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Abstract—The highly parallel workflows of modern software development have made merging of source code a common activity for
developers. The state of the practice is based on line-based merge, which is ubiquitously used with “git merge”. Line-based merge is
however a generalized technique for any text that cannot leverage the structured nature of source code, making merge conflicts a
common occurrence. As a remedy, research has proposed structured merge tools, which typically operate on abstract syntax trees
instead of raw text. Structured merging greatly reduces the prevalence of merge conflicts but suffers from important limitations, the
main ones being a tendency to alter the formatting of the merged code and being prone to excessive running times. In this paper, we
present SPORK, a novel structured merge tool for JAVA. SPORK is unique as it preserves formatting to a significantly greater degree than
comparable state-of-the-art tools. SPORK is also overall faster than the state of the art, in particular significantly reducing worst-case
running times in practice. We demonstrate these properties by replaying 1740 real-world file merges collected from 119 open-source
projects, and further demonstrate several key differences between SPORK and the state of the art with in-depth case studies.

Index Terms—Version control, structured merge
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1 INTRODUCTION

B RANCHING development paths is an unavoidable part
of modern software engineering [1], and developers

spend anywhere from a few hours to several work days
each month on integrating changes from others [2]. This
activity is known as “merging” code, per the terminology
of mainstream version control systems such as GIT. Nearly
all developers use line-based merge, which operates on lines
of text as atomic units. It is often referred to as textual or
unstructured merge [3], [4]. This form of merging is simple
and generalizes to any text, but is prone to cause so-called
merge conflicts when changes on branches under merge affect
the same or adjacent lines. Such conflicts can be difficult for
developers to resolve, and may even cause them to simply
discard a branch that is causing numerous conflicts [5].

Merge conflicts are ubiquitous with line-based merge,
with conflicts appearing in about 9% to 19% of merges [6],
[7], [8], [9]. However, many such conflicts are spurious,
because changes on overlapping lines are not necessarily
semantically or syntactically conflicting. This is a fundamen-
tal limitation of line-based merge: it does not capture the
underlying structure or meaning of the text. For example,
if two branches add different methods in the same place
in a JAVA file, a line-based merge of said branches yields
a conflict, even though the methods can in fact be safely
inserted together in any order.

To address this spurious conflict problem, the state of
the art is structured merge, where the merge process typ-
ically acts on abstract syntax trees (AST) [3], [4], [10], [11].
Structured merge has two main advantages: first, it is less
influenced by formatting differences than line-based merge,
and second, it can leverage the syntax and semantics of the

considered programming language. For instance, in JAVA, it
is useful for a merge tool to know that duplicated statements
are allowed, but that duplicated fields are not, or that the
order of methods in a class is not important [4].

We observe that the state of the art of structured merge is
prone to two main issues. First, any tool that performs AST
transformations must conclude with pretty-printing, which
in this context is the act of turning an AST into its textual
representation, i.e. source code. This can fundamentally alter
the formatting of the code [12], [13], which is undesirable
due to the important role that formatting plays in source
code readability [14]. Second, structured merge is known
for being slow, with the time complexities of the underlying
algorithms often being O(n2) or worse [4].

In this paper, we address these issues with a new struc-
tured merge tool, called SPORK. SPORK is tailored to the
JAVA programming language, leveraging both syntax and
semantics of important language constructs to avoid or
resolve conflicts. A key technical novelty of SPORK is that
it builds upon the merge algorithm of the 3DM merge tool
for XML documents [15]. In SPORK, we both augment the
3DM algorithm, and demonstrate that the core principles
are applicable to the JAVA programming language. As we
show in our evaluation, SPORK improves upon the state of
the art with respect to the aforementioned problems. First,
SPORK reuses source code from the input files when pretty-
printing. This improves formatting preservation over the
state of the art in more than 90% of merged files, with
4 times better preservation in the median case. Second,
SPORK’s running time performance slightly improves upon
the competition in the median case, but more importantly it
significantly reduces the quantities and magnitudes of the
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largest running times.
To summarize, our contributions are:

• A novel structured merge approach for JAVA,
uniquely based on the 3DM algorithm [15], leverag-
ing domain knowledge of JAVA to detect and resolve
conflicts.

• SPORK, a publicly available prototype implementa-
tion: https://github.com/KTH/spork

• An evaluation over 890 merge scenarios comprising
1740 file merges, showing that SPORK is fast and ac-
curate enough to be used in practice, and formatting
preserving. To our knowledge, we are the first to
systematically report on formatting preservation for
fully AST-based structured merge.

• A well-documented benchmarking suite for future
research, to study and evaluate JAVA merge tools.

This article is based on the master’s thesis by the first author
done at KTH Royal Institute of Technology [16].

2 BACKGROUND

2.1 Version Control and Merging
With the rise in popularity of distributed version control
systems (DVCS) [17], [18], the need for merging in software
development has increased [1]. The state of the practice is to
use unstructured merge, which operates on raw text, typi-
cally using lines of text as atomic units. This is fundamen-
tally limited, as a line of text does not represent the structure
of source code. For example, the two lines int a = 2; and
int a=2; are structurally and semantically equivalent, yet the
raw text of those lines differ by whitespace. The impedance
mismatch between lines and code structure gives rise to
needless merge conflicts.

A typical example is if one commit changes the inden-
tation style of some file, while a parallel one changes the
actual code. Such changes are structurally and semantically
compatible, but merging the commits with a line-based
merge results in a merge conflict due to the purely textual
differences.

Semistructured merge tools attempt to address some of
the problems of unstructured merge by making use of some
structural information in the source code [19], [20], [21], [22].
They work by identifying high-level constructs (e.g. fields
and methods) in the source code, and then merging the
content of these modularized units with line-based merge.
Semantic information such as the insignificance of the order
of methods within a type can then be utilized to automati-
cally resolve conflicts. However, within type members, most
notably methods, semistructured merge still suffers from all
of the limitations of unstructured merge.

Structured merge tools go one step further and turn the
source code into a fully resolved AST [4], [11], [15], [23], [24].
This allows for a fine-grained merge that respects syntax
even within type members, but also creates a new problem:
as the AST abstracts away formatting, the conversion back
from AST to source code, pretty-printing, may impose a com-
pletely different formatting style on the merged files. This
may be detrimental to source code quality, as formatting
is an integral part of maintainability and readability [14].
In addition, developers care about the formatting they put

Left Base Right

add(-a,b,1) add(a,b) sum(-a,b,c)

TABLE 1: The left, base and right revisions of a line of code

call01(add)

Base (T0)

ref02(a) ref03(b)
call11(add)

Left (T1)

uop12(-)

ref13(a)

ref14(b) int15(1)

call21(sum)

Right (T2)

uop22(-)

ref23(a)

ref24(b) ref25(c)

Parent/child relationship
Base/right matching
Base/left matching
Left/right matching

Fig. 1: Pairwise matchings between simplified ASTs of the
function calls in Table 1. Each node is subscripted with a
unique identifier xy, where x indicates the tree the node
belongs to and y is unique within tree x.

in place, as shown by the sheer amount of style guides
that exist123 and the existence of formatting enforcers such
as CHECKSTYLE4. Current structured merge tools do not
preserve formatting, and this poses a major obstacle for
widespread adoption of structured merge. Another prob-
lem with the state of the art in structured merge revolves
around running times, which can become excessive for
larger merges due to algorithms with time complexities that
are quadratic or worse [4].

2.2 The 3DM Algorithm

3DM is a state of the art merge algorithm created by
Lindholm [15]. It performs a three-way merge between the
two current revisions (left and right) of some file, and the
version from which these are derived (the base) [15]. This
technique is employed by most merge tools [3], [4], [25].
The most novel part of 3DM is the merge algorithm, which
is a generalized merge algorithm for ordered trees5 that we
refer to as 3DM-MERGE. This section presents the theoretical
details of 3DM-MERGE that are relevant for our own work.

1. https://google.github.io/styleguide/javaguide.html
2. https://wiki.openjdk.java.net/display/HotSpot/StyleGuide
3. https://www.cs.cornell.edu/courses/JavaAndDS/JavaStyle.html
4. https://checkstyle.sourceforge.io/
5. The child list of each node is an ordered list of nodes

https://github.com/KTH/spork
https://google.github.io/styleguide/javaguide.html
https://wiki.openjdk.java.net/display/HotSpot/StyleGuide
https://www.cs.cornell.edu/courses/JavaAndDS/JavaStyle.html
https://checkstyle.sourceforge.io/
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TABLE 2: PCS set of T0 in Figure 1, ordered into child lists

Node PCS child list

⊥ (⊥,a, call01), (⊥, call01,`)
call01 (call01,a, ref02), (call01, ref02, ref03), (call01, ref03,`)
ref02 (ref02,a,`)
ref03 (ref03,a,`)

TABLE 3: Class representatives mapping for Figure 1

Node ID 01 02 03 11 12 13 14 15 21 22 23 24 25

Class rep. 01 02 03 01 12 02 03 15 01 12 02 03 25

2.2.1 Data Structures of 3DM

3DM-MERGE does not operate on a traditional tree structure,
but on an abstract representation of an ordered tree, called a
change set [15]. This is composed of two primary data types.
The first of these is the parent-child-successor (PCS) triple,
which encodes the structure of the tree. A PCS triple is
written in the form pcs(parent, pred, succ), where parent is
an arbitrary tree node, pred6 is any of parent’s children, and
succ is the node in parent’s child list that directly succeeds
pred. For a given tree, the set of triples with parent = x
therefore encode the child list of x.

There are also three kinds of virtual nodes: a virtual root
⊥, a virtual start of a child list a and a virtual end of a child
list ` [15]. These nodes mark the boundaries of the tree’s
structure. As an example of applying the PCS concepts,
consider the base revision function call in Table 1 and its
corresponding AST T0 in Figure 1, and how the syntactical
structure is fully encoded by the PCS set in Table 2. Note
that nodes are identified by ID, and not by content. For
example, a variable reference ref01(a) is different from
another reference ref02(a), even though they are identical
apart from ID. We often refer to nodes by their IDs alone to
reduce the verbosity of figures and tables. For example, the
PCS set in Table 2 is equivalent to the base revision PCS set
in Table 4.

The second data type is the content tuple, written c(v,m),
where v is any concrete node and m is v’s content, the exact
form of which is domain dependent. In general, the content
m of a tree node v is all data related to v that does not impact
the structure of the tree. We express m as a set of values. As
a concrete example, the content tuples of T0 in Figure 1 is
{c(01, ”add”), c(02, ”a”), c(03, ”b”)}. Note that m is a set. If
for example the base and left revision of add had modifiers
public and private, respectively, then the content tuples would
be c(01, {public, ”add”}) and c(11, {private, ”add”}). The
change set is simply the union of the content tuples and
PCS triples of a tree.

A change set is said to be consistent if each node v has at
most 1) one parent x, 2) one predecessor y, 3) one successor
z and 4) one content set m [15]. A consistent change set
is unambiguous, and a tree always encodes a consistent
change set. As the consistency criteria allow a node to have
less than one parent, predecessor, successor and content set,
a consistent change set does not necessarily encode a well-
formed tree.

