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A Benchmark Framework for Multi-Region
Analysis of Vesselness Filters

Jonas Lamy, Odyssée Merveille, Bertrand Kerautret, Nicolas Passat

Abstract— This paper is an updated version of [1], follow-
ing the correction of numerical errors. Vessel enhancement
(aka vesselness) filters, are part of angiographic image
processing for more than twenty years. Their popularity
comes from their ability to enhance tubular structures while
filtering out other structures, especially as a preliminary
step of vessel segmentation. Choosing the right vesselness
filter among the many available can be difficult, and their
parametrization requires an accurate understanding of their
underlying concepts and a genuine expertise. In particular,
using default parameters is often not enough to reach
satisfactory results on specific data. Currently, only few
benchmarks are available to help the users choosing the
best filter and its parameters for a given application. In this
article, we present a generic framework to compare vessel-
ness filters. We use this framework to compare seven gold
standard filters. Our experiments are performed on three
public datasets: the hepatic Ircad dataset (CT images),
the Bullit dataset (brain MRA images) and the synthetic
VascuSynth dataset. We analyse the results of these seven
filters both quantitatively and qualitatively. In particular,
we assess their performances in key areas: the organ of
interest, the whole vascular network neighbourhood and
the vessel neighbourhood split into several classes, based
on their diameters. We also focus on the vessels bifur-
cations, which are often missed by vesselness filters. We
provide the code of the benchmark, which includes up-
to-date C++ implementations of the seven filters, as well
as the experimental setup (parameter optimization, result
analysis, etc.). An online demonstrator is also provided
to help the community apply and visually compare these
vesselness filters.

Index Terms— Angiographic imaging, vessels, image en-
hancement/restoration, computed tomography, magnetic
resonance imaging (MRI).

I. INTRODUCTION

ANGIOGRAPHIC imaging provides information (posi-
tion, size and shape of vessels) that can help clinicians to

diagnose and perform follow-up tasks related to cardiovascular
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Fig. 1. Vessel enhancement (right) applied on a VascuSynth synthetic
volume with MRI artifacts (left).

diseases. The ability to efficiently analyse the vascular struc-
tures in these data is then of high interest. In this context, the
segmentation of vascular networks from angiographic images
is the key step for further visualization and analysis. Yet
crucial, this step remains an open problem, specifically in 3D
images. Indeed, vessels are thin, elongated structures sparsely
distributed in the image. They are also poorly contrasted,
especially when reaching the image resolution, or due to
physiological phenomena (e.g. flow turbulence). The problem
is even more difficult in pathological cases, where the usual
anatomical hypotheses are sometimes no longer satisfied.

Popular techniques used to produce angiographic images,
such as X-ray Computed Tomography Angiography (CTA) [2]
and Magnetic Resonance Angiography (MRA) [3] are often
undermined with poor vessels contrast and low signal-to-noise
ratio (SNR), especially when they are used without contrast
agent injection. MRA may be preferred over CTA as it is non-
ionising; however the images present additional artifacts due
to the magnetic field effects, such as signal inhomogeneity in
tissues of the same nature. Finally, the acquisition procedure
can also induce other artifacts, e.g. ghosting in MRA that
appears during acquisition when the patient cannot hold his/her
breath for a long time. The use of a contrast agent yields
better images. However multiple physical and physiological
parameters have to be considered for determining the adequate
timing between the injection and the acquisition in order to
get optimal contrast between the vessels of interest and the
organ.

There is a vast literature dealing with angiographic image
analysis. A complete review is beyond the scope of this
article; see [4]–[6] for surveys on vessel segmentation and
tracking. Many of the methods presented in these surveys—
both “classical” and deep learning ones—rely on a preliminary
step of vessel filtering / enhancement before carrying out their
own processing. It is important to note that these vesselness
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filters do not require any annotation to be computed, contrary
to supervised machine learning approaches. They are thus even
more interesting when no annotated dataset is available, which
is common in 3D vascular-related applications.

A. Vessel enhancement
Vesselness filters refer to operators designed to increase the

vessel contrast by enhancing the blood signal and/or removing
the signal of non-vessel structures. An example of vesselness
filter is depicted in Fig. 1. The normalized filtering result can
usually be interpreted as the probability of voxels to belong
to a blood vessel, hence the terminology “vesselness”.

One of the first vessel enhancement filters proposed in the
literature was the Sato filter [7]. It uses the eigenvalues of the
Hessian matrix of the angiographic image to analyse the local
curvature of the voxel intensities and enhance tubular shapes.
Frangi et al. [8] proposed a similar but improved formula-
tion, which is often considered as the current gold standard.
Other Hessian-based formulations were further developed by
Meijering et al. [9], Jerman et al. [10] and Zhang et al. [11].

Alternatively, some methods compute the eigenvalues on
different formulations of structure tensors, such as OOF (Op-
timally Oriented Flux) [12] and phase tensors [13].

Other methods use mathematical morphology paradigms to
enhance vessels, based on geometrical properties. This is the
case of RORPO (Ranking the Orientations of Robust Path
Openings) [14], that relies on rank filtering of path-opening
responses in the 3D principal directions.

Finally, some vesselness filters are based on diffusion frame-
works, such as HDCS (Hybrid Diffusion with Continuous
Switch) [15] that handles the trade-off between edge enhance-
ment diffusion and coherence-enhancing diffusion depending
on the local geometry. Other strategies that exploit the Frangi
vesselness to choose smoothing directions [16] may also be
mentioned. These filters have good performances, but require
additional parametrization and generally induce higher com-
putational costs.

A recent trend in the context of angiographic image prepro-
cessing for further deep learning-based segmentation consists
of designing features that provide necessary conditions of
vesselness. Indeed, based on the assumption that many features
may be combined as input of a neural network architecture
[17], an operator that carries only a part of the information
characterizing vessels can be relevant. A representative exam-
ple of such operators is LIOT [18] that defines an ordering
of intensity values in principal orientations, thus providing
a qualitative assessment of gradient-like information. (It is
worth mentioning that this approach presents several common
properties with RORPO, namely the use of orientation-based
responses and the ordering of these responses, but that it
provides 2d output images in dimension d, by contrast with
RORPO that provides only one image.) These filtering ap-
proaches are generally not natively designed to characterize
vessels, but more often to tackle issues related to deep learning
image analysis, e.g. the robustness to inter-dataset contrast
variation. Such operators, although useful for certain kinds of
segmentation approaches, are not exactly vesselness operators
and they fall out of the scope of our study.

B. Motivation and purpose

Vesselness filters are numerous, but none of them is able to
perform optimally on all modalities and organs, especially as
the definition of optimality depends on the targeted applica-
tion. In this context, choosing the right filter for a specific task
is difficult. Moreover, in the literature, most filters are tested
either on toy examples or private datasets, which forbids the
reproduction of the results and the comparison with new filters.

Our purpose is to tackle these issues. In the proposed
framework, we compare seven vesselness filters, namely Sato,
Frangi, OOF, Meijering, Jerman, Zhang and RORPO, de-
scribed in Sec. II-D, based on a two-step parameter optimiza-
tion process discussed in Sec. II-E.

These filters are evaluated on three public datasets, de-
scribed in Sec. II-A: the “3D-IRCADb 01” CT dataset avail-
able on the Ircad website1, the Bullitt/TubeTK MRA dataset
available on the Kitware website2 and a synthetic dataset3 from
the VascuSynth software [19].

The Ircad dataset presents vessels of widely different shapes
and sizes. The Bullitt dataset exhibits long and tortuous small
vessels. The modified VascuSynth dataset exhibits challenging
tissues and vessels contrast. This synthetic dataset was added
to include images with a controlled environment and complete
ground truth (especially for small vessels and bifurcations),
compared to real datasets with imperfect ground truth.

