We are aware that there
exist other meta-models (e.g., JavaParser). As shown by the
clear performance difference between JDT and Spoon, it may
happen that hyperparameter optimization by DAT performs
differently for other Java meta-models.

Selection of Java. Our results are done on AST differencing
for Java programs, as most related work on AST differencing
analysis [15], [19], [21], [24]. Future experiments will improve
the external validity in other programming languages.

VIII. RELATED WORK

A. Advanced AST Differencing Algorithms

Since the preliminary work by Chawathe et al. [9], two
AST differencing algorithms with a large impact recently are
GumTree from Falleri et al. [15] and ChangeDistiller from
Fluri et al. [19].

Several works have extended ChangeDistiller and GumTree
with the goal of improving their performance. For example,
Higo et al. propose an extension of GumTree [23] with the
goal of making edit-script shorter and closer to developers’
actual editing sequences. For that, in addition of the 4 actions
proposed by GumTree, they propose a new one: copy-and-
paste. They found that 18% of the edit-scripts generated using
their approach are shorter than those from GumTree. Dotzler et
al. [14] present an extension of GumTree and ChangeDistiller
that uses optimizations to shorten the resulting edit-scripts.
In particular, they present an algorithm, MTDIFF based on
ChangeDistiller, that improves the detection of moved code.
As a result, this AST diff algorithm is able to reduce the length
of edit-scripts.

Matsumoto et al. [35] present an hybrid AST diff approach
that matches the AST nodes with information from the diff
command (based on the Myers algorithm [39]). Their results
show that their approaches generate shorter edit-script than
GumTree for the 30-50% of the cases analyzed. Similarly,
Yang and Whitehead [49] use textual-differencing to prune
the AST. Their results show that this pruning-based technique
reduces both the number of nodes and the execution time.
The authors also present an extension of ChangeDistiller
[50] which allows the diff algorithm to identify fine-grained
changes within statements.

Frick et al. [21] present an extension of GumTree, Iterative
Java Matcher (IJM), that produces more accurate and compact
edit-scripts by improving the quality of the generated move
and update actions. Huang et al. present ClDiff [24], an AST
differencing algorithm that produces concise edit-scripts by
grouping and linking AST nodes affected by changes. Their
evaluation of ClDiff shows that this approach generates shorter
edit-scripts for 48% file-pairs than GumTree.

There are previous papers that study the quality of the
edit-scripts generated by AST differencing algorithms. De
la Torre et al. [12] study the quality edit-script generated
by GumTree and propose four categories of imprecisions on
edit-scripts: redundant, spurious, arbitrary, and ghost changes.
They empirically study the presence of such imprecision

in a corpus of 107 C# system. Fan et al. [16] define an
approach that calculates statements with inaccurate mappings
for AST differencing algorithms. The evaluation carried out
in that paper shows that GumTree [15], MTDiff [14] and
IJM [21] generate inaccurate mappings for 20%-29%, 25%-
36% and 21%-30% of the file revisions, respectively. Based on
these results, the authors stated that the state-of-the-art AST
mapping algorithms still need improvements. In fact, in this
paper, we show that DAT helps to improve one of those AST
differencing algorithms.

We have the same goal as most of those papers: reducing
the length of the edit-scripts. Yet, even if some of this related
work does manual tweaking of hyperparameters, none of those
papers does automated hyperoptimization. Our experiment
in this paper shows that the default configuration is indeed
suboptimal. We note that our contribution on AST differencing
hyperoptimization is applicable to all those past and future
AST differencing algorithms to come.

B. Hyperparameter Optimization in Machine Learning and
Software Engineering

Hyperparameter optimization has been applied in various
areas, notably in machine learning. For example, Kotthoff et
al. [29] presented Auto-Weka, a tool that automatically applies
hyperparameter optimization to machine learning models from
Weka: it searches for the model and its configuration that
achieves the best classification performance. A similar work
was done by Feurer et al. [17] for the Sklearn framework.