6. In the original paper, this node is called child

2.2.2 Matchings and Class Representatives

3DM-MERGE makes use of tree matchings to determine
where trees to be merged are similar [15]. We define a tree
matching as a symmetric relation between the nodes of two
trees Ti and Tj , where each node v ∈ Ti can be matched to at
most one node w ∈ Tj . The details of how a match between
nodes v andw is computed varies greatly between matching
algorithms. The most powerful algorithms consider many
factors, including the nodes’ relative positions, their con-
tents, as well as the similarities of their subtrees [26].

For a three-way merge, three pairwise matchings are
typically required: base/left, base/right, and left/right. Fig-
ure 1 illustrates this for a simple merge scenario. Note
for example that the base/left matching contains a node
matching between root nodes 01 and 11, which is reasonable
as the root nodes of the base and left revisions are identical
and in the same position. Note also that the base/right
matching contains a node matching between root nodes
01 and 21 even though the method names differ, as their
positions and subtrees are similar enough.

The tree matchings are then used to create a class repre-
sentatives mapping [15]. Each node v is mapped to precisely
one class representative w, which we denote with (v → w)
and refer to as a classmapping. All nodes assigned to the
same class representative are considered equivalent by 3DM-
MERGE. Formally, let T0, T1 and T2 be the base, left and
right revisions, respectively. A node v ∈ Ti is classmapped
to w ∈ Tj , i.e. (v → w), if the following three criteria are
met: 1) v is matched to w, 2) j ≤ i and 3) there is no other
node u ∈ Tk where v is matched to u and k < j. Note that a
classmapping is directional, so (v → w) 6=⇒ (w → v).

Intuitively, a node without any matches in other trees
is classmapped to itself, and the base revision takes prece-
dence over the left revision, which in turn takes precedence
over the right. This is evident from Table 3, which shows the
class representatives mapping produced from the matchings
in Figure 1. For example, all nodes in the base revision are
classmapped to themselves, and (21 → 01) even though
there is also a node matching between 11 and 21, showing
the base revision’s precedence. Similarly, (22→ 12) instead
of the other way around, showing the left revisions prece-
dence over the right.

2.2.3 Merging in 3DM

3DM-MERGE operates in two distinct phases. First, it con-
verts the AST revisions into change sets, with each node
mapped to its class representative, and initializes the raw
merge as the set union of these change sets. Unless all input
revisions are identical, the raw merge always contains vio-
lations of the consistency criteria presented in Section 2.2.1,
so-called inconsistencies. For example, the two PCS triples
pcs(x, y, z) and pcs(x′, y, z) violate the criterion that each
node has a unique parent. The second and most important
phase of 3DM-MERGE is dedicated to finding and removing
inconsistencies, with the end-goal of turning the raw merge
into a consistent change set.

Consider Table 4, which shows an example merge of the
trees in Figure 1 in terms of PCS elements only. Note how
the identical elements of the revisions are merged simply
by the nature of a set union, such as (01,a, 12) that is



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE 4: PCS sets of the trees in Figure 1, the raw merge
of these and the finished merge. All nodes are presented as
their class representative IDs.

Revision PCS set

Left (⊥,a, 01), (⊥, 01,`),
(01,a, 12), (01, 12, 03), (01, 03, 15), (01, 15,`),
(12,a, 02), (12, 02,`), (02,a,`), (03,a,`), (15,a,`)

Base (⊥,a, 01), (⊥, 01,`),
(01,a, 02), (01, 02, 03), (01, 03,`), (02,a,`), (03,a,`)

Right (⊥,a, 01), (⊥, 01,`),
(01,a, 12), (01, 12, 03), (01, 03, 25), (01, 25,`),
(12,a, 02), (12, 02,`), (02,a,`), (03,a,`), (25,a,`)

Raw merge (⊥,a, 01), (⊥, 01,`),
(01,a, 02), (01, 02, 03), (01, 03,`), (01,a, 12),
(01, 12, 03), (01, 03, 15), (01, 15,`),
(01, 03, 25), (01, 25,`), (12,a, 02), (12, 02,`),
(02,a,`), (03,a,`), (15,a,`), (25,a,`)

Merge (⊥,a, 01), (⊥, 01,`),
(01,a, 12), (01, 12, 03), (01, 03, 15), (01, 15,`),
(01, 03, 25), (01, 25,`), (12,a, 02), (12, 02,`),
(02,a,`), (03,a,`), (15,a,`), (25,a,`)

present in both left and right revisions, yet only appears
once in the raw merge. The raw merge also contains numer-
ous inconsistencies that need to be processed. 3DM-MERGE
identifies these by iterating over each element δ of the
change set, and searching for another element δ′ such that δ
and δ′ are inconsistent. For example, given δ = (01,a, 02),
then δ′ = (01,a, 12) is found to be inconsistent. Note
that δ is present in the base revision, while δ′ is not. The
inconsistency can therefore be resolved by removing δ, thus
preserving the change represented by δ′. We refer to such an
inconsistency as soft.

However, now consider the inconsistent pair δ =
(01, 03, 15) and δ′ = (01, 03, 25). Neither element is present
in the base revision, and therefore removing either would
cause change information to be lost. We refer to this as a
hard inconsistency, and these are always caused by a conflict
on the AST level. In this case, the conflict is caused by the left
and right revisions inserting the nodes int15(1) and ref25(c)
in the same place. Note the terminology used; conflict refers
to incompatible changes to the ASTs, and inconsistency refers
to a violation of the consistency criteria in the change set.

The same principles apply to content inconsistencies.
For example, there is a content inconsistency between
c(01, ”add”) and c(01, ”sum”)7. This is a soft inconsistency
as c(01, ”add”) is present in the base revision, which can
therefore be removed. Hard content inconsistencies are anal-
ogous to hard PCS inconsistencies, and occur when neither
of the inconsistent elements are present in the base revision.

3 TECHNICAL CONTRIBUTION: SPORK

SPORK performs structured merging of JAVA files in 5 dis-
tinct phases, which are illustrated schematically in Figure 2.
The first phase consists of parsing source files into ASTs,
as described in Section 3.1. It is followed by a matching
phase, in which tree matchings are computed as described in
Section 3.2. These matchings are used in SPORK’s variation

7. Note that nodes are mapped to class representatives

of 3DM-MERGE, as described in Section 3.3. SPORK then
enters a composite phase in which it handles conflicts and
builds a merged AST, as described in Section 3.4. The final
phase is responsible for pretty-printing the merged AST, as
described in Section 3.5.

3.1 Parsing
SPORK uses the SPOON library [27] to parse JAVA source files
into ASTs. In our example, Spoon is responsible for going
from the raw source code in Table 1 to their corresponding
ASTs in Figure 1 At this point, SPORK identifies and stores
the style of indentation in the source file as the amount of
tabs or spaces that precede top-level type members. This
is necessary to later be able to print the merged file with
the correct indentation. SPOON itself also stores the original
source code of each parsed file, which SPORK in certain cases
directly reuses to respect arbitrary formatting styles. This is
further detailed in Section 3.5.

3.2 Tree Matching
SPORK uses GUMTREE8,9 [26] to compute the pairwise
base/left, base/right and left/right matchings between the
ASTs. GUMTREE for example produces the matchings shown
in Figure 1.

The base/left and base/right matchings allow SPORK to
align the two changed revisions with the base. The left/right
matching is primarily used to merge identical or near-
identical additions in the left and right revisions. These
matchings ground the set properties utilized in the raw
merge, as shown in Table 4.

3.3 Merging Approach
Merging is the primary technical contribution in SPORK, as
most of the functionality is implemented directly in the tool
itself. The implementation is based on 3DM-MERGE, which
is described in Section 2.2.

3.3.1 Mapping to class representatives
The mapping to class representatives largely follows the
theoretical ideas presented in Section 2.2.2. First, nodes are
classmapped to themselves if they are unmatched, or to at
most one node in another revision according to the matching
prioritization presented in Section 2.2.2. Ultimately, this re-
sults in a class representatives mapping like that of Table 3.

The left/right matching is however prone to contain
spurious matchings, and carelessly adding these to the class
representatives mapping can cause unnecessary conflicts.
For example, if the left and right revisions add identical
method parameters to different methods, the parameters
may be matched due to their similarity, even though they
are entirely unrelated. To reduce the effect of spurious
matchings, SPORK implements two heuristics to decide
whether or not to classmap (vright → vleft) given a match
between vright in the right revision and vleft in the left
revision. First, the matching is ignored if any of the nodes
are already classmapped to a node vbase in the base revi-
sion. This prevents the classmappings (vleft → vbase) and

8. https://github.com/gumtreediff/gumtree
9. https://github.com/spoonlabs/gumtree-spoon-ast-diff

https://github.com/gumtreediff/gumtree
https://github.com/spoonlabs/gumtree-spoon-ast-diff
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fleft

fbase

fright

Parse Tbase

Tleft

Tright

Match Mleft⇔right

Mbase⇔left

Mbase⇔right

ASTsFiles (input) Matchings

SPORK-3DMChangeSet

Handle conflicts and build AST
Build ASTTmerge

DTM? TL dup Tempty TR dup

Duplicated members
Pretty-print

fmerge

Output

SPOON

GUMTREE

yes

no

Data flow
Library used in

Fig. 2: Schematic drawing of SPORK’s phases. Thin-lined rectangles represent data, filled rectangles are labels describing
the closest data, and related data is grouped within dotted outlines. Thick-lined rectangles represent phases and ellipses
represent libraries. “DTM”=duplicated type member.

(vright → vleft) from coexisting, which avoids a strange
situation in which a node from the left revision appears in
the right revision’s change set, but not the left revision’s.
Second, the parents of vleft and vright must already be
classmapped to the same class representative. This prevents
unrelated matchings, such as matchings between method
parameters of different methods, from making their way
into the class representatives mapping.

Adding eligible left/right matches to the class represen-
tatives is performed with a top-down scan of the left tree.
The fact that the scan is top-down is important, as it allows
arbitrarily complex subtrees to be incrementally mapped as
long as their roots have parents that are already mapped to
the same class representative.

3.3.2 Converting an AST to a change set
A tree can be converted into a change set by traversing it
top-down and creating a PCS child list for each node, as
well as extracting each node’s content. This corresponds to
the process of going from the base tree in Figure 1 to the
PCS triples in Table 2 and the associated content set shown
in Section 2.2.1.

For some complex nodes, naively building a PCS child
list of their direct children is insufficient to achieve appro-
priate separation between distinct syntactical elements. For
example, consider the method declaration in Listing 1. In
SPOON, parameters and thrown types are considered direct
children of the method node, and so appear in its child list.
Figure 3 shows a schematic AST with a naively built child
list for the method node in Listing 1. As the end of the list of
parameters is adjacent to the beginning of the list of thrown
types, structural modifications to the former may conflict
with structural modifications to the latter.

To avoid collections of elements of different types within
a child list to conflict with each other, SPORK inserts in-
termediate virtual nodes when building the PCS structure. A

Listing 1: A JAVA method declaration
i n t div ( i n t lhs , i n t rhs ) throws ArithmeticExcept ion

{ . . . }

div()

int int lhs int rhs ArithmeticException ()

...

Fig. 3: Schematic drawing of naively built child list for the
method declaration in Listing 1

schematic example of this is shown in Figure 4, where the
parameters and thrown virtual nodes separate the previ-
ously adjacent parameters and thrown types. It is important
that all applicable intermediate virtual nodes are inserted
even if the parent node has no children of the corresponding
types, as otherwise conflicts can occur due to insertions and
deletions of the virtual nodes themselves.