We study the behaviour of these filters in 6 regions of
interest (ROIs) described in Sec. II-B. First, we assess the
results in a global area to account for all possible sources
of errors. Second, we focus on the vessel neighbourhood to
ignore errors that may appear far from the vessels and may
be irrelevant in some applications (e.g. if a post-processing is
available to avoid border effect). We also refine this analysis
by studying the filter performances separately depending on
the size of the vessels (large, medium, small). Finally, we
explore the bifurcation areas, where vesselness filters are
usually assumed less efficient.

No additional pre-/post-processings have been added in this
benchmark, as our goal is to compare the actual filters, with
no bias induced by other operators.

The flow of our proposed framework is illustrated in Fig. 2
and Alg. 1.

C. Related works and novelty

Two vesselness filter benchmarks were proposed in the
literature, by Luu et al. in 2015 [20], and by Phellan and
Forkert in 2017 [21]. Our benchmark differs on several points.

First, reproducibility and reusability is a cornerstone of our
proposal. We designed a modular and re-usable benchmark
framework which allows the user to:

• apply and compare several vesselness filters;
• optimize the parameters of each filter with respect to a

chosen metric;

1https://www.ircad.fr/fr/recherche/3d-ircadb-01-fr
2https://data.kitware.com/\#collection/

591086ee8d777f16d01e0724/folder/
58a372fa8d777f0721a64dfb

3https://vascusynth.cs.sfu.ca/Data.html
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Fig. 2. Flowchart of the parameter optimization strategy. P ⋆ is the set
of optimal parameters for filter F on dataset D.

• evaluate the filter performances in specific ROIs;
• easily add extra vesselness filters via a Command Line

Interface (CLI);
• test filters on any images from the online demonstration

(without any installation)4;
• reproduce and share results through structured and

parametrized benchmark experiments;
• aggregate metric values, computed for each ROI, with

possible export for further exploitation.

We chose well-known, public datasets representing different
applications and image modalities (hepatic CT images and
brain MRA images), as well as a synthetic dataset modified to
create volumes with realistic, non-homogeneous contrast and
intensities between tissues. We aim at creating a challenging
environment in order to highlight the differences between the
behaviours of the assessed filters. We also consider three filters
not evaluated in the previous benchmarks, namely Meijering,
Jerman and Zhang. Additionally, we optimize the filter param-
eters (scale and intrinsic parameters) on all volumes of each
dataset, which was not considered in previous benchmarks.
Finally, we investigate the bifurcation enhancement, which is
an important, yet infrequent topic on whole datasets.

Our main contributions are then the following: a C++
benchmark framework, a reproducible quantitative comparison
of seven optimized vesselness filters and an anatomical multi-
scale analysis based on key ROIs from the whole organ down
to the vessels bifurcations.

This article is an improved version of the conference paper
[22] and includes novel elements. Regarding the data, the
isotropic preprocessing of the Ircad images has been improved,
leading to a higher resolution, whereas the VascuSynth images
now contain realistic artifacts, leading to more challenging
data (contrast and noise). Moreover, a new MRA dataset
has been added to assess the filter performances on another

4https://kerautret.github.io/LiverVesselnessIPOLDemo

Algorithm 1 Benchmark algorithm
Input:
Set of images I = {I1, . . . , IN}
Set of ground truth GT = {GT1, . . . , GTN}
Filter F
Region of interest ROI
Parameter set P = {Pscale, Pintr}
Metric M
Algorithm:

for i in [1, N ] do
Ri ← ApplyF ilter(F, Ii, P )
Rmasked

i , GTmasked
i ← ApplyROI(Ri, GTi, ROI)

mi ← ComputeMetric(Rmasked
i , GTmasked

i ,M)
end for

Output:
Mean metric value 1

N

∑
i mi

application and image modality. Regarding the framework,
we improved the parameter optimization scheme to be more
realistic by mimicking the modus operandi usually considered
in real applications. We also corrected a bias existing in our
previous experiments by refining our analysis within the vessel
neighbourhood with respect to the size of the vessels. We
added a new metric, the PSNR (Peak Signal-to-Noise Ratio),
in order to evaluate the filter performances independently of a
thresholding process. Finally, we give a correct 3D formulation
of Meijering filter with a proof of the parameter optimality
(Appendix I).

II. MATERIAL AND METHODS

A. Data
1) Ircad dataset: The Ircad dataset is composed of 20 3D

chest CTA images (10 males, 10 females) in DICOM format.
The image resolution range from 0.56 to 0.87 mm for the x,
y axes and from 1.00 to 4.00 mm for the z axis. The size of
the images is 512× 512 voxels in the axial plane and ranges
from 74 to 260 voxels for the z axis. The dataset is endowed
with manual segmentations of organs, including the liver and
both vena cava and portal vein as well as tumors.

Even thought some defects can be observed in this dataset,
such as inconsistent naming conventions and erroneous voxels
in ground truth masks (overestimated and/or missed vessels),
the Ircad dataset is currently the best public dataset of CT
scans available for liver vessel segmentation.

2) Bullitt dataset: The dataset available in the TubeTK
framework website consists of 100 healthy subjects imaged
by a 3T MRI scanner. It provides images for T1 (1 × 1 × 1
mm3), T2 (1× 1× 1 mm3), DTI (2× 2× 2 mm3) and MRA
(0.5 × 0.5 × 0.8 mm3). In particular, 33 MRA images are
provided with their manually annotated centerlines and radii.
The volumic vessel annotations can be reconstructed using the
TubeTK toolkit from these provided annotations. This auto-
matic reconstruction leads to highly underestimated volumic
vessel annotations. Sanchesa et al. [23] manually corrected
these reconstructions, leading to better volumic annotations.
We used these annotations in our benchmark.

Finally, as this dataset was acquired for research purpose,
the images present a strong quality (very few artifacts, very
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high contrast). In particular, contrary to most angiographic
images acquired in clinical conditions, these images do not
need filtering. As this dataset is the only public MRA dataset
with annotation available, we chose to include it in the
benchmark, but we altered the image quality to mimic clinical
conditions. In particular, we added artifacts similar to surface
coil flare and Rician noise with σ = 4.

3) VascuSynth dataset: The VascuSynth dataset is com-
posed of 120 images of simulated vascular trees with varying
bifurcation numbers. The image size is 101×101×101 voxels
with an isotropic 1.00 mm resolution. The dataset is composed
of vascular trees with a constant null value background and
a listing file providing vessel and bifurcation locations for
each image. We modified this dataset in order to integrate
MRA properties. More precisely, we added four types of
artifacts: a gradual variation of vessels intensity, a global
variation of intensities due to the lack of homogeneity of the
magnetic field, Rician noise typical of MRI [24] and bright
Gaussian artifacts to simulate non-vessel structures and make
the segmentation task more complex.

A VascuSynth image with such artifacts is shown in Fig. 1.
These modifications lead to three variations of the synthetic
dataset with increasing noise level (σ ∈ {2, 4, 6}).

B. Regions of interest

Analysing the results in several ROIs provides a useful
insight on the filter performances depending on the targeted
application and the available post-processing strategy. We
observed in our previous work [22] that some filters may
induce false positive responses in areas far from the vascular
structures (e.g. the organ borders), whereas providing good
results in the vascular areas. When a global automatic filtering
/ segmentation strategy is used, such filters may not be a
good choice. However, if semi-automatic or manual post-
processings are available, or if the goal is vessel tracking, then
these filters may be relevant.

We also observed that some filters may have good perfor-
mances on large vessels but behave poorly on small ones,
which still leads to good average performances. In some
applications, a good detection of small vessels is of very
high interest. In this case, it is important to rely on metrics
computed specifically on small vessels, instead of on the whole
image, to choose an adequate filter.

Finally, the bifurcation areas are often poorly enhanced by
filters. When considering tracking applications, such areas are
of paramount interest to handle the topological modifications
of centerlines.