Now, let us focus on hyperparameter optimization in soft-
ware engineering. Tantithamthavorn et al. [47], [46] studied the
impact of automated parameter optimization on defect predic-
tion models. Their study shows that automated parameter opti-
mization can have a large impact on the performance stability
and interpretation of defect prediction models. Among four
search techniques (including grid search), they find that those
optimization techniques yield similar benefits of performance
improvement when optimizing defect prediction models.

Similarly, Li et al. [33] studied the impact of automated
parameter optimization on cross-project defect prediction tech-
niques. They found that automated parameter optimization
substantially improves the defect prediction performance. As
we do, they find that the Tree-of-Parzen-Estimators (TPE)
algorithm is the most effective search technique.

Arcuri and Fraser [5] applied hyperparameter optimization
on EvoSuite [20] a framework for test generation. They
showed that this positively impacts the performance of Evo-
Suite. However, the author stressed that the parameter settings
obtained may be worse than arbitrary default values. This
finding has also been observed in the replication study by
Kotelyanskii et Kapfhammer [28]. This has motivated us to
precisely measure those cases where hyperoptimization pro-
duces worse results than the default configuration of GumTree
(see Table V).

Zamani et al. [52] also focused on tuning search-based test
generation. One of the challenges they targeted was to find
the right subset of classes (for which tests will be generated)
that are worth tuning. For that, they define a measure named
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‘Tuning Gain’ for the cost-effectiveness of tuning in search-
based test generation. Also related to software testing, Jia et
al. [26] used hyperparameter optimization for Combinatorial
Interaction Testing (CIT).

The width of the software engineering domains where
hyperoptimization has been used is large. Apel et al. [4]
integrated hyperparameter optimization in JDime, a tool for
structured-merge. Agrawal et al. [2] presented SMOTUNED,
an approach that tunes SMOTE [10], an oversampling tech-
nique to fix data imbalance. SMOTUNED was evaluated on
the defects prediction task. Then, Agrawal et al. [1] presented
Dodge, hyperparameter optimization for machine learning.
Dodge detects and ignores redundant tunings (i.e. pairs of
configurations which lead to indistinguishable results) and this
helps Dodge to run orders of magnitude faster without harming
the performance of the approaches under tuning. Dogde was
initially evaluated on two tasks: Software defect prediction and
text mining, and it was then further evaluated on other tasks
including bad smell detection, predicting Github issue close
time, bug report analysis, and defect prediction [3]. Yedida
et Menzies [51] presented GHOST, a method that relies on a
combination of hyper-parameter optimization of feedforward
neural networks and a novel oversampling technique. Shu et
al. [44] applied hyperparameter optimization for improving
data preprocessing for software bug report classification. Ba-
sios et al. [6] applied optimization to the problem of selecting
data structures that share a common interface. Panichella [41]
carried out hyper-opertimization of LDA (Latent Dirichlet Al-
location ) applied to identify duplicate bug reports. Chen et al.
presented BOCA [11] Bayesian optimization-based approach
for compiler autotuning, and evaluated it on two widely-used
C compilers (i.e., GCC and LLVM).

To our knowledge, we are the first to propose and compre-
hensively study hyperparameter optimization for AST differ-
encing.

IX. CONCLUSION

In this paper, we have proposed to use hyperoptimization
for AST differencing. We have described a novel approach,
called DAT, consisting of 1) specifying the hyperparameter
space of an AST differencing algorithm, 2) applying a search
technique to hyperoptimize the algorithm in a data-driven
way based on a training dataset of AST differencing cases.
The approach has been instantiated for the popular AST
differencing algorithm GumTree [15]. We have performed a
comprehensive quantitative assessment of DAT, which shows
that hyperoptimization improves the AST edit-scripts in up to
18% of the differencing tasks using global hyperoptimization
and up to 22% using local hyperoptimization. Our technique
is widely applicable to all AST differencing algorithms: it can
benefit both already proposed AST differencing systems and
future ones to come. The main direction for future work is the
improvement of downstream tasks using hyperoptimized AST
edit-scripts (e.g. commit clustering and identification).
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