3.3.3 Core SPORK Algorithm

SPORK implements a non-trivial variation of 3DM-MERGE,
called SPORK-3DM. The key concepts of the algorithm are
presented with pseudocode in Figure 5. To ease understand-
ing, non-obvious helper functions are described in Figure 6.

The merge function of Figure 5 shows the SPORK-3DM
algorithm at a high level of abstraction. It starts out with
converting the input trees to change sets, all nodes being
mapped to their class representatives. The union of these
change sets forms the initial raw merge mergeCS, which as
noted in Section 2.2.3 may contain inconsistencies for any
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div()

int parameters

int lhs int rhs

thrown

ArithmeticException

()

...

Fig. 4: Schematic drawing of the method declaration in
Listing 1 with intermediate virtual nodes for the parameters
and thrown types

non-trivial merge. The loop starting on line 6 is concerned
with making mergeCS consistent by removing soft incon-
sistencies, and recording any hard inconsistencies. Acting
on hard inconsistencies, known as conflict handling, is not
part of 3DM-MERGE nor SPORK-3DM and SPORK’s conflict
handling is described in Section 3.4.

The removeSoftPcsInconsistencies function is the heart of the
algorithm: if two PCS are found to be inconsistent, SPORK
removes any that is in the base revision. If neither is in the
base revision, they are in a hard inconsistency. Note that
each invocation of the function is concerned only with PCS
that are inconsistent with the input variable pcs. Therefore,
if the input pcs is found to be in the base revision, all
inconsistencies related to it are resolved by removing it from
the change set, hence the early return on line 16. Table 5
shows the effects of a series of invocations of this function on
the raw merge of Table 4, until the final merge is achieved.

The removeSoftContentInconsistencies function follows the
same principles as removeSoftPcsInconsistencies. It is however
simplified due to each content tuple belonging to precisely
one tree node, and each tree node having at most one con-
tent tuple from each revision. A hard content inconsistency
is therefore local to the node in which it occurs, and is
identified by there being more than one non-base content
tuple. In a three-way merge, the only possibility is that there
are precisely two non-base content tuples: one from the left
revision, and one from the right.

SPORK-3DM differs from 3DM-MERGE in two key aspects.
First, 3DM-MERGE iterates over all elements of the change
set and intermingles the activities of processing content
and PCS triples. SPORK-3DM on the other hand iterates
only over the PCS triples and separates the processing of
content tuples and PCS triples, which makes it possible
to reason about the merging of structure and content sep-
arately. Due to how far removed the merging of content
is from the merging of PCS triples, it is perfectly viable
for an implementation of SPORK-3DM to defer the merging
of content until building an AST from the merged change
set. Second, there is a key functional difference in how the
algorithms discover inconsistencies. 3DM-MERGE finds at
most one inconsistent element per iteration of the primary
loop, while SPORK-3DM finds all of them. With the original
algorithm, hard inconsistency detection sometimes becomes
non-deterministic when the same PCS triple is involved in
inconsistencies with many other triples.

Algorithm 1: Spork-3dm

1 Function merge is
Data: base, left, right: Tree, classReps: Map[Tree,

Tree]
Result: ChangeSet

2 baseCS = toChangeSet(base, classReps)
3 leftCS = toChangeSet(left, classReps)
4 rightCS = toChangeSet(right, classReps)
5 mergeCS = unionOf(baseCS, leftCS, rightCS)
6 for pcs ∈ copyOf(mergeCS.pcsSet) do
7 removeSoftPcsInconsistencies(pcs,

mergeCS, baseCS)
8 handleContent(pcs, mergeCS, baseCS)

9 return mergeCS

10 Function removeSoftPcsInconsistencies is
Data: pcs: PCS, mergeCS, baseCS: ChangeSet

11 inconsistencies =
getAllInconsistentPcs(pcs, mergeCS)

12 if size(inconsistencies) is 0 then
13 return
14 if pcs ∈ baseCS then
15 removePcs(mergeCS, pcs)
16 return
17 for otherPcs ∈ inconsistencies do
18 if otherPcs ∈ baseCS then
19 removePcs(mergeCS, otherPcs)
20 else
21 hardPcsInconsistency(pcs,

otherPcs)

22 Function handleContent is
Data: pcs: PCS, mergeCS, baseCS: ChangeSet

23 for tree ∈ {pcs.parent, pcs.pred, pcs.succ } do
24 removeSoftContentInconsistencies(tree,

mergeCS, baseCS)

25 Function removeSoftContentInconsistencies
is

Data: tree: Tree, mergeCS, baseCS: ChangeSet
26 cts = getContentTuples(tree, mergeCS)
27 if size(cts) ≤ 1 then
28 return
29 nonBaseCts = {ct | ct ∈ cts, ct /∈ baseCS }
30 setContentTuples(tree, nonBaseCts,

mergeCS)
31 if size(nonBaseCts) > 1 then
32 hardContentInconsistency(nonBaseCts)

Fig. 5: Pseudocode for SPORK-3DM

3.4 Building the AST and Handling Conflicts

When the change set has been merged, it must be converted
back into an AST. This is achieved by traversing the PCS set
and inserting visited nodes and their contents into an AST.
Note that excess structural information is discarded when
building the AST, such as the virtual root (⊥), start (a) and
end (`), as well as the intermediate virtual nodes discussed
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TABLE 5: The effect of consecutive invocations of the removeSoftPcsInconsistencies function in the core loop of the merge
function starting from the raw merge from Table 4. For brevity, the table illustrates the invocations until all hard

inconsistencies have been discovered and the final merge is achieved, as subsequent invocations have no effect.

pcs (input) inconsistencies removals hard inconsistencies

(01,a, 02) (01,a, 12), (12,a, 02), (12, 02,`) (01,a, 02) -
(12,a, 02) (01, 02, 03) (01, 02, 03) -
(01, 03, 15) (01, 03,`), (01, 03, 25) (01, 03,`) (01, 03, 25)
(01, 15,`) (01, 25,`) - (01, 25,`)

Algorithm 2: Helpers for spork-3dm

1 Function toChangeSet is
Data: tree: Tree, classReps: Map[Tree, Tree]
Result: ChangeSet

2 Convert tree to a change set with nodes mapped
to their class representatives.

3 Function getAllInconsistentPcs is
Data: pcs: PCS, cs: ChangeSet
Result: List[PCS]

4 Get all parent, predecessor and successor
inconsistencies for pcs in cs.

5 Function getContentTuples is
Data: tree: Tree, changeSet: ChangeSet
Result: Set[ContentTuple]

6 Get all content tuples related to the tree
according to the change set.

7 Function setContentTuples is
Data: tree: Tree, contents: Set[ContentTuple],

changeSet: ChangeSet
8 Set the content tuples associated with the tree in

the change set.

9 Function hardPcsInconsistency is
Data: pcs: PCS, other: PCS

10 Register pcs and other as a hard inconsistency.

11 Function hardContentInconsistency is
Data: contentTuples: Set[ContentTuple]

12 Register the provided content tuples as a hard
inconsistency.

Fig. 6: Helper function definitions for SPORK-3DM

in Section 3.3.2.
Given a PCS, traversal left and right within the child

list amounts to finding another PCS with the same parent
and one matching child node, but where said child node’s
position is different. The child list of any node x starts with
a PCS where x is the parent, and a is the predecessor. These
traversal rules are summarized in Table 6. Also recall that
the content of an arbitrary node v is represented by all
content tuples c(v,m).

In a child list without conflicts, there is always precisely
one PCS matching each traversal pattern from some starting
point, and each node of that PCS has precisely one content
tuple. Consider again the merged PCS set in Table 4. A
traversal always begins from the start of the virtual root’s
child list, which according to the traversal rules is (⊥,a, 01).
It is a simple matter to traverse this child list to find that
01 is the concrete root of the tree, and similarly that the

TABLE 6: Traversal rules for the PCS structure, starting
from an arbitrary initial PCS (x, y, z). Traversing in a given
direction amounts to finding a PCS matching a specific
pattern, where ? is an unknown node.

Direction PCS pattern

Left (x, ?, y)
Right (x, z, ?)
Into y’s child list (y,a, ?)
Into z’s child list (z,a, ?)

TABLE 7: Content merge of the merge scenario of Figure 1

c(01, ”sum”), c(02, ”a”), c(03, ”b”), c(12,−), c(15, 1), c(25, ”c”)

first two children of 01 are 12 and 03. Upon encountering
each of these nodes in the traversal, their contents can be
extracted from the merged content set of Table 7. However,
the PCS set is clearly not consistent, as there are two PCS
triples matching the right traversal pattern from (01, 12, 03).
This hard inconsistency indicates a conflict in the merge, the
handling of which is described in Section 3.4.1.

3.4.1 Insert/insert conflicts
An insert/insert conflict occurs when both revisions insert
one or more nodes in the same position in the AST. The
hard inconsistencies in Table 4 are caused by such a conflict,
namely the insertion of int15(1) in the left revision and
ref25(c) in the right revision (see Figure 1). The inconsis-
tent elements show a typical pattern for an insert/insert
conflict, namely that the conflict starts with the successor
inconsistency between (01, 03, 15) and (01, 03, 25), and ends
with the predecessor inconsistency between (01, 15,`) and
(01, 25,`). This yields two possible paths from node 03 to
the virtual end `, either through node 15 or through node
25.

SPORK handles insert/insert conflicts by traversing both
paths through the child list and collecting the nodes of both
sides of the conflict. These are inserted into a conflict node,
which in this case contains 15 from the left revision and 25
from the right revision. The full AST represented by the
merge in Table 4 can then be built, resulting in the tree
shown in Figure 7.

3.4.2 Delete/delete conflicts
A delete/delete conflict occurs when the left and right
revisions delete adjacent nodes. For example, consider that
the base revision has a node p with a child list ab, and that
the left revision deletes b while the right revision deletes a.
Omitting the parent node, the base revision’s PCS child list
is then (a, a), (a, b), (b,`), the left revision’s is (a, a), (a,`),
and the right revision’s is (a, b), (b,`). When merging these
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call01(sum)

uop12(-)

ref02(a)

ref03(b)
conflict

left: [int15(1)]
right: [ref25(c)]

Fig. 7: AST built from the PCS merge in Table 4 and content
set in Table 7

TABLE 8: The left, base and right revisions of a line with a
delete/delete conflict, and the textual representations of the
subtrees with conflicting child lists

Left Base Right

Line abs(sum(a)) abs(sum(a,b)) abs(sum(b))
Conflict subtree sum(a) sum(a,b) sum(b)

child lists, the first and last elements are inconsistent across
the left and right revisions. However, as (a, a) and (b,`) are
both in the base revision, both inconsistencies are soft and
can be eliminated, resulting in the consistent but clearly dis-
joint child list (a, b), (a,`). This shows that the consistency
criteria are not strong enough to guarantee that a consistent
change set encodes a well-formed tree.

Disjoint child lists are trivial to detect, as they always
result in one PCS with a successor (e.g. b in pcs(p,a, b))
that never appears as a predecessor in the same child list.
However, SPORK currently cannot recover all conflicting
AST nodes due to the fact that parts of the conflict have
already been removed from the change set. Instead, it falls
back on a line-based merge of the textual representations
of the subtrees rooted in parent node p. We refer to this as
the local fallback. Table 8 shows an example merge scenario
of a code snippet where the delete/delete conflict already
discussed occurs in the argument list of a method call. The
resulting merge conflict can be seen in Figure 8, along with
the fully line-based merge for comparison. SPORK expresses
conflicts in the same way that GIT’s default merge tool
does, with so-called conflict hunks. Each hunk starts with
left-facing arrows (<) followed by the left revision’s part
and ends with right-facing arrows (>) preceded by the right
revision’s part, the two parts being demarcated by a line of
equals signs (=). We use the terms conflict and conflict hunk
interchangeably.