Based on these observations, we study the behavior of each
filter on 6 ROIs defined as binary masks, exemplified in Fig. 3:

• a global mask Mglo, that corresponds to the organ of
interest volume (the liver for the Ircad dataset, the brain
for the Bullitt dataset and the whole image for the
VascuSynth dataset);

• a vascular neighbourhood mask Mvasc, corresponding to
the union of areas inside the vessels and areas close to
the vessels (see details on paragraph ROI construction);

(a) Mglo (b) Mvasc (c) M
large
vess

(d) Mmedium
vess (e) M small

vess (f) Mbif

Fig. 3. The six ROIs (in red), illustrated on an Ircad image (in white).

• scale-based vascular neighbourhood masks M large
vess ,

Mmedium
vess and M small

vess which provide a partition of Mvasc
into three areas with respect to the radius of the vessels;

• a mask Mbif which focuses on the vessel bifurcations.
In particular, we have Mbif ⊂ Mvasc ⊂ Mglo and Mvasc =

M large
vess ∪Mmedium

vess ∪M small
vess .

ROI construction: The vascular neighbourhood masks are
built with respect to the minimal, mean and maximal vessel
diameters of each dataset: [0, 3], ]3, 6] and ]6,∞[ mm, re-
spectively for the Ircad dataset, and [0, 1], ]1, 2] and ]2,∞[
mm, respectively for the VascuSynth dataset. The brain vessel
diameters in the Bullitt dataset do not vary much; thus we
used only two masks: [0, 0.513] mm (M small

vess ) and ]0.513,∞[
mm (Mmedium

vess ).
The vascular (Mvasc) and vascular neighbourhood (M small

vess ,
Mmedium

vess and M large
vess ) masks are obtained by dilating the vessel

ground truth by a ball with a diameter which varies according
to the size of the vessels. These values were experimentally
set to 9, 7, 5 voxels for the Ircad dataset; 5, 3 voxels for the
Bullit dataset; and 7, 5, 3 voxels for the VascuSynth dataset, re-
spectively. When two vascular neighbourhood masks overlap,
the overlapping region is assigned to the mask corresponding
to the larger vessel neighbourhood. This guarantees that the
three masks constitute a partition of Mvasc while preserving
the coherence of the induced subdivisions.

The Mbif mask is built from the bifurcation points extracted
from the annotated centerlines, which are dilated by a factor
kρ, where ρ is the vessel radius and k = 3 if ρ ≤ 1 voxel and
2 otherwise. An intersection with the volumic vessel ground
truth is finally performed to ensure that Mbif is included in the
vessels.

C. Metrics

The benchmark implements several metrics computed from
the confusion matrix between the thresholded filter output and
the corresponding binary ground truth: true positives (tp), true
negatives (tn), false positives (fp), false negatives (fn).

We compute the Dice and the Matthew’s correlation coef-
ficients (MCC). The Dice (or F1 score) is more common in
the literature; however as highlighted by Chicco and Jurman
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[25], the MCC accounts for true negatives and is a more stable
measure when it comes to sparse structures such as vessels:

Dice =
2tp

fp + fn + 2tp

MCC =
tp · tn− fp · fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)

We also compute the Peak Signal-to-Noise Ratio (PSNR),
which does not depend on the thresholding of the filter output.
The PNSR is usually computed to evaluate a denoising result,
which is not the case here, as the ground truth is binary. In this
benchmark, we use the PSNR as a similarity metric defined
as follows:

PSNR = log10

( (maxx I(x))
2

MSE(IGT, IFilter)

)
with I the normalized input image, IFilter the normalized
filtered image, IGT the binary ground truth image, and MSE
the mean squared error.

D. Filters

Most vesselness filters rely on the following assumptions.
First, vessels are bright structures surrounded by a darker
environment. Second, a multiscale analysis is required to
capture vessels of different sizes. Third, the induced scale
space is coupled with a measure able to differentiate vessels
from other structures.

1) Scale space: Different scale analyses have been pro-
posed in the literature. In this work, three types of scale spaces
have been involved.

The first scale space is the one defined by [26] which shows
the relationship between Gaussian smoothing and details per-
ception. The stronger the smoothing, the less present the small
structures. In particular, for tubular structures, the standard
deviation σ of the Gaussian kernel is assumed proportional
to the diameter of the putative tubular object. This Gaussian
scale space is most of the time coupled with Hessian-based
filters. Indeed, the curvature information is a good descriptor
of tubularity. Such information is contained in the Hessian
matrix defined for a 3D point (x1, x2, x3) as:

H(f) =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 =


∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

∂2f
∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2∂x3

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂x2

3


Both operations can be combined using convolutions of second
order Gaussian kernels. This process also ensures that the
digital image is continuous and twice differentiable.

This strategy tends to overestimate the tubular object size.
This is a drawback in various cases, such as adjacent tubular
structures, which tend to be merged. The optimally oriented
flux (OOF) approach [12] proposes an alternative framework
in which the scale space is defined by the radius r of a sphere.
A matrix describing the local geometry is computed from the
outward gradient vector field of the image over the boundary
of this sphere Sr. The authors formulated an optimization

problem aiming at finding an optimal projection direction ρ̂
by minimizing the inward oriented spherical flux defined as:

f(x; r, ρ̂) =

∫
δSr

((v(x+ rn̂).ρ̂)ρ̂).n̂ dA = ρ̂TQr,xρ̂

with v(.) the image gradient, dA an infinitesimal area on the
surface δSr and n̂ the outward unit normal of δSr. The ith
row and jth column of Q are defined as:

qi,jr,x =

∫
δSr

((vi(x+ rn̂).ρ̂)ρ̂).nj dA = ρ̂TQr,xρ̂

Law and Chung proposed an efficient implementation in the
Fourier domain. The solution matrix Q of this minimization
problem is analogue to the Hessian without its disadvantages.
In this framework, the sphere radius r controls the scale at
which the vessels are detected.

Another way to define a scale space is to use morpholog-
ical granulometry. In mathematical morphology, the opening
operator is a composition of two basics operators: an erosion
followed by a dilation with respect to a shape called structuring
element. This operator acts as a filter that will preserve only
structures large enough to include the structuring element.
In this context, path opening [27] defines a set of flexible
structuring elements defined over a grid of adjacency that
controls the element shape. This scale space differs from the
two previous ones, as the scale here refers to the length of the
paths, instead of the vessel cross-section.

In practice, scale spaces are expressed via logarithmic scale.
Log scale spaces are computed as σi = exp(log(σmin) +
Factor.i) with i ∈ [0, NbScales]. If the scale space is defined
as a minimal and maximal bounds and number of scales
[σmin, σmax, NbScales], then Factor can be deduced from
Factor = log(σmax − σmin)/(NbScales− 1).

2) Tubularity measures: One of the most common ways to
define tubularity is to use the eigenvalues of the Hessian. Let
e1, e2 and e3 be the three eigenvectors of H(f), associated to
the eigenvalues λ1, λ2 and λ3, respectively, with |λ1| ⩽ |λ2| ⩽
|λ3|. In terms of eigen analysis, tubularity can be expressed
as follows [28]:

|λ1| ≈ 0

λ2 ≈ λ3 ≪ 0

Sato et al. [7] were among the first to use this formulation.
(N.B.: the sorting order is slightly different for Sato’s eigen-
values: λ⋆

i such that λ⋆
1 ⩾ λ⋆

2 ⩾ λ⋆
3.) When λ⋆

2, λ
⋆
3 < 0, the

eigenvector e⋆1 associated to λ⋆
1 points to the direction of the

least variation of intensity, which is also the direction of the
vessel. Then, eigenvectors e⋆2 and e⋆3 form a basis orthogonal
to e⋆1 and correspond to the vessel cross-section. The cross-
section semi-axes lengths are proportional to |λ⋆

2| and |λ⋆
3|,

respectively. The Sato vesselness makes use of an asymmetric
ratio of eigenvalues to get a high response in tubular structures,
based on the sign of λ⋆

1. It has the advantage to smooth the
filter response and suppress noise. Two parameters α1 and α2

control the strength of this asymmetry:

F =


λ⋆
c exp(− λ⋆

1
2

2(α1λ⋆
c)

2 ) λ⋆
1 ⩽ 0, λ⋆

c ̸= 0

λ⋆
c exp(− λ⋆

1
2

2(α2λ⋆
c)

2 ) λ⋆
1 > 0, λ⋆

c ̸= 0

0 λ⋆
c = 0
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with λ⋆
c = min{−λ⋆

2,−λ⋆
3}.