Note that the lines merged by the local fallback are not
necessarily the exact lines of the original source files, but
the textual representation of the conflicting subtrees. Thus,
although less granular than structured conflict handling,
the local fallback is still significantly more granular than
a line-based merge of the entire file. A conflict node is
then inserted into the AST containing the line-based merge,
which is printed as-is during pretty-printing.

3.4.3 Insert/delete conflicts
An insert/delete conflict occurs when one revision inserts a
node where another revision deletes a node. For example,

abs (
<<<<<<< l e f t
sum( a )
=======
sum( b )
>>>>>>> r i g h t
)

(a) Structured merge with
local fallback

<<<<<<< l e f t
abs (sum( a ) )
=======
abs (sum( b ) )
>>>>>>> r i g h t

(b) Fully line-based merge

Fig. 8: Merge produced by SPORK’s local fallback activating
on the merge in Table 8 and the merge of a traditional line-
based merge tool

assume that a node p has a child list a in the base revision,
that the left revision deletes a, and the right revision inserts
b after a. Omitting p, the base child list is then (a, a), (a,`),
the left is (a,`) and the right is (a, a), (a, b), (b,`). Remov-
ing all soft inconsistencies from the raw merge results in the
child list (a,`), (a, b), (b,`). The first and last elements are
in a hard predecessor inconsistency, and the middle element
is disjoint from the start of the child list.

As with the delete/delete conflict discussed in Sec-
tion 3.4.2, it is difficult to retrieve the left and right sides
of the conflict due to the fact that part of the conflict is not
present in the final change set. SPORK therefore resorts to the
local fallback described in Section 3.4.2 when discovering an
insert/delete conflict.

3.4.4 Move conflicts
Move conflicts are theoretically and practically troublesome.
Intuitively, a move conflict occurs when the left and right
revisions both manipulate the same node or the context
around it such that the node ends up in two different posi-
tions in the computed merge. A pure move conflict involves
the left and right revisions moving the same node to two
different locations. Moves may also conflict with insertions
(move/insert) or deletions (move/delete) at the source or
destination sites. For example, assume that a node p has a
child list a in the base revision, that the left revision moves
a to another child list, and the right revision inserts b after a.
This is a move/insert conflict, and in fact causes the child list
of p to take exactly the same form as with the insert/delete
conflict discussed in Section 3.4.3. The difference in this case
is that a also exists in some other child list.

There are two high-level variations of move conflicts that
present differing difficulties to handle. An inter-parent move
conflict occurs when a node v is involved in a hard parent
inconsistency, that is to say, has two different parents. Parent
inconsistencies are easy to detect, and can only be caused
by move conflicts, such as the one described above where a
ends up in two child lists. SPORK handles such conflicts by
recursively classmapping all nodes in the subtrees rooted in
v to themselves, and then restarting the merge. As the nodes
in the revisions of v are no longer classmapped to each
other, they are considered different nodes by SPORK-3DM,
which effectively turns moves into insertions and deletions.
This may resolve the conflict entirely, or result in non-move
conflicts that are easier to deal with.

An intra-parent move conflict occurs when a node v
appears in two places in the same child list. These conflicts
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are hard to identify as move conflicts as there is no single
feature that distinguishes the resulting inconsistencies from
those caused by other conflicts, delete conflicts in particular.
Therefore, determining which nodes to classmap to them-
selves is difficult, and so SPORK resorts to the local fallback
instead.

3.4.5 Conflict handlers
In some cases, conflicts can be automatically resolved. In
the case of structural conflicts where SPORK successfully
extracts all AST nodes that take part in a conflict, SPORK
invokes two structural conflict handlers. The first of these
resolves conflicts involving ambiguous ordering of method
declarations10, by inserting them in sorted order. The second
handler resolves conflicts where one of the conflicting sides
is empty by picking the non-empty side, optimistically: if a
handler can resolve the conflict, the conflict node is replaced
by a concrete node.

SPORK also defines content conflict handlers. When build-
ing the AST and attempting to set the content of a node
for which multiple content tuples are found, SPORK invokes
the content conflict handlers one by one until the conflict
is resolved, or there are no more conflict handlers. Most
content conflict handlers are highly dependent on SPOON
implementation details, and therefore fall outside of the
scope of this paper, and we refer the reader to the imple-
mentation for details11.

3.4.6 Duplicated Type Member Elimination
The built SPOON AST is then subjected to duplicated type
member elimination. In cases where both the left and right re-
visions add non-identical versions of the same type member,
a failure to match these results in type member duplication
in the merge process. For example, a class may end up
with two methods with the same signature, or two fields
with the same name, making for semantic conflicts. As
3DM-MERGE knows nothing of the semantics of JAVA, a
duplicated type member will not seem problematic to it.
To address such issues, SPORK searches the merged SPOON
AST for duplicated type members, and re-executes the entire
merge process for any pair it can find, using an empty
node as the base revision12. The reason why duplicated type
member elimination is performed at such a late stage is a
matter of implementation convenience; it is trivial to find
duplicated type members in the merged SPOON tree, while
doing so in any of the earlier stages is much harder.

3.5 Pretty-printing
SPORK uses SPOON’s default pretty-printer to produce

the final result of the merge, namely a JAVA source file.
There are however two significant extensions to the printer
in SPORK.

The first extension is reusing the original source code
for subtrees that originate from a single revision, in ef-
fect performing a copy-paste of a subtree’s original source
code. We refer to this as high-fidelity pretty-printing, and it
allows SPORK to retain most of the formatting from the

10. So-called ordering conflicts
11. https://github.com/KTH/spork
12. This effectively makes it a two-way merge of the type members

sum( −a , b ,
<<<<<<< l e f t
1
=======
b
<<<<<<< r i g h t
)

Fig. 9: Pretty-printed output of the AST in Figure 7

file revisions. High-fidelity pretty-printing of a merged AST
is currently limited to type members and comments due
to complications at more granular levels when adjacent
elements stem from different revisions. For example, SPORK
can directly reuse the source code of a method declaration
that it determines stems from a single revision. However, if
SPORK finds that a method declaration is composed of ele-
ments from multiple revisions, it currently cannot perform
high-fidelity pretty-printing of individual child elements of
that method, such as method parameters and statements.
Either the entire method is high-fidelity pretty-printed, or
none of it is. For printing of more granular elements whose
parent elements cannot be printed with high-fidelity pretty-
printing, SPORK uses SPOON’s default pretty-printer, only
taking the original indentation into account. All other for-
matting is fixed for each type of AST node. For example,
the last method parameter in a parameter list is always
immediately followed by a closing parenthesis, while all
non-last parameters are followed by a comma and a space.
We refer to this as low-fidelity pretty-printing.

The second extension is printing of conflicts. SPORK
uses high-fidelity pretty-printing to print both sides of a
structural conflict, or directly prints the contents of a conflict
node produced by the local fallback (see Section 3.4.2). Note
that the limitation of what elements can be printed with
high-fidelity pretty-printing do not apply here, as the nodes
of any given side of a conflict by definition stem from the
same revision. The pretty-printed output of the running
example is shown in Figure 9, containing such a conflict.

4 EXPERIMENT METHODOLOGY

This section presents the methodology we use for the eval-
uation of SPORK. We compare SPORK against JDIME [28],
a state-of-the-art structured merge tool for JAVA, and AU-
TOMERGEPTM [24], a merge tool that builds upon JDIME with
an enhanced tree matching algorithm. We assess SPORK in
regards to conflicts, running time and formatting preserva-
tion.

4.1 State-of-the-art of Structured Merge for Java

We select the state-of-the-art tools for structured merge in
Java as follows. First, the state-of-the-art tool does fully-
structured merge on ASTs, which allows for an apples-to-
apples comparison with SPORK. Second, there is a publicly
available code base, which is crucial for reproducibility.
Third, it works on real-world and non-trivial merge scenar-
ios.

We have evaluated the tools in Table 9 according to
these criteria. Only two tools fulfill all criteria: JDIME [28]

https://github.com/KTH/spork
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TABLE 9: Potential Merge Tools for Evaluation

Tool Key features Comments

JDIME [28]1 Structured, AST-based Included
AUTOMERGEPTM [24]2 Structured, built on

JDIME with improved
tree matching

Included

JFSTMERGE [22]3 Semistructured Excluded
INTELLIMERGE [25]4 Semistructured, graph-

based
Excluded

Envision IDE [32]5 Line-based merge on
textual AST

Excluded

1 https://github.com/se-sic/jdime
2 https://github.com/thufv/automerge-ptm
3 https://github.com/guilhermejccavalcanti/jFSTMerge
4 https://github.com/symbolk/intellimerge
5 https://github.com/dimitar-asenov/Envision

and AUTOMERGEPTM [24]. JDIME is fully structured and
built on top of the EXTENDJ compiler framework and is
able to merge real-world merge scenarios. JDIME has been
extensively used in subsequent research, incl. [4], [24], [29],
[30], [31]. AUTOMERGEPTM is mostly the same tool as JDIME,
but with an enhanced tree matching algorithm.

4.2 Research Questions

The evaluation is structured around the following research
questions.

• RQ1: How does SPORK compare to JDIME and
AUTOMERGEPTM in terms of amounts of conflicts
and amounts of conflicting lines? Merge conflict
prevalence is a key aspect of a merge tool. The re-
duction of the number of merge conflicts is a primary
advantage of structured merge. Furthermore, conflict
size is an indicator that developers use to estimate
the conflict difficulty, increasing size being associated
with increasing difficulty [33].

• RQ2: How does SPORK compare to JDIME and AU-
TOMERGEPTM in terms of running time? Running
time is an important aspect for any software engi-
neering tool that is used in an interactive computing
environment. The user has to wait for the merge tool
to run to completion before being able to proceed,
meaning that all else being equal, a faster tool is
preferable to a slower one.

• RQ3: How does SPORK compare to JDIME and
AUTOMERGEPTM in terms of preserving source
code formatting? Due to operating on an abstract
representation of source code, a structured merge
always concludes in a pretty-printing step. If the
printer does not attempt to recreate the formatting of
the input, it may fundamentally alter it [12], [13]. We
argue that a merge tool should not alter formatting
at all.

4.3 Dataset

We select projects for the experiments from the REAPER
dataset of GITHUB repositories [34]. This dataset consists of
1.8 million GITHUB projects that are scored with respect to
a variety of indicators of a well-engineered project. These
indicators include the use of CI and unit tests, the amount

of documentation and amount of core contributors. The
REAPER dataset has been used in other merge studies [30],
[35].

4.3.1 Filtering projects
We select projects in REAPER that use JAVA, are classified as
well-engineered, have more than 50 stars and a minimum of
2 core contributors. A total of 1174 projects fulfill all of the
criteria. We further filter out projects that are forks.

We perform a last filtering to find projects that build us-
ing MAVEN in our test environment. We look for a pom.xml
file in the latest commit13 of the default branch, indicating
the use of MAVEN. If there is such a file, the project is cloned
and built with MAVEN. If the build succeeds within at most 5
minutes, the project is added to a list of candidate projects.
We use two of these projects for testing purposes during
the development of SPORK, and we exclude them from the
evaluation.

This selection process leads to a list of 359 candidate
projects that fulfill all criteria. This list is available in the
online appendix14.

4.3.2 Filtering merge commits
Our experiments require the base commit of each merge
scenario to be located. We use GIT-LOG to find merge com-
mits, and GIT-MERGE-BASE to find the merge base. In cases
where a commit history has a criss-cross pattern15, there are
multiple possible merge bases. The merge base is then said
to be ambiguous. Merge commits with ambiguous merge
bases are excluded from the dataset as they complicate
merge replay.

As noted by Cavalcanti et al. [30], most merges have
no overlap between the files edited by the left and right
revisions, making the merge resolution trivial: simply pick
the edited file. GIT only invokes a merge tool when the same
file has been edited in both revisions. The merge commits
are therefore filtered to include only commits where at least
one JAVA source file is edited in both the left and right
revisions.

We also filter out merge commits for which at least one of
the revisions do not build using MAVEN. If the project builds,
we can be certain that it is syntactically valid, which is
important as syntactically invalid files can cause unexpected
behavior in structured merge tools. Finally, as some projects
have thousands of merge commits, while others have as
little as 1, we limit the amount of merge commits per project
to 15 to avoid the larger projects being overrepresented.

We extract a total of 890 real-world merge scenarios
from 119 different projects, consisting of a total of 1740
file merges. We observe a great deal of variety in project
domains, such as the MAGE game engine, the CORENLP
natural language processing library, the ASSERTJ asser-
tions library, the SINGULARITY platform-as-a-service and
the CHRONICLE-MAP in-memory database. The popularity
and sizes of projects also vary greatly. Project sizes range
from 1106 to 1782052 lines of code, with a median of 24306.
The amount of GitHub stars ranges from 58 to 21720, with

13. As of the 10th of May 2020
14. https://github.com/slarse/spork-experiments
15. https://git-scm.com/docs/git-merge-base

https://github.com/se-sic/jdime
https://github.com/thufv/automerge-ptm
https://github.com/guilhermejccavalcanti/jFSTMerge
https://github.com/symbolk/intellimerge
https://github.com/dimitar-asenov/Envision
https://github.com/slarse/spork-experiments
https://git-scm.com/docs/git-merge-base
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a median of 341. The amount of core contributors ranges
from 1 to 40, with a median of 6. Finally, the amount of
merge scenarios extracted from each project ranges from 1
to 15, with a median of 7, and the amount of file merges
ranges from 1 to 122, with a median of 12. Note that the
project metadata was collected on August 12th 2020 while
the REAPER dataset is from 2017, meaning that there are
some discrepancies between the two. The full list of project
statistics is available in the online appendix16.

4.4 Experiment Protocol

We design an experiment protocol similar to that of Shen et
al. [25]. For each merge scenario, the individual file merges
are extracted. This involves finding all revisions of a merged
file, including the one actually committed by the developer,
which we refer to as the expected revision of the file merge.
We use GIT’s merge functionality to locate the revisions.

SPORK and JDIME are then applied in turn to the base, left
and right revisions of each file merge. We refer to the merged
file produced by a merge tool as the replayed revision for that
file merge and merge tool.

In order to assess RQ1, we scan each replayed revision
for conflict hunks17, and record the amount of hunks as
well as the total amount of lines contained in them. In
general, it is easier for developers to deal with conflicts if
they are as few and small as possible [5], [36], [37], meaning
that minimizing conflict quantities and sizes is desirable. To
make sure that we only analyze merge conflicts produced
by the tools under test, any file merges in which the base,
left or right revisions contain conflict markers are excluded
from the experiment. For all comparisons, file merges where
at least one tool fails to produce a non-empty merged
file are excluded. This also applies to subsequent research
questions.

To address RQ2, the execution of each file merge is timed
10x per file file, with the running time measured as the wall
time from the moment of invoking the merge tool to the
moment it exits. Each execution is a cold start, meaning that
the JVM is not allowed to warm up. A timeout is set to
300 seconds per file merge, after which the merge is forcibly
aborted.

To address RQ3, we measure formatting preservation
with the expected revision as the ground truth for correctly
formatted output. In order to determine how closely the
replayed revision resembles the expected revision, we com-
pare them with two metrics: a line diff computed with GIT18,
and a character diff computed with the PYTHON standard
library module DIFFLIB 19. We refer to the sum of insertions
and deletions of lines and characters as the line diff size and
character diff size, respectively. Poor formatting preservation
increases the diff size.

For all RQs, we illustrate the behavior of SPORK with case
studies. Those case studies are real merge scenarios taken
from our dataset. They are selected manually, with the goal
of highlighting advantages and drawbacks of SPORK.

16. https://github.com/slarse/spork-experiments
17. Recall the definition of conflict hunks from Section 3.4.2
18. https://git-scm.com/docs/git-diff
19. https://docs.python.org/3.8/library/difflib.html

4.5 Statistical Tests
All measurements provide us with paired ordinal data (con-
flict sizes, conflict quantities, diff sizes and running times)
for each merge scenario (one measure for JDIME, one for
SPORK, and one for AUTOMERGEPTM). As the tools might
fail, we exclude all measures from merge scenarios where at
least one tool fails to produce a merge.

To statistically assess the differences between the tools,
we first start by a Friedman test with the null hypothesis
that the measures for all tools are the same. In case of a
significant p-value on the significance level of α = 0.05,
the null hypothesis is rejected and we then proceed to two
post-hoc tests to compare the groups SPORK vs JDIME and
SPORK vs AUTOMERGEPTM. We use a two-sided Wilcoxon
signed-rank test, along with the matched-pairs rank-biserial
correlation (RBC) as effect size [38], [39] for each post-hoc
test. The resulting p-values are then corrected using a Holm-
Bonferroni correction. Finally, we assess their significance
using α = 0.05. We use the implementation provided by
the PYTHON package PINGOUIN20 version 0.4.0 to perform
the tests and calculate effect sizes. In our results, a negative
RBC indicates that SPORK’s values in the given test are
smaller than JDIME’s or AUTOMERGEPTM, while a positive
RBC indicates the opposite.

4.6 Experiment Environment
The test environment hardware consists of a Ryzen 5900X,
32 GiB of RAM @3600 MHz and a SATA SSD with read
and write speeds of 500 MB/s. The test environment runs
ARCHLINUX with kernel 5.13.9, OPENJDK 1.8.0u292 and
CPYTHON 3.8.2. We build JDIME from source using com-
mit 100aeece. We build AUTOMERGEPTM from source using
commit e73038b5. We use SPORK release v0.5.1. For further
information, we refer the reader to the online appendix21.

5 EXPERIMENT RESULTS

This section presents the results from the experiments. Sec-
tion 5.1 presents results on sizes and quantities of conflicts,
Section 5.2 presents results on running times and Section 5.3
presents results on formatting preservation.

5.1 RQ1: Quantity and Size of Conflicts
5.1.1 Amount of conflict hunks
We first measure and compare the amount of conflict hunks
per file. As noted in Section 4.4, fewer and smaller conflicts
is generally better. However, there are cases where fewer
or smaller conflicts are due to a poor merge, such as when
truly conflicting edits are not detected as such, or when a
conflict is not intuitively represented. This is discussed in
the illustrative case studies below.

As noted in Section 4.4, we filter out file merges where at
least one merge tool fails to produce a non-empty file merge,
as it is then not possible to fairly compare the results. There
are three separate cases that can occur: the merge tool can
crash, exceed the time limit of 300 seconds or produce an
empty merged file. An empty or non-existing file cannot be

20. https://pingouin-stats.org/
21. https://github.com/slarse/spork-experiments

https://github.com/slarse/spork-experiments
https://git-scm.com/docs/git-diff
https://docs.python.org/3.8/library/difflib.html
https://pingouin-stats.org/
https://github.com/slarse/spork-experiments
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Fig. 10: RQ1: Histogram of conflict hunk quantities per file
for SPORK, JDIME and AUTOMERGEPTM. Lower is better.
Each histogram bin contains the frequency of values in the
range [L,R), where L and R are the values to the left and
right of the bin, respectively.

Tool Timeouts Crashes Empty file Total

SPORK 0 34 0 34

JDIME 16 7 0 23

AUTOMERGEPTM 7 11 19 37

TABLE 10: Summary of merge failures.

used for making comparisons of our chosen metrics, and
must therefore be excluded. Table 10 shows a breakdown of
merge failures across the tools. SPORK has the most amount
of crashes, but exhibits none of the other kinds of failures.
JDIME has the smallest amount of failures in total, but it also
exhibits the largest amount of timeouts. AUTOMERGEPTM
has the largest amount of failures in total. It is the only tool
to occasionally produce an empty merged file, accounting
for most of its failures, but it also exhibits both the other
kinds of failures. There is little overlap between the file
merges where the tools fail, with the 94 merge failures
occurring across 83 unique file merges, constituting 4.77%
of the total of 1740 file merges.

Out of the 1740 file merges in the benchmark, there
are 255 file merges for which all of SPORK, JDIME and
AUTOMERGEPTM produce a non-empty merge file, and at
least one tool encounters a conflict. SPORK signals conflicts
in 125 of the merges and produces a total of 227 conflict
hunks. JDIME signals conflicts in 191 of the merges and
produces a total of 376 conflict hunks. AUTOMERGEPTM
signals conflicts in 145 of the merges and produces a total
of 245 conflict hunks. Overall, SPORK produces 151 conflict
hunks fewer than JDIME (40% reduction), and 18 fewer than
AUTOMERGEPTM (7% reduction).

Figure 10 shows the histogram of the distribution of con-
flict hunk quantities for SPORK, JDIME and AUTOMERGEPTM.
While JDIME is clearly at a disadvantage (more files with
2 or more conflict hunks), the distributions for SPORK and
AUTOMERGEPTM look largely similar.

We use a Friedman test to determine if further analysis
of the results is relevant, with the null hypothesis that the
results from the different tools are the same. The test yields
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Fig. 11: Histogram of conflict sizes for SPORK, JDIME and
AUTOMERGEPTM per file merge. Lower is better. Each his-
togram bin contains the frequency of values in the range
[L,R), where L and R are the values to the left and right of
the bin, respectively.

a p-value of 2.40e-13, so we reject the null hypothesis and
proceed with further analyses.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H1
0 : SPORK and JDIME produce the same amounts

of conflict hunks
H1

a : SPORK and JDIME do not produce the same
amounts of conflicts

The test yields a p-value of 7.98e-8, and we therefore accept
the alternative hypothesis that the tools produce differing
amounts of conflict hunks. The RBC is -0.423, indicating that
SPORK produces fewer hunks than JDIME.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H2
0 : SPORK and AUTOMERGEPTM produce the same

amounts of conflict hunks
H2

a : SPORK and AUTOMERGEPTM do not produce
the same amounts of conflicts

The test yields a p-value of 0.269, so we cannot reject the
null hypothesis that the tools produce the same amounts of
conflicts.