One year later, Frangi et al. [8] exploited the three eigenval-
ues to define a measure with more control over the geometry
of the enhanced patterns. Three measures are derived from
these eigenvalues:

Rb = |λ1|/
√
|λ2λ3|

Ra = |λ2|/|λ3|

S =
√
λ2
1 + λ2

2 + λ2
3

which discriminate blobs (Rb), plate and line structures (Ra),
and enhance low contrast structures thanks to the norm of the
Hessian (S). These three measures are unified in the following
vesselness function:

F =
(
1− exp

(
− R2

a

2α2

))
exp

(
− R2

b

2β2

)(
1− exp(− S2

2C2

))
if λ2, λ3 ⩽ 0 and F = 0 otherwise. This function is controlled
by three parameters α, β, C, making the Frangi filter the
one requiring the highest parameter tuning of our benchmark.
This method is the gold standard of numerous segmentation
applications.

For the purpose of detecting neurites in fluoroscopy, Meijer-
ing et al. [9] proposed a filter to enhance elongated structures
of one or two voxel width in a low contrast setting. This
method is parameter-free and was initially proposed in 2D;
it was then tested in 3D in [13]. However, in 3D, a formula-
tion has never been explicitly documented, and we clarify it
hereafter. The filter relies on a modified Hessian matrix H ′(f):[

αh11 + h22 + h33 h12 h13
h21 αh22 + h11 + h33 h23
h31 h32 αh33 + h11 + h22

]
The α parameter is used to steer the filter so that its ridge
is maximally flat in one direction, which is obtained when
α = −2/3 (see the proof in Appendix I). The three eigenvalues
of H ′(f) are expressed with respect to those of H(f) as:

λ′
1 = αλ1 + λ2 + λ3

λ′
2 = λ1 + αλ2 + λ3

λ′
3 = λ1 + λ2 + αλ3

for i ̸= j ̸= k ̸= i. The vesselness is then defined by:

F =

{
λmax/λmin λmax < 0
0 λmax ⩾ 0

where λmax = max{λ′
1, λ

′
2, λ

′
3} is computed at each voxel,

and λmin is the minimum of all the voxel-wise λ over the
image.

Jerman et al. proposed a vesselness function that aims to be
more robust to bifurcations and easier to parametrize, taking
inspiration from the volume aspect ratio metric used to detect
nearly spherical tensors. The function is defined by:

F =


0 λ2 ⩽ 0 or λρ ⩽ 0
1 λ2 ⩾ λρ/2 > 0

λ2
2(λρ − λ2)

(
3

λ2+λρ

)3
otherwise

where λρ is a regularized parametric version of λ3, defined to
reduce the sensitivity to weakly contrasted regions:

λρ =

 λ3 λ3 > τ maxx λ3(x)
τ maxx λ3(x) 0 < λ3 ⩽ τ maxx λ3(x)
0 otherwise

with τ ∈ [0, 1]. This produces a more homogeneous response,
even with non-homogeneous vessels intensity.

Zhang et al. proposed to improve Jerman vesselness in the
context of hepatic vessel segmentation, more specifically on
masked liver. To circumvent a high response of the filter at the
liver borders, they used a K-means classification to roughly
estimate vessel intensity, combined with a sigmoid filter to
suppress other tissues. In addition, they slightly modified the
Jerman vesselness function F by adding a multiplicative term
1− exp(− 3(λ2

1+λ2
2+λ2

ρ)

2λρ
).

Any vesselness function can be embedded into the OOF
framework. For this benchmark, we choose the geometric
mean used by its authors in their experiments on real data:

F =

{ √
|λ2 · λ3| λ2, λ3 < 0

0 otherwise

RORPO [14] is built upon the scale space defined by path
openings [27]. To capture curvilinear structures, the structuring
elements are defined as paths on an adjacency grid, which
gives flexibility over the detected geometry. The openings are
computed with structuring elements in seven orientations of
the 3D space, capturing objects of different shapes such as
blobs, line-like structures and planes. A final step consists
of classifying the different shapes using the responses in the
seven orientations. Indeed, for tubular objects, all structuring
elements are oriented along the same direction.

E. Parameter settings
Vesselness filter parameters can be classified in two types:

the scale parameters that relate to the size of the sought
vessels; and the filter intrinsic parameters, which are respon-
sible for the ability to capture the vessel shape. For instance,
Frangi vesselness has 3 parameters linked to the scale space
(corresponding to the minimal and maximal vessel sizes, and
the number of scales between both) and 3 parameters linked
to the enhancement.

When k ≫ 1 parameters have to be tuned for a given filter
(e.g. k = 6 for Frangi), finding an optimal set of parametric
values in the induced k-dimensional space is computationally
intractable. A frequently adopted solution consists of using the
default parameters suggested by the authors. However, this is
generally not a relevant policy. Here, we chose to optimize the
parameters in two steps:

1) the optimization of the scale parameters using fixed
default intrinsic parameters provided by the authors;

2) the optimization of the intrinsic parameters using the
scale parameters previously optimized.

In both steps, the optimal parameters are the ones that yield
the best average MCC in the global mask (Mglo) of the
whole dataset. This two-steps strategy, that first sets the scale
parameters, can be compared to the natural choice when in
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TABLE I
SCALE PARAMETERS FOR FILTERS USING DIAMETER-BASED SCALE

SPACE: FRANGI, SATO, MEIJERING, JERMAN, ZHANG, OOF (GRID

SEARCH INFORMATION). THE CONDITION ENSURES THAT THE SPACING

BETWEEN EACH SCALE i IS HIGHER THAN THE VOXEL RESOLUTION.

Ircad and VascuSynth
Parameter Interval Step Conditions
σmin [0.4, 1.8] 0.4
σmax [1.4, 3.4] 0.4 σmin,i − σmax,i >

1
6

mm
Number of scales [[3, 4]] 1

Bullitt
Parameter Interval Step Conditions
σmin [0.2, 1.6] 0.4
σmax [1.2, 3.2] 0.4 σmin,i − σmax,i >

1
6

mm
Number of scales [[3, 4]] 1

TABLE II
SCALE PARAMETERS FOR RORPO FILTER WITHOUT DILATION (GRID

SEARCH INFORMATION). THE CONDITION ENSURES THAT THE SPACING

BETWEEN EACH SCALE i AVOIDS THE COMPARISON OF TOO SIMILAR

PARAMETERS RANGES.

Ircad
Parameter Interval Step Conditions
Min. scale [30, 150] 10
Factor [1.1, 1.6] 0.1 20 < scalei − scalej < 200
Nb. scales [[2, 4]] 1

Bullitt
Parameter Interval Step Conditions
Min. scale [30, 90] 10
Factor [1.1, 1.5] 0.1 20 < scalei − scalej < 200
Nb. scales [[2, 4]] 1

VascuSynth
Parameter Interval Step Conditions
Min. scale [10, 90] 10
Factor [1.1, 1.5] 0.1 9 < scalei − scalej < 100
Nb. scales [[2, 4]] 1

TABLE III
INTRINSIC PARAMETERS (GRID SEARCH INFORMATION). MEIJERING

AND RORPO DO NOT HAVE INTRINSIC PARAMETERS.

Parameter Interval Step
Frangi α [0.2, 1.0] 0.2
— β [0.2, 1.0] 0.2
— C [0, 60] 30
Sato α1 [0.2, 1.0] 0.2
— α2 [1, 2] 0.2
OOF σ [0.1, 1.0] 0.1
Jerman τ [0.1, 1.0] 0.1
Zhang τ [0.1, 1.0] 0.1

practice, a user sets the scale parameters depending of the
known biological structure size. A grid search strategy was
used on these parameters; it is summarized in Tables I–II
(scale parameters) and Table III (intrinsic parameters). The
optimization strategy is as follows. Each filter is applied on
the N images of a dataset with a parameter set pj yielding
the (normalized) resulting images (Ri,j)i∈[[1,N ]]. Then, thresh-
oldings between 0 and 1 with a step of 0.005 are applied to
each Ri,j leading to 201 binary results (Bt

i,j)t∈[[0,200]]. Each
binary result is compared to the ground truth and the filter
performance on an image Ii with parameter set pj is given
by its best MCC si,j = maxt{MCC(Bt

i,j)}. Finally, for each
filter, the best mean parameter set pj is the one with the best
mean MCC, i.e. 1

N

∑
i si,j .

III. RESULTS

In this section, we present and discuss the qualitative and
quantitative results of the different filters. In addition to the
seven filters presented in Sec. II-D, we also consider a simple
thresholding approach as baseline. This baseline output is the
normalized thresholded result, where the threshold parameter
is optimized the same way as for the other filter parameters
(see Sec. II-E).

In the following, we start by analysing the results of the
filters in the global mask Mglo (Sec. III-A). Then we discuss
the results in the vascular masks Mvasc, M large

vess , Mmedium
vess ,

M small
vess (Sec. III-B). We finally focus on the results in the

bifurcation areas (Sec. III-C).

A. Global results
The ROC curves of the seven filters are presented in Fig. 4

and the quantitative results are summarized in Tables IV–VI.
Qualitative results are presented in Figs. 5–7.

Ircad: Globally, the MCC and Dice of all filters, computed
on the whole Ircad images, are low (less than 0.5). This was
expected as we only perform a filtering of complex images.
This justifies the need for a subsequent segmentation on such
images.

Qualitatively, all filters except RORPO falsely enhance the
organ border. Meijering seems to yield the worst results by
highly enhancing the liver border, while enhancing the vessels
but also noise in the liver tissue. By comparison, the baseline
retrieve well the larger vessels, but the quality of the vessels
decrease as they become smaller and disconnections become
more frequent. The baseline has difficulties retrieving the small
vessels and we observe noisy bits instead.

Quantitatively, RORPO yields the best results with a MCC
of 0.475. The baseline obtains the second-highest MCC
(0.452).

It is worth noting that, with regard to quantitative results,
a simple thresholding performs better than most of the filters
on these injected CTA images.However, this remark should be
mitigated by the fact that the baseline is missing medium and
small vessels in a larger proportion compared to the vesselness
filters. In fact all filters are better at enhancing small and
medium sized vessels.

Zhang provides the third best results (MCC = 0.434),
whereas OOF (MCC = 0.277) and Meijering (MCC = 0.232)
have the lowest performances. The best two filters (RORPO
and Zhang) show good results achieved by different means.
RORPO yields a high precision (0.666) and an average sensi-
tivity (0.379) whereas Zhang shows a high sensitivity (0.435)
and an average precision (0.515).

One should keep in mind that these results are computed
based on the best mean parameters on the whole dataset.
The optimization process thus performs a trade-off between
enhancing the vessels and decreasing the intensities of non-
vessel structures (such as the liver border).

Bullitt: Qualitatively, RORPO seems to enhance the most
vessels with a relatively low amount of noise. However, some
poor contrasted vessels in the initial image showed irregu-
lar disconnections typical of an anti-extensive filter. Some
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(d) VascuSynth, σ = 2
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(e) VascuSynth, σ = 4
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(f) VascuSynth, σ = 6

Fig. 4. Mean ROC curves of the seven vesselness filters applied on (b) the Ircad dataset, (c) Bullitt dataset and (d–f) the VascuSynth dataset for
three level of noise. ROC curves are zoomed, as vessels voxels represent 6.4% (b), 1.7% (c), and 0.2% (d–f) of the total number of voxels.

TABLE IV
QUANTITATIVE RESULTS (MEAN ± STD) IN THE GLOBAL MASK MGLO ON

THE IRCAD DATASET.
MCC Dice PSNR

Baseline 0.452± 0.129 0.468 ± 0.126 9.352± 1.247
Frangi 0.355± 0.075 0.392± 0.074 19.899± 1.624
Jerman 0.382± 0.060 0.415± 0.059 18.926± 1.186
Meijering 0.232± 0.036 0.241± 0.050 19.079± 1.392
OOF 0.277± 0.049 0.316± 0.055 19.728± 1.575
RORPO 0.475 ± 0.073 0.477± 0.076 20.349 ± 1.687
Sato 0.340± 0.056 0.380± 0.057 19.915± 1.633
Zhang 0.434± 0.085 0.462± 0.079 20.274± 1.648

TABLE V
QUANTITATIVE RESULTS (MEAN ± STD) IN THE GLOBAL MASK MGLO ON

THE BULLIT DATASET.
MCC Dice PSNR

Baseline 0.396± 0.049 0.340± 0.061 20.275± 0.732
Frangi 0.474± 0.027 0.481± 0.026 21.768± 0.510
Jerman 0.432± 0.030 0.438± 0.029 19.723± 1.051
Meijering 0.349± 0.040 0.354± 0.043 21.905± 0.463
OOF 0.417± 0.029 0.424± 0.030 21.875± 0.491
RORPO 0.543 ± 0.021 0.540 ± 0.023 21.909 ± 0.497
Sato 0.475± 0.026 0.473± 0.028 21.799± 0.466
Zhang 0.423± 0.037 0.431± 0.037 21.261± 0.847

methods enhance noise in the brain tissue more than others,
such as Jerman, Sato, Meijering, OOF. However, Jerman and
Sato highly enhance the vessels, leading to an overall good
contrast. The diameter of vess els is overestimated by Jerman,
Zhang, Meijering and, to a lesser extent, OOF; this leads to
the fusion of close vessels, aka kissing vessels (see Fig. 7).
The vessel enhancement pattern of Zhang is irregular (some
vessels are highly contrasted, some are poorly contrasted) as
Zhang is based on a K-means that introduces a different level
of enhancement depending on the class associated to neighbor

vessel pixels. The reader should note that we do not observe
organ border artifacts in this dataset, as we eroded the brain
mask in order to avoid unlabeled veins of the ground truth that
would have biased our metrics.

Quantitatively, RORPO outperforms the other filters (MCC
= 0.543). Sato (MCC = 0.475) and Frangi (MCC = 0.474)
come respectively in second and third position. While close in
MCC, Frangi recall is better than Sato (0.469 and 0.399) but
with a lower precision rate (0.498 vs. 0.585). Jerman (MCC
= 0.432), Zhang (MCC = 0.423) and OOF (MCC = 0.417)
results are better than the baseline (MCC = 0.396) , while
Meijering performs poorly (MCC = 0.349) because of a very
high false positive rate.

VascuSynth: Qualitatively, Meijering, Sato and Jerman
seem to yield the best results. However, Meijering tends to
highly enhance the noise close to the vessels, yielding an irreg-
ular contour aspect. Jerman yields a good vessel enhancement
while also enhancing a significant amount of noise. Frangi,
Zhang and Sato seem to be the best methods for filtering out
the Rician noise. In this dataset, RORPO is more sensitive to
noise as the higher the noise, the higher the enhancement of
blob-like artifacts. This was expected as we set the RORPO
dilation parameter (which handles image noise) to 0. This
choice was motivated by the fact that this parameter cannot
be optimized separately from the scale parameters. In real
applications with a high noise level, the dilation setting should
be investigated.

As the VascuSynth dataset does not present organ borders
or similar artifacts, the potential of false enhancement artifacts
is reduced compared to real datasets, except for OOF which
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TABLE VI
QUANTITATIVE RESULTS (MEAN ± STD) IN THE GLOBAL MASK MGLO ON THE VASCUSYNTH DATASET.