5.1.2 Amount of conflicting lines
We now consider the amount of conflicting lines per file
merge, which we refer to as the conflict size. We consider
here the same 255 file merges as in Section 5.1.1; file merges
where all tools produce a non-empty merged file and at least
one tool produces a conflict hunk. We measure the conflict
size of a file as the sum of all lines in all conflict hunks
(see Section 3.4.2), which is a proxy to the effort spent by
developers to resolve conflicts [5], [36], [37].

Figure 11 shows a histogram of conflict sizes for SPORK,
JDIME and AUTOMERGEPTM. The first bin refers to cases
where the merge is fully successful, containing no con-
flict22 In this bin, SPORK outperforms both JDIME and AU-
TOMERGEPTM. Looking at the rightmost bin of the figure,
JDIME and AUTOMERGEPTM produce more files with large

22. Note that it is identical to that of the conflict quantity histogram
in Figure 10.
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conflict sizes. For all tools, there are outliers, meaning that
a small amount of conflicts account for the majority of
conflicting lines. This is the primary explanation of SPORK’s
improvement: AUTOMERGEPTM and JDIME produce more
abnormally large conflicts than SPORK. In particular, SPORK
produces files with conflict sizes at or above 20 lines of
code in 24 merges, making for a reduction by 54% com-
pared to JDIME’s 52 cases, and by 47% compared to AU-
TOMERGEPTM’s 45 cases. In the middle of the distribution,
the interpretation is not clear-cut, but accounts for signifi-
cantly fewer data points than the extrema.

In the case of JDIME and AUTOMERGEPTM, abnormally
large conflicts are often caused by failures to match re-
named elements to each other, which is exemplified with
a method rename in case study C4 discussed below. Re-
garding SPORK’s large conflicts, they are often caused by
the local-fallback activating on the body of a class, causing
most of the file to be merged with a line-based merge.

Let us now aggregate these results. Over the 255 file
merges, SPORK produces a total of 2446 conflicting lines,
JDIME produces a total of 13975 conflicting lines, and AU-
TOMERGEPTM produces a total of 6635 conflicting lines.
SPORK improves upon AUTOMERGEPTM, second best by this
metric, by 63%.

We use a Friedman test to determine if further analysis
is necessary, with the null hypothesis that the results from
the different tools are the same. The test yields a p-value of
2.23e-13, so we reject the null hypothesis and proceed with
further analyses.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H3
0 : SPORK and JDIME produce equal amounts of

conflicting lines
H3

a : SPORK and JDIME do not produce equal
amounts of conflicting lines

The test yields a p-value of 4.47e-4, and we therefore accept
the alternative hypothesis that the tools do not produce
equally large conflicts. The effect size RBC is -0.280, indicat-
ing that SPORK produces fewer conflicting lines than JDIME.

We also use a two-sided Wilcoxon signed-rank test to
test the following hypothesis:

H4
0 : SPORK and AUTOMERGEPTM produce equal

amounts of conflicting lines
H4

a : SPORK and AUTOMERGEPTM do not produce
equal amounts of conflicting lines

The test yields a p-value of 0.441, so we cannot reject the
null hypothesis that the tools produce equal amounts of
conflicting lines.

Conflict case studies
It is important to note that conflict quantities and sizes

alone do not fully describe the conflict behavior of a merge
tool. While in general, merge tools should strive for as
few and as small conflicts as possible, the presence of a
conflict is positive when there is no best conflict handling
decision to be made. Similarly, a smaller conflict is not
always easier to interpret, as it may be small by virtue of
failing to include relevant information. We now illustrate
this important point with examples23. Each case study is

23. Note that the presence of . . . in a source code snippet indicates
that it has been truncated to fit the paper format.

/ * *
* C o p y r i g h t 2009 −2019 . . .
*

(a) Left revision

/ * *
* C o p y r i g h t 2009 −2016 . . .
*

(b) Base revision

/ * *
* C o p y r i g h t 2009 −2020 . . .
*

(c) Right revision

/ * *
<<<<<<< LEFT

* C o p y r i g h t 2009 −2019 . . .
=======

* C o p y r i g h t 2009 −2020 . . .
>>>>>>> RIGHT

*

(d) SPORK’s merge

Fig. 12: The left, base and right revisions of the license
header from file merge C1, along with SPORK’s merge. JDIME
and AUTOMERGEPTM do not merge comments, and discard
file headers completely.

<<<<<<< LEFT
! t r a n s p o r t . i s S u c c e s s f u l ( ) ) parseAndThrowException ( r e s u l t ) ;
=======
! t r a n s p o r t . i s S u c c e s s f u l ( ) ) parseAndThrowException ( r e s u l t ,

j o b I n f o . getContentType ( ) ) ;
>>>>>>> RIGHT

(a) Conflict from SPORK’s merge of C2 caused by too conser-
vative left/right matching. JDIME and AUTOMERGEPTM pro-
duce the right revision’s contribution as the merged output.
<<<<<<< LEFT
long id leThreadKeepAliveMil l i s = 60000 ;
=======
private s t a t i c f i n a l S t r i n g DEFAULT EXCHANGE NAME = ”” ;
>>>>>>> RIGHT

(b) Conflict between two unrelated and textually far removed
fields from JDIME’s/AUTOMERGEPTM’s merge of C3, caused
by too aggressive left/right matching. SPORK correctly adds
both fields at their respective points of insertion.

Fig. 13: Snippets showing drawbacks of too conservative
and too aggressive left/right matchings

provided with an identifier on the form Cx, where x is an
integer. This identifier can be used to find the complete file
merge along with all metadata in our online appendix24.

As a first concrete example, consider the merge of the
file header comment in Figure 12, stemming from file merge
C1. SPORK correctly produces a conflict as the changes
across revisions are incompatible, while both JDIME and
AUTOMERGEPTM simply discard the file header comment,
producing no conflict. In this case, the presence of a conflict
is good, and SPORK produces the most informative output
for the developer.

The opposite is also prominent, i.e. that some non-
conflicting edits are detected as conflicts. Figure 13 shows

24. https://github.com/slarse/spork-experiments

https://github.com/slarse/spork-experiments
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@Test
public void

testNonNullNativeIgnoreingDocumentationParameterMatcher ( ) {
contex t . checking (new Expecta t ions ( ) {{

− e x a c t l y ( 1 ) . of ( mock ) . withBoolean ( with ( any ( Boolean . c l a s s ) ) ) ;
− e x a c t l y ( 1 ) . of ( mock ) . withByte ( with ( any ( Byte . c l a s s ) ) ) ;
. . .

+ e x a c t l y ( 1 ) . of ( mock ) . withBoolean ( with . booleanIs ( anything ( ) ) ) ;
+ e x a c t l y ( 1 ) . of ( mock ) . withByte ( with . b y t e I s ( anything ( ) ) ) ;
. . .

}}) ;

(a) Base/left line-based diff. Lines preceded by − and + indicate deletions
and additions, respectively.

@Test
− public void testNonNullNativeIgnoreing . . .
+ public void testNonNullNativeIgnoring . . .

(b) Base/right line-based diff. Lines preceded by
− and + indicate deletions and additions, respec-
tively.

<<<<<<< LEFT
. . .
@Test public void testNonNullNativeIgnoreingDocumentationParameterMatcher ( ) {

contex t . checking (new Expecta t ions ( ) {
{

e x a c t l y ( 1 ) . of ( mock ) . withBoolean ( with . booleanIs ( anything ( ) ) ) ;
. . .
}

=======
>>>>>>> RIGHT

. . .
@Test public void testNonNullNativeIgnoringDocumentationParameterMatcher ( ) {

contex t . checking (new Expecta t ions ( ) {
{

e x a c t l y ( 1 ) . of ( mock ) . withBoolean ( with ( any ( Boolean . c l a s s ) ) ) ;
. . .
}

(c) JDIME’s/AUTOMERGEPTM’s merge, with the left revision’s version of the method in a conflict, followed by the right
revision’s version of the method outside the conflict hunk

Fig. 14: Line-based base/left and base/right diffs from file merge C4. The left revision edits the body of a test method, and
the right revision fixes a typo in the method’s name. JDIME and AUTOMERGEPTM do not detect the rename, and produce
merge conflict. SPORK correctly merges the name change in the right revision with the body changes in the left, producing
no conflict.

the effects of too conservative and too aggressive left/right
matchings from file merges C2 and C3, respectively. In
Figure 13a, SPORK’s conservative left/right matching causes
it to fail to match near-identical subtrees inserted in the
left and right revisions, thus producing a coarse conflict
where the right revision’s part is a strict superset of the
left. This can be automatically resolved, and a reasonable
resolution to the conflict is the right revision, which is
what JDIME and AUTOMERGEPTM produce. However, too
aggressive left/right matching also causes problems with
conflicts. In Figure 13b, JDIME and AUTOMERGEPTM match
two completely unrelated fields that are added some 100
lines away from each other in the left and right revisions,
respectively, and therefore produce a nonsensical conflict.
SPORK on the other hand inserts the fields appropriately,
without conflict.

We now provide evidence of SPORK ’s move and update
detection capability being beneficial. Figure 14 shows parts
of the base/left and base/right diffs from file merge C4,
where the left revision edits the body of a test method,
and the right revision renames said method. JDIME and
AUTOMERGEPTM both treat the rename in the right revision
as a deletion of the original method, and an insertion of
an entirely new method. The deletion interferes with the
edit in the method’s body in the left revision This results in
a delete/edit conflict containing the left revision’s version
of the method. As the right revision’s renamed method is
seen as an insertion, it is printed outside the conflict hunk.
Thus, in failing to match the renamed method of the right

revision to the edited method in the left revision, the merge
conflict produced is not only unnecessary, but it also fails
to include the right revision’s version of the method in the
conflict hunk. Thus, a smaller conflict hunk is not always
easier to understand. SPORK on the other hand performs
the merge without conflict, as it detects the right revision’s
rename as an update of the method node’s content, which
is unrelated to the left revisions edits in its subtree (see the
description of SPORK-3DM in Section 3.3.3 for the separation
of content and structure).

The takeaway of these illustrative case studies is that
SPORK exhibits differing and desirable merge properties
from JDIME and AUTOMERGEPTM. This experiment also
recalls that conflict quantity and size are indicative but
not perfect metrics [30], as there may be some degenerate
cases. For example, when conflicts occur inside comments or
formatting, a merge tool which does not support comments
or formatting preservation may produce zero conflict while
missing an essential part of the merge.

Answer to RQ1. SPORK produces fewer and smaller
conflicts than JDIME, and is on par with AU-
TOMERGEPTM. All assessed merge tools sometimes pro-
duce abnormally large conflicts (Figure 11) but SPORK
to a lesser extent.
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Fig. 15: Histogram of file merge running times for SPORK,
JDIME and AUTOMERGEPTM. Lower is better. Each his-
togram bin contains the frequency of values in the range
[L,R), where L and R are the values to the left and right of
the bin, respectively.

5.2 RQ2: Running Time

The running time of a tool on a given file merge is com-
puted as the median wall time of 10 executions. We only
consider the 1657 file merges where all of SPORK, JDIME
and AUTOMERGEPTM produce a non-empty merged file.
It is noteworthy that there are cases where JDIME and
AUTOMERGEPTM fail due to timing out at 300 seconds.
JDIME suffers 16 timeouts and AUTOMERGEPTM suffers 7,
while SPORK exhibits no timeouts. The exclusion of these
timeouts is conservative, as it clearly benefits JDIME and
AUTOMERGEPTM.