MCC Dice PSNR
σ = 2 σ = 4 σ = 6 σ = 2 σ = 4 σ = 6 σ = 2 σ = 4 σ = 6

Baseline 0.184± 0.136 0.143± 0.116 0.106± 0.089 0.162± 0.134 0.122± 0.114 0.089± 0.087 9.411± 0.231 9.397± 0.230 9.374± 0.229
Frangi 0.634 ± 0.051 0.577± 0.070 0.500± 0.081 0.621 ± 0.049 0.572± 0.074 0.485± 0.091 26.274± 2.813 26.496 ± 2.872 26.692 ± 2.856
Jerman 0.611± 0.064 0.565± 0.049 0.501± 0.048 0.603± 0.065 0.549± 0.046 0.464± 0.048 26.774 ± 1.296 21.758± 0.399 21.831± 0.489
OOF 0.627± 0.061 0.496± 0.065 0.449± 0.069 0.530± 0.060 0.476± 0.063 0.419± 0.067 26.324± 1.802 24.594± 1.329 22.983± 1.072
Meijering 0.538± 0.061 0.603 ± 0.059 0.565 ± 0.060 0.619± 0.064 0.599 ± 0.061 0.564 ± 0.059 26.586± 2.331 25.902± 1.889 24.821± 1.395
RORPO 0.587± 0.155 0.517± 0.119 0.366± 0.123 0.554± 0.157 0.476± 0.117 0.325± 0.113 23.236± 2.472 20.672± 1.689 18.372± 1.571
Sato 0.618± 0.046 0.559± 0.058 0.488± 0.052 0.596± 0.044 0.548± 0.058 0.464± 0.050 26.602± 2.539 26.241± 1.803 24.801± 1.285
Zhang 0.553± 0.052 0.523± 0.051 0.481± 0.065 0.531± 0.051 0.498± 0.049 0.474± 0.067 26.221± 2.805 26.360± 2.826 26.543± 2.845

TABLE VII
OPTIMAL PARAMETERS FOR THE SEVEN FILTERS AND THE THREE

DATASETS.
Parameter Ircad VascuSynth Bullitt
Parameter σ = 2 σ = 4 σ = 6

Frangi α 1 0.2 0.2 0.2 1.0
— β 1 0.6 0.4 0.4 0.4
— C 30 30 30 30 30
Jerman τ 0.1 0.2 0.2 0.3 0.2
OOF σ 1 0.1 0.1 0.1 0.1
RORPO Scale min 70 50 50 40 20
— Factor 1.3 1.1 1.2 1.4 1.3
— nbScales 4 3 2 2 4
Sato α1 0.3 0.3 0.3 0.5 0.7
Sato α2 1.6 2 1 2 1.0
Zhang τ 0.3 0.4 0.8 0.9 0.1

enhances the image border. This is explained by the vesselness
chosen for the OOF framework, which does not differentiate
plane-like from tube-like structures. Another vesselness such
as Frangi could be used in the OOF framework to avoid this
problem. Interestingly, when the noise is not well filtered out,
the vesselness filters tend to induce false tubular patterns.

Quantitatively, Frangi yields the best results for σ = 2 with
a MCC of 0.634, and Meijering for the other two levels with
a MCC of 0.603 for σ = 4 and 0.565 for σ = 6.

These good performances of Meijering are explained by the
fact that the geometry of the VascuSynth vessels exactly fol-
lows the hypothesis of the Meijering model (straight, constant-
radius vessels). Sato yields the third best results for the noise
level σ = 2 (MCC = 0.618) while Jerman performs better for
higher levels of noise (MCC = 0.565 for σ = 4 and MCC
= 0.501 for σ = 6). Nonetheless, both filters provide similar
performances as their sensitivities are similar, independently
of the noise level. The differences lie in their precision: for
high level of noise (e.g. σ = 4), Jerman shows a higher
precision (0.717 vs. 0.661) while Sato has a higher precision
for low level of noise (0.810 vs. 0.689). Overall, Frangi is
the method that best removes the noise for high noise level
with a PSNR of 26.496 and 26.692 for σ = 4 and σ = 6,
respectively. The baseline results are very poor because of
the presence of high intensity artifacts and a high intensity
non-homogeneous background in the VascuSynth data. This
motivates the use of vesselness filtering for applications with
similar hypothesis. Globally, RORPO performs the worst on
the VascuSynth dataset. It is interesting to note that Zhang
seems to be the most robust to filter noise, as its performances
remain stable when the noise level increases.

B. Vessels neighbourhood

Quantitative results of the seven filters are presented in
Tables VIII–X for the Ircad, Bullitt and VascuSynth datasets,
respectively.

Ircad: All hessian based and equivalent filters performances
drastically increase when they are computed in Mvasc since
they falsely enhance artifacts far from the vessels, which is
not taken into account in Mvasc. In this mask, Frangi and
Zhang perform the best with both a MCC of 0.535. When
looking at the filter performances according to the size of the
enhanced vessels (M large

vess , Mmedium
vess , M small

vess ), we observe that
Frangi is able to enhance large (MCC = 0.580) and medium
vessels (MCC = 0.619) correctly, but its performances drop
for small vessels (MCC = 0.460). Conversely, OOF and
Jerman correctly enhance small vessels (MCC = 0.514 and
MCC = 0.502) while yielding lower performances on large
vessels (MCC = 0.513 and MCC = 0.480).

Bullitt: Locally, the results do not change in this dataset
when evaluating them in Mvasc, compared with Mglo, as
this dataset does not contain many of non-vessel structures
that could be falsely detected. In this context, RORPO still
performs the best, followed by Sato and Frangi.

VascuSynth: Globally, the vessel enhancement is best per-
formed by Frangi, except for low level of noise where Mei-
jering performs the best. A finer analysis of the results based
on the size of the vessels reveals that Meijering and Jerman
perform better than Frangi on medium and small vessels for
low level of noise. In other cases Frangi perform much better
on Mvasc.

C. Bifurcations

Filtering results in bifurcation areas are exemplified in Fig. 6
for the VascuSynth (a–i) and the Ircad (j–r) datasets while
bifurcations and kissing vessels are considered in Fig. 7 for
the Bullitt dataset.

Qualitatively, we observe that Frangi and Sato filters show a
signal loss in the centre of bifurcations for the Ircad and Bulitt
datasets, and on the side of the bifurcations for the VascuSynth
dataset. This signal loss is not observed for the other filters.
The shifted location of the signal loss for the VascuSynth
dataset can be explained by the specific bifurcation geometry
modelling. Indeed, new branches start from the side of a
large main vessel, with a significant lower diameter; thus,
the bifurcation area is shifted from the intersection of the
main and secondary branches to the base of the secondary
vessel. Regarding kissing vessels, some filters exhibiting an
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TABLE VIII
QUANTITATIVE RESULTS (MEAN ± STD) BY VESSELS SIZE CATEGORIES ON THE IRCAD DATASET.

Vessel neighbourhood Large vessels
MCC Dice PSNR MCC Dice PSNR

Baseline 0.491± 0.118 0.527± 0.110 13.110± 1.795 0.552± 0.130 0.597± 0.136 20.938± 2.637
Frangi 0.535± 0.073 0.581 ± 0.065 19.989± 1.653 0.580 ± 0.072 0.627 ± 0.087 22.189± 1.867
Jerman 0.501± 0.054 0.521± 0.060 21.464 ± 1.757 0.480± 0.065 0.496± 0.083 24.119 ± 1.972
Meijering 0.451± 0.061 0.522± 0.049 20.091± 1.646 0.545± 0.055 0.669± 0.044 22.407± 1.850
OOF 0.498± 0.063 0.556± 0.051 19.912± 1.642 0.513± 0.060 0.574± 0.067 22.056± 1.850
RORPO 0.491± 0.066 0.501± 0.075 20.463± 1.765 0.491± 0.069 0.504± 0.080 22.580± 1.948
Sato 0.508± 0.054 0.542± 0.057 19.996± 1.679 0.512± 0.067 0.548± 0.086 22.130± 1.861
Zhang 0.535 ± 0.064 0.551± 0.074 20.940± 1.857 0.541± 0.078 0.561± 0.101 23.199± 2.032

Medium vessels Small vessels
MCC Dice PSNR MCC Dice PSNR

Baseline 0.509± 0.121 0.557± 0.117 21.250± 2.989 0.391± 0.103 0.424± 0.097 18.687± 2.209
Frangi 0.619± 0.115 0.660± 0.113 27.387± 2.554 0.460± 0.123 0.506± 0.118 26.624± 2.232
Jerman 0.604± 0.095 0.622± 0.110 30.111 ± 3.155 0.502± 0.093 0.525± 0.104 27.991 ± 2.120
Meijering 0.542± 0.085 0.602± 0.082 27.432± 2.474 0.419± 0.088 0.462± 0.077 26.723± 2.187
OOF 0.642 ± 0.097 0.681± 0.097 27.334± 2.467 0.514 ± 0.103 0.559 ± 0.096 26.692± 2.251
RORPO 0.547± 0.102 0.573± 0.115 28.138± 2.637 0.417± 0.093 0.435± 0.104 27.157± 2.354
Sato 0.602± 0.096 0.629 ± 0.105 27.437± 2.548 0.488± 0.092 0.522± 0.091 26.777± 2.277
Zhang 0.602± 0.110 0.619± 0.126 28.808± 3.119 0.481± 0.110 0.497± 0.124 27.471± 2.311

TABLE IX
QUANTITATIVE RESULTS (MEAN ± STD) BY VESSELS SIZE CATEGORIES

ON THE BULLITT DATASET.
Vessels neighbourhood

MCC Dice PSNR
Baseline 0.371± 0.038 0.341± 0.062 22.291 ± 0.513
Frangi 0.415± 0.028 0.506± 0.026 21.641± 0.517
Jerman 0.377± 0.037 0.466± 0.029 21.990± 0.687
Meijering 0.288± 0.041 0.412± 0.045 22.076± 0.509
OOF 0.353± 0.026 0.456± 0.032 21.771± 0.506
RORPO 0.506 ± 0.022 0.556 ± 0.025 21.784± 0.506
Sato 0.435± 0.027 0.491± 0.029 21.698± 0.478
Zhang 0.348± 0.029 0.460± 0.026 21.430± 0.553

Medium vessels
MCC Dice PSNR

Baseline 0.542± 0.129 0.555± 0.163 33.836± 2.891
Frangi 0.605± 0.034 0.684± 0.034 33.262± 2.827
Jerman 0.580± 0.048 0.660± 0.055 34.066 ± 3.226
Meijering 0.402± 0.054 0.521± 0.067 34.034± 2.820
OOF 0.620± 0.049 0.690 ± 0.044 33.621± 2.971
RORPO 0.647 ± 0.047 0.712± 0.047 33.370± 2.882
Sato 0.594± 0.064 0.663± 0.088 33.072± 2.928
Zhang 0.577± 0.074 0.655± 0.101 33.789± 2.790

Small vessels
MCC Dice PSNR

Baseline 0.358± 0.038 0.315± 0.057 22.771 ± 0.591
Frangi 0.419± 0.024 0.491± 0.026 22.153± 0.609
Jerman 0.376± 0.031 0.445± 0.030 22.352± 0.863
Meijering 0.287± 0.040 0.382± 0.044 22.549± 0.593
OOF 0.353± 0.025 0.436± 0.038 22.275± 0.586
RORPO 0.510 ± 0.023 0.544 ± 0.027 22.307± 0.590
Sato 0.436± 0.024 0.473± 0.031 22.236± 0.572
Zhang 0.349± 0.022 0.440± 0.023 21.861± 0.680

extensive behaviour, such as Jerman, Meijering or Zhang tend
to merge erroneously some parallel, close vascular structures.
Other filters, such as Frangi, Sato, OOF or RORPO seem more
robust to such difficulties (in particular, for RORPO, this is
guaranteed by its anti-extensivity).

However, quantitatively, we do not observe a significant
drop in performance in the bifurcation area (Mbif). Indeed, by
optimizing the filter parameters, the threshold used to compute
the metrics compensate this observed signal loss.

IV. DISCUSSION

Based on these experiments, we can formulate several
guidelines regarding the choice of a filter depending on the
task of interest.

We observed that Meijering overall performances are low
on the real datasets, as it highly enhances noise. This behavior
is consistent with the fact that Meijering is a vesselness
designed to enhance vessels in very low-contrasted images
for vessel tracking applications. However, Meijering presented
good results on the synthetic VascuSynth dataset. Meijering is
a good choice of vesselness filter in the following cases:

• the image of interest presents a very low constrast and/or
the vessels geometry is overall straight without two much
diameter variations;

• the user plans to apply a segmentation based on a tracking
strategy and/or apply a post-processing to remove the
false positives.

OOF, coupled with the geometric mean vesselness, presents
overall low results on our datasets which can be explained by
two facts: (1) the choice of the vesselness which discrimination
power of plate-like and tubular structures is low; and (2) OOF
is based on the hypothesis of circular vessel cross-sections,
which is in practice not often the case, especially on the Ircad
dataset. One should keep in mind, that OOF is a scale-space
framework and different vesselnesses may then be used with
it, depending on the application of interest. OOF is a good
choice of framework in the following cases:

• vessels with a circular cross-section;
• vascular networks presenting many kissing vessel pat-

terns.
Sato and Frangi both present good performances on our

three datasets. These filters propose a good trade-off between
sensitivity and specificity but present a loss of signal in
bifurcations. Frangi tends to overestimate the vessel volume;
however it yields the best results on large vessels. Frangi is a
good choice of filter in the following cases:

• images with large to medium vessels;
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TABLE X
QUANTITATIVE RESULTS (MEAN ± STD) BY VESSELS SIZE CATEGORIES ON THE VASCUSYNTH DATASET (σ = 2).

Vessels neighbourhood Large vessels
MCC Dice PSNR MCC Dice PSNR

Baseline 0.392± 0.145 0.340± 0.172 25.198± 3.109 0.515± 0.293 0.491± 0.307 30.738± 1.278
Frangi 0.700± 0.037 0.688± 0.044 26.275± 2.814 0.757± 0.022 0.747± 0.025 32.939± 0.934
Jerman 0.710± 0.055 0.702± 0.067 29.880 ± 3.007 0.735± 0.027 0.722± 0.031 36.312± 0.973
Meijering 0.725 ± 0.034 0.753 ± 0.035 27.305± 2.969 0.818 ± 0.028 0.834 ± 0.028 34.217± 0.978
OOF 0.648± 0.043 0.624± 0.053 28.275± 2.968 0.714± 0.025 0.696± 0.029 35.068± 0.980
RORPO 0.639± 0.082 0.619± 0.096 29.406± 3.407 0.713± 0.165 0.694± 0.197 37.049 ± 1.574
Sato 0.661± 0.034 0.642± 0.042 26.938± 2.867 0.731± 0.024 0.719± 0.028 33.699± 0.945
Zhang 0.624± 0.042 0.594± 0.053 26.225± 2.809 0.713± 0.041 0.696± 0.050 32.893± 0.936

Medium vessels Small vessels
MCC Dice PSNR MCC Dice PSNR

Baseline 0.415± 0.176 0.355± 0.202 26.699± 1.974 0.284± 0.125 0.218± 0.129 27.954± 3.858
Frangi 0.715± 0.035 0.698± 0.041 28.986± 2.026 0.683± 0.056 0.657± 0.069 30.328± 3.627
Jerman 0.708± 0.047 0.691± 0.057 32.360 ± 2.236 0.730 ± 0.073 0.719 ± 0.090 34.315 ± 4.028
OOF 0.768 ± 0.031 0.785 ± 0.031 30.159± 2.141 0.660± 0.072 0.652± 0.086 31.054± 3.723
Meijering 0.672± 0.040 0.646± 0.049 31.016± 2.152 0.615± 0.071 0.572± 0.091 32.202± 3.802
RORPO 0.670± 0.087 0.647± 0.101 32.281± 2.506 0.566± 0.108 0.523± 0.118 32.660± 3.946
Sato 0.675± 0.035 0.649± 0.042 29.659± 2.078 0.647± 0.047 0.615± 0.059 30.939± 3.674
Zhang 0.648± 0.044 0.616± 0.054 28.936± 2.024 0.580± 0.054 0.528± 0.071 30.278± 3.618

• the user needs an easy way to control the level of noise
to filter out, at the price of loosing small vessels.