In the median case, SPORK has a running time of 1.17
seconds, JDIME has a running time of 1.32 seconds and
AUTOMERGEPTM has a running time of 1.48 seconds. Per
this median value, SPORK is the fastest out of the three.
SPORK being a faster tool is further reinforced by the
sum of running times: SPORK’s total running time is 2415
seconds, which is 51% faster than JDIME’s 4912 seconds,
and 55% faster than AUTOMERGEPTM’s 5360 seconds. The
histogram of running times in Figure 15 further exposes
performance differences. JDIME and AUTOMERGEPTM have
more of the smallest running times (leftmost bin), with 52
and 38 running times respectively that are less than 0.5
seconds, while SPORK has none. In terms of the largest
running times (rightmost bin), JDIME and AUTOMERGEPTM
have 245 and 282 running times respectively that are larger
than or equal to 4 seconds, whereas SPORK only has 52. Fur-
thermore, SPORK’s maximum running time is 11.9 seconds,
while JDIME and AUTOMERGEPTM top out at 287.9 and 287.7
seconds, respectively. Compared to JDIME, spork is faster in
963 cases and slower in the remaining 694 cases. Compared
to AUTOMERGEPTM, SPORK is faster in 1126 cases and slower
in the remaining 531 cases. While SPORK is not as fast as
either JDIME or AUTOMERGEPTM in the best case, it is faster
in the median case, and significantly reduces the amount
and magnitudes of excessive running times larger than 4
seconds.

We use a Friedman test to determine if further analysis
of the results is relevant, with the null hypothesis that the
results from the different tools are the same. The test yields
a p-value of 7.88e-247, so we reject the null hypothesis and

proceed with further analyses.
We use a two-sided Wilcoxon signed-rank test to test the

following hypothesis:

H5
0 : There is no difference between SPORK’s and

JDIME’s running times
H5

a : There is a difference between SPORK’s and
JDIME’s running times

The test yields a p-value of 1.80e-54, and we therefore
accept the alternative hypothesis. The effect size RBC is
-0.441, indicating that SPORK’s running times are smaller
than JDIME’s.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H6
0 : There is no difference between SPORK’s and

AUTOMERGEPTM’s running times
H6

a : There is a difference between SPORK’s and
AUTOMERGEPTM’s running times

The test yields a p-value of 1.74e-121, and we therefore
accept the alternative hypothesis. The effect size RBC is
-0.666, indicating that SPORK’s running times are smaller
than AUTOMERGEPTM’s.

Answer to RQ2. SPORK is a faster merge tool than the
state of the art. In particular, it has fewer exceedingly
long running times which makes it more useful in
practice for the developer.

5.3 RQ3: Formatting Preservation

Formatting preservation is measured as the diff size (the
sum of insertions and deletions in a diff) between the re-
played merge produced by the merge tool and the expected
revision committed by the developer, considered as ground
truth. We use two metrics at different levels of granularity: a
line diff as well as a character diff. The results can be inter-
preted as the amount of lines and the amount of characters
by which the produced and expected revisions differ. We
consider the 1402 file merges in which all of SPORK, JDIME
and AUTOMERGEPTM produce conflict-free merges.

SPORK produces file merges with a median line diff
size of 65, which represents a 78% reduction compared to
JDIME’s median of 308.5, and a 79% reduction compared to
AUTOMERGEPTM’s median of 314.5. This clearly shows that
SPORK preserves more formatting than the other tools. The
histogram in Figure 16 shows SPORK’s clear advantage over
JDIME and AUTOMERGEPTM. Compared to JDIME, SPORK
produces smaller line diff sizes for 1336 cases, of equal size
in 3 cases, and larger ones in the remaining 63. Compared
to AUTOMERGEPTM, SPORK produces smaller line diff sizes
in 1341 cases, of equal size in 3 cases, and larger ones in the
remaining 58.

The trend set in the line diff comparison carries over
to the character diff measurements. SPORK produces file
merges with a median character diff size of 528, which
represents a 75% reduction compared to JDIME’s median of
2181, and a 78% reduction compared to AUTOMERGEPTM’s
median of 2430. The histogram in Figure 17 shows SPORK’s
clear advantage over JDIME and AUTOMERGEPTM. Com-
pared to JDIME, SPORK produces smaller character diff sizes
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Fig. 16: Histogram of line diff sizes for SPORK, JDIME and
AUTOMERGEPTM. Lower is better. Each histogram bin con-
tains the frequency of values in the range [L,R), where
L and R are the values to the left and right of the bin,
respectively.
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Fig. 17: Histogram of character diff sizes for SPORK, JDIME
and AUTOMERGEPTM. Lower is better. Each histogram bin
contains the frequency of values in the range [L,R), where
L and R are the values to the left and right of the bin,
respectively.

in 1286 cases, and larger ones in the remaining 116. Com-
pared to AUTOMERGEPTM, SPORK produces smaller charac-
ter diff sizes in 1301 cases, and larger ones in the remaining
101. These numbers correspond well with the line-based line
diff, indicating that it is a good approximation for the overall
textual similarity of two files.

To illustrate SPORK’s improvements, we present a fi-
nal case study. Figure 18 shows a complex conditional
expression from file merge C5. The condition of the if-
statement is complex both with respect to the number
of clauses and with respect to formatting (lots of ad hoc
indentation and line breaks). Through high-fidelity pretty-
printing of the method containing this if-statement, SPORK
precisely reproduces said formatting. In contrast, JDIME’s
pretty-printer both changes the indentation from 4 spaces
to 2, and collapses the entire first condition into a single
line of 280 characters, completely ruining readability. This
also applies to AUTOMERGEPTM by virtue of using JDIME’s
pretty-printer.

Our manual analysis confirms that the small diff sizes
for SPORK’s merges can be attributed to the SPORK’s high-

i f ( parentContext != null
&& parentContext . o b j e c t != null
&& ( ” java . u t i l . ArrayList ” . equals ( parentName )
| | ” java . u t i l . L i s t ” . equals ( parentName )
| | ” java . u t i l . C o l l e c t i o n ” . equals ( parentName )
| | ” java . u t i l .Map” . equals ( parentName )
| | ” java . u t i l . HashMap” . equals ( parentName ) ) ) {

parentName = parentContext . o b j e c t . ge tClass ( ) .
getName ( ) ;

i f ( parentName . equals ( parentClassName ) ) {
param = parentContext . o b j e c t ;

}
}

(a) SPORK’s output, identical to the developer merge

i f ( parentContext != null && parentContenxt . . .
parentName = parentContext . o b j e c t . ge tClass ( ) .

getName ( ) ;
i f ( parentName . equals ( parentClassName ) ) {
param = parentContext . o b j e c t ;
}
}

(b) JDIME’s/AUTOMERGEPTM’s output. The entire condition
has been written out on a single 280 characters long line
(note truncation: . . . ), which would not be acceptable for the
developer.

Fig. 18: Comparison between SPORK’ and JDIME’s format-
ting preservation on part of file merge C5

fidelity pretty-printing that preserves the original indenta-
tion, style and formatting, as explained in Section 3.5. SPORK
is able to copy the original source code of certain elements
involved in a merge and print it as-is into the output file.
This is in contrast to JDIME and AUTOMERGEPTM, which
only perform low-fidelity pretty-printing with its own for-
matting style.

We use a Friedman test to determine if further analysis of
the line diff sizes is relevant, with the null hypothesis that
the results from the different tools are the same. The test
yields a p-value of 0 with machine precision, so we reject
the null hypothesis and proceed with further analyses.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H7
0 : There is no difference between the line diff

sizes of file merges produced by SPORK and JDIME
H7

a : There is a difference between the line diff sizes
of file merges produced by SPORK and JDIME

The test yields a p-value of 1.85e-213, and we therefore
accept the alternative hypothesis that there is a difference
between the line diff sizes of merges produced by the tools.
The RBC is -0.963, indicating that SPORK produces merges
with lesser line diff sizes than JDIME.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H8
0 : There is no difference between the line diff

sizes of file merges produced by SPORK and AU-
TOMERGEPTM
H8

a : There is a difference between the line diff
sizes of file merges produced by SPORK and AU-
TOMERGEPTM

The test yields a p-value of 1.85e-213, and we therefore
accept the alternative hypothesis that there is a difference
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between the line diff sizes of merges produced by the tools.
The RBC is -0.963, indicating that SPORK produces merges
with lesser line diff sizes than AUTOMERGEPTM.

We use a Friedman test to determine if further analysis of
the character diff sizes is relevant, with the null hypothesis
that the results from the different tools are the same. The test
yields a p-value of 0 with machine precision, so we reject the
null hypothesis and proceed with further analyses.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H9
0 : There is no difference between the character

diff sizes of file merges produced by SPORK and
JDIME
H9

a : There is a difference between the character diff
sizes of file merges produced by SPORK and JDIME

The test yields a p-value of 1.29e-199, and we therefore
accept the alternative hypothesis that there is a difference
between the character diff sizes of merges produced by the
tools. The RBC is -0.929, indicating that SPORK produces
merges with lesser character diff than JDIME.

We use a two-sided Wilcoxon signed-rank test to test the
following hypothesis:

H1
00: There is no difference between the character

diff of file merges produced by SPORK and AU-
TOMERGEPTM
H1

a0: There is a difference between the character
diff of file merges produced by SPORK and AU-
TOMERGEPTM

The test yields a p-value of 2.26e-205, and we therefore
accept the alternative hypothesis that there is a difference
between the character sizes of merges produced by the tools.
The RBC is -0.944, indicating that SPORK produces merges
with lesser line diff sizes than AUTOMERGEPTM.

Answer to RQ3. SPORK preserves formatting to a
greater extent than JDIME and AUTOMERGEPTM. SPORK
produces smaller line and character diffs in more than
90% of cases with median diff size reductions of 75%
and above.

5.4 Recapitulation
In our experiments, we have answered three research ques-
tions targeting different facets of structured merge: con-
flicts, running times and formatting preservation. We have
systematically and quantitatively compared our contribu-
tion, SPORK, against the relevant state-of-the-art, JDIME and
AUTOMERGEPTM. We summarize the quantitative results in
Table 11. Regarding conflicts (RQ1), SPORK performs better
than JDIME and on par with AUTOMERGEPTM. Regarding
running times (RQ2), SPORK is slightly faster in the median
case, but more importantly reduces both amounts and mag-
nitudes of excessive running times. Regarding formatting
preservation, which is our main contribution, SPORK de-
creases the formatting changes by an order of magnitude.
According to this evaluation, SPORK can be considered to be
pushing the state of the art of software merging.

6 DISCUSSION

The results of our experiments indicate that SPORK performs
well overall. In this section, we discuss the limitations we

SPORK JDIME APTM

RQ1:
Conflicts

# considered merges 255 255 255

# files with conflicts 125 191 145

# conflict hunks 227 376 245

# conflicting lines (total) 2446 13975 6635

# conflict sizes ≥ 20
LOC

24 52 45

RQ2:
Running
times

# considered merges 1667 1667 1667

median running time 1.18s 1.32s 1.48s

total running time 2435s 4937s 5388s

# running times < 0.5s 0 52 38

# running times ≥ 4s 53 248 285

RQ3:
Formatting

# considered merges 1402 1402 1402

median line diff size 65 308.5 314.5

median char diff size 528 2181 2430

TABLE 11: Summary of our quantitative results.

identified, as well as the threats to the validity of our
experiment.

6.1 Limitations of SPORK

SPORK has two limitations when it comes to handling con-
flicts. The first one is the problem with move and delete
conflicts, which are currently handled with textual represen-
tations of the subtrees involved. Move conflicts in particular
are difficult to handle, and pose a problem that is introduced
solely due to SPORK being move-enabled. While there are
file merges in the results that SPORK can merge due to
being move-enabled, such as method renaming, it is unclear
whether the benefits outweigh the drawbacks. Therefore, a
future study to compare move-enabled merge to non-move-
enabled merge is called for.

The second conflict-related limitation is that SPORK ig-
nores so-called delete/edit conflicts, which occur when one
revision deletes a subtree where the other revision performs
edits. In 3DM-MERGE, such a deletion silently overrides any
edits in the subtree [15], and SPORK has no additional mea-
sure in place to detect such conflicts. This limitation is thus
inherited from 3DM-MERGE. While detecting a delete/edit
conflict in 3DM-MERGE is possible through post-processing
of the change set [15], finding the correct way to represent
it in the merged AST is less straightforward and requires
non-trivial extensions of SPORK. Combined with the find-
ings presented in the case studies in Section 5.1, more in-
depth analysis of conflict behavior along the lines of those
conducted by Cavalcanti et al. [30] and Tavares et al. [40]
is therefore necessary to draw accurate conclusions about
conflict handling.

Furthermore, there are limitations in SPORK’s high-
fidelity pretty-printing, which is a fundamentally hard
problem [12]. While high-fidelity pretty-printing is one
of SPORK’s primary advantages over the other structured
merge tools, it is not perfect. In the current implementa-
tion, high-fidelity pretty-printing is only enabled for type
members and comments that stem from a single revision.
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More granular elements are printed with low-fidelity pretty-
printing. This often causes SPORK to alter formatting in un-
desirable ways, such as by printing redundant parentheses
not present in the original source code [41], or by failing to
reproduce ad-hoc indentation like JDIME does in Figure 18.
To sum up, while SPORK greatly improves over the related
work with respect to formatting and readability of merges,
the difficulty of the problem calls for future research and
engineering about formatting preservation.

SPORK also exhibited 34 crashes in the experiments,
indicating unhandled corner cases. It should be noted that
15 of these errors were caused by parse errors in SPOON,
and were thus completely outside of SPORK’s control.

6.2 Threats to Validity
The primary threats to external validity are the diversity and
representativeness of the dataset, as defined by Nagappan
et al. [42]. The diversity of the dataset is a critical aspect
enabling the results to generalize. Our dataset consists of
open-source JAVA projects from the GITHUB platform, which
means that the results do not necessarily generalize to other
platforms or closed-source projects. Discarding projects and
merge scenarios that failed to build with MAVEN also limits
the diversity of the dataset, both by honing in on projects
using MAVEN and by enforcing that the projects build.

A threat to representativeness is the fact that our
methodology can only discover merge scenarios that are
explicitly present in the commit history, which notably ex-
cludes merges that have been squashed or occurred during
rebasing [1], [43]. Furthermore, as no project was allowed
to contribute more than 15 merge scenarios, the dataset is
not representative of the population of merge scenarios in
terms of proportions. This is however necessary, as trial
runs of the experiments without this restriction had a few of
the largest projects completely determine the outcome. By
limiting the amount of merge scenarios per project, smaller
projects with fewer merge scenarios are also allowed to
meaningfully impact the results. This makes the results
more representative of the population of projects rather than
the population of merge scenarios.

There are three primary threats to internal validity, all
of which are related to the execution of the experiments.
First, running time measurements are not perfectly reliable
because of the underlying variance of the system, even with
10 repetitions of each merge. Second, the experiment scripts
are relatively complex, and there is a possibility that they
contain errors. To mitigate such risks, all our benchmark
scripts are made publicly available in our online appendix25.
Third, the results are only valid for one set of tuning
parameters, and these are not necessarily optimal for any
of the tested tools. Notably, the experiments were executed
with JDIME’s default settings. This for example means that
its lookahead heuristics for identifying renamed methods
and shifted code were not enabled, which if enabled could
have helped avoid some conflicts at the cost of increased
running time [23].

The 83 file merges excluded on the basis of at least one
tool exhibiting a merge failure also pose a threat to validity.
As the overlap in failing file merges is small between the

25. https://github.com/slarse/spork-experiments

tools, there is a possibility that these exclusions are more
advantageous for some tools than others. For example,
excluding a file merge where tool A times out benefits the
running time results of tool A. Similarly, excluding a file
merge where tool B crashes or produces an empty file can
mask poor formatting preservation or large amounts and
sizes of conflicts, potentially benefiting tool B.

7 RELATED WORK

Merging of source code is an active research field. This
section presents the most closely related work on merge
tools in Section 7.1, and other approaches to assist in the
merging of code in Section 7.2.

7.1 Structured and semistructured merge
This section outlines related work on structured and
semistructured merging. Section 7.1.1 presents structured
diff algorithms, Section 7.1.2 presents complete structured
merge tools and Section 7.1.3 presents related work on
semistructured merge.

7.1.1 Structured diff algorithms
The distinction between an unstructured diff algorithm and
a structured one is that the former operates on raw text,
while the latter operates on some form of structure that the
text encodes [3]. Most often, that entails some form of tree
structure, ranging from ordered trees to represent structured
text documents [44] to fully resolved ASTs [26]. More gen-
eralized graph representations can also be utilized [3], [45].

LADIFF represents one of the earliest structured diff
algorithms that can deal with insertions, deletions, updates
and moves [44]. It targets structured text documents, such
as LaTeX and HTML. The algorithm relies heavily on an
assumption that each leaf node in a tree T1 has at most one
highly similar leaf node in another tree T2. This makes it
unsuitable for source code differencing.

CHANGEDISTILLER improves upon LADIFF by removing
the assumption of unique matchings for leaf nodes [46],
making it more suitable for source code differencing. Leaf
nodes are however represented as text, meaning that there
is still room for increased granularity.

GUMTREE is a structured diff algorithm that like LADIFF
and CHANGEDISTILLER can operate on insertions, deletions,
updates and moves [26]. However, it operates on a fully
resolved AST, making it more granular. We make use of
GUMTREE in our own work.

CALCDIFF is another structured diff algorithm that op-
erates on a control flow graph instead of an AST [45]. It
is specifically designed to target object-oriented languages,
and in particular with static code analysis in mind, such as
being able to predict test coverage changes based on changes
to the production source code.

7.1.2 Structured merge tools
Structured merge tools typically make use of a structured
diff algorithm to identify changes across revisions, and
based on that information use varying strategies for com-
puting a merge. The topic was first studied in the early
1990s [10].

https://github.com/slarse/spork-experiments
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JDIME is a three-way structured merge tool for JAVA
that implements its own tree differencing and merging
algorithms [4], [11]. The matching step is simplistic and can
only detect insertions and deletions. A heuristic lookahead
mechanism built on top of the matching does however allow
for limited move and update detection [23]. The work on
JDIME is closely related to our own work, and we have
drawn a great deal of inspiration from it. What sets our
work apart is more powerful tree matching, a focus on
providing minimal textual diffs with high-fidelity pretty-
printing, and overall more modern components allowing
support for newer versions of JAVA.

Another approach to structured merge is to use a generic,
textual representation of ASTs, and then merge with a
standard line-based merge algorithm [32]. The proposed
algorithm can work either with unique identifiers stored
across revisions to avoid the need for tree differencing, or
use a differencing algorithm such as GUMTREE to compute
matchings.

3DM is a move-enabled three-way merge tool designed
for XML documents, with a novel merge algorithm that is
applicable to any form of ordered tree [15]. It operates on
units of small node contexts of three nodes; a parent node,
and two of its children in the order they appear in its child
list. This makes the merge granular, and it is also efficient
with a time complexity of O(n ∗ log(n)). We implement the
merge algorithm from 3DM in our own work.

Another approach for merging XML documents is to
apply diffs computed on one version of a document to
another version of it [47], [48]. This approach has the benefit
of not requiring all three revisions to be present on the
same machine, which may prove useful in situations where
bandwidth is highly limited. It is however by nature less
precise than a traditional three-way merge, such as the one
implemented by 3DM.

7.1.3 Semistructured merge tools

Semistructured merge tools represent an attempt to find a
middle-ground between structured and unstructured merg-
ing in terms of accuracy and running time performance [20].
The idea is to merge high-level elements such as method
headers structurally, and use unstructured merge within
fine-grained code elements such as method bodies.

FSTMERGE is the earliest example of semistructured
merge [19], and provides a framework for implementing
semistructured merge tools. Merge tools built on FSTMERGE
have been shown to improve upon unstructured merge for
JAVA, PYTHON and C# [20], [21], [22]. An implementation
for JAVASCRIPT also exists, but the approach of semistruc-
tured merge yields significantly smaller improvements for
JAVASCRIPT than it does for a language like JAVA [40].

INTELLIMERGE presents a different approach to
semistructured merge for JAVA [25]. It uses a lightweight
graph to represent the overall structure of a program, while
keeping method bodies in textual form. While graph-based
merging techniques typically suffer from excessive running
times [25], [26], INTELLIMERGE is shown to be even faster
than a comparable specialization of FSTMERGE.

7.2 Other Approaches
Orthogonally to the development of better merge tools,
there are two other major approaches to assisting the merg-
ing of code. The first of these is conflict resolution helpers. The
most straightforward of such tools are simple visualizers
of conflicts, such as KDIFF3, MELD and WINMERGE. More
involved tools may provide collaborative online environ-
ments for solving conflicts [49], automated suggestions for
which developers are best equipped to solve some given
conflict [50], replaying of individual edits [51] and even
synthesizing of solutions to conflicts [31].

The second major approach is to avoid conflicts by
predicting them before they occur. Workspace awareness
tools such as SYDE [52], PALANTIR [53], CASSANDRA [9] and
CRYSTAL [8] monitor the workspaces of individual devel-
opers and try to predict where conflicts may occur with
other developers. This is typically done by preemptively
merging developers’ branches with each other, with some
variations in the exact mechanisms, the merge tools used
and the amount of validation of the merged systems. A more
recent trend is to do lightweight feature analysis in order to
predict conflicts [6], [29], [35], [54], or predict the difficulty
of resolving a conflict that has already manifested [55]. This
can potentially enhance workspace awareness tool accuracy
while also reducing computational cost.

8 CONCLUSION

In this paper, we have presented a novel structured merge
system for JAVA, called SPORK. SPORK, uniquely based on
the 3DM algorithm, embeds essential domain knowledge of
the JAVA programming language in order to minimize the
amount of conflicts and the impact on formatting. We have
presented a systematic and large scale empirical evaluation,
showing that SPORK makes significant improvements to key
metrics of merging, including running times and preserva-
tion of source code formatting.

We observe that formatting is an important aspect of
source code that developers care deeply about, and plays
a prominent role in readability and maintenance. As such,
merge tools that do not preserve the formatting that devel-
opers have put in place are unlikely to be widely adopted.
While SPORK presents a major improvement over compa-
rable tools in terms of preserving formatting, it still in
part makes use of low-fidelity pretty-printing that alters
formatting. We believe that future research on structured
merge should focus on improving formatting preservation
even further, as without near perfect preservation of format-
ting, real-world applicability of structured merge remains
limited.
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