Sato is a good choice of filter in the following cases:
• images with a low-level of noise;
• vessels with circular cross sections;
• vacular networks presenting many kissing vessel patterns.
Jerman presents good performances with a high sensitivity

and sharp vessel contours. However it tends to be more
sensitive to noise than classic Hessian filters (i.e. Frangi and
Sato), and share a same trend to overestimate the vessel
volumes. Jerman is a good choice of filter in the following
cases:

• images with small vessels;
• images with a low-level of noise.
Zhang is a modified version of Jerman, designed to be

less sensitive to noise and border artefacts, but dedicated to a
specific organ (namely, the liver). Thus, to yield good results,
it requires prior knowledge on the distribution of the image
intensities only available for some applications of interest (e.g.
masked liver CT images). Zhang is a good choice of filter in
the following cases:

• applications where a mask of the organ is available;
• a constant vessel contrast in the image.
RORPO achieves first place in the two real datasets, but

yields poor results on the VascuSynth dataset. It accurately
differentiates organ borders from tubular structures and never
overestimates the vessel volume. However RORPO favors
specificity over sensitivity and thus yields a higher number
of false negatives than other filters. RORPO is a good choice
of filter in the following cases:

• applications requiring precise vessel contours;
• applications with a low tolerance to false positives (e.g.

no post-processing available).
In this benchmark, we compared all the filters using their

respective optimal parameters for a fair comparison; see Ta-
ble VII. However, one may not have access to these optimal
parameters, and should tune them manually. In this case, the

reader should take into account how easy it is to tune these
parameters and favor filters yielding stable results to small
parameter changes.

As an intrinsic parameter-free filter, Meijering is the easiest
filter to tune. RORPO and OOF are also easy to tune as
RORPO has only one intrinsic binary parameter (the dilation
parameter) and OOF depends on only one smoothing parame-
ter σ. Jerman and Zhang also have one intrinsic parameter to
tune, τ , which controls both the vessel contour sharpness and
the enhancement contrast. In most case, optimal τ had a low
value resulting in a high homogeneous response.

Sato and Frangi are the more complex filters to tune.
They have 2 and 3 intrinsic parameters respectively which
are difficult to tune as they have not an intuitive meaning.
These parameters directly influence the geometry of detected
structures and the results are thus very sensitive to parameter
changes. We found that optimal parameters for both filters
were tuned to relax the tubularity constraint and enhance
vessels with more varying shapes. For instance, Frangi per-
formances may vary up to 11% between the default and the
optimized parameters.

The average computation times of each filter on three
volumes of each dataset are summarized in Table XI. All
Hessian-based methods are similarly fast to compute (around 1
minute per volume), except for Zhang which adds a K-means
step and is thus a bit longer to compute.

OOF and RORPO require much more computational power
as their complexity is not linear with the size of the image
volume. However, RORPO implementation is multi-threaded
to reduce the computation time. OOF can also be implemented
in GPU, as demonstrated by Law [29].

Finally, it is important to note that the experimental results
highly depend on the dataset and its associated ground truth.
Public annotated datasets are scarce and thus very precious.
However, it is important to be aware of their limitations. In
particular, the ground truth of the Ircad dataset lacks some
large vessels, which may influence the computed metrics.
Moreover, vessel diameters are usually overestimated, which
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Fig. 5. Illustration of the filtering results on the Ircad (first column),
Bullitt (second column) and VascuSynth (third column) datasets in Mglo.
First row is the ground truth, and the following rows are respectively
the baseline, Frangi, Jerman, OOF, Meijering, RORPO, Sato and Zhang
results.

TABLE XI
COMPUTATIONAL COST THE THE SEVEN FILTERS (CPU TIME IN

SECONDS) MEAN OVER 3 VOLUMES OF EACH DATASET.

Ircad Bullit VascuSynth
Frangi 72 47 6
Sato 67 44 5
Meijering 43 36 6
OOF 231 274 17
RORPO 1776 1227 160
Jerman 39 34 6
Zhang 106 80 10

adds a systematic bias (positive or negative depending on the
filter) in the quantitative results. The VascuSynth dataset being
synthetic, the vessel geometry is simpler than for real vessels,
which impacts the filter results. Moreover, the background
context of these images is much simpler than the one of real
images that contain other organs, structures, etc.

V. CONCLUSION

In this article, we presented a benchmark framework to
apply, compare and evaluate vesselness filters. This analysis
can be done globally on whole images or on specific user-
defined ROIs depending on the user application and needs.
The benchmark includes: an automatic optimization strategy
to help the user tune the filter parameters; and the up-to-date
implementation of 7 state-of-the-art filters in a common frame-
work. All the benchmark quantitative results, based on several
metrics, are gathered in easily accessible formatted files. We
made several recommendations on which filters should be used
depending on the type of image and application of interest.
The code of the benchmark and all associated files required
to reproduce its results are available on GitHub: https://
github.com/JonasLamy/LiverVesselness and an
online demonstration allows to individually test each method
on any other images: https://kerautret.github.
io/LiverVesselnessIPOLDemo.

Finally, this benchmark, contrary to other proposed in the
literature, is designed to be modular and extensible. The user
may indeed easily add new filters, metrics or ROIs. We hope
that it will help the community compare and analyse current
and future vesselness filters.

Future works include adding other families of vesselness
filters such as phase-based vesselness, and comparing the
filters on different datasets. In the case of the hepatic vascular
network, it would be relevant to compare the filters on real
MRA datasets.

APPENDIX I
PROOF OF MEIJERING’S MAXIMAL FLATNESS (3D CASE)

We extend to 3D the 2D study performed in the Appendix of [30]. Up
to translation and rotation, we can assume without loss of generality that the
putative tubular structure is oriented in the x-axis of the 3D space R3 and
that the point of interest is located at x = 0. Following [30], we aim to have

lim
x→0

(ex.∇)2h′(x) = 0 (1)

with

h′(x) = (α(ex.∇)2 + (ey .∇)2 + (ez .∇)2)G(x)

G(x) =
1

2πσ2
e
− x2+y2+z2

2σ2
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(a) Ground truth (b) Baseline (c) Frangi (d) Jerman (e) OOF (f) Meijering (g) RORPO (h) Sato (i) Zhang

(j) Ground truth (k) Baseline (l) Frangi (m) Jerman (n) OOF (o) Meijering (p) RORPO (q) Sato (r) Zhang

Fig. 6. Maximum Intensity Projection (MIP) view of the best filtering result on one bifurcation of the VascuSynth dataset with σ = 2 (first row) and
the Ircad dataset (second row). Baseline is the original image masked by the optimal thresholding.

(a) Ground truth (b) Baseline (c) Frangi

(d) Jerman (e) OOF (f) Meijering

(g) RORPO (h) Sato (i) Zhang

Fig. 7. Maximum Intensity Projection (MIP) view of central vessels in
the Bullit dataset. Baseline is the original image masked by the optimal
thresholding on Mglo. These vessels are located on the same plane,
illustrating both kissing vessels (red) and bifurcations (green).

where {ex, ey , ez} is the canonical basis of R3. We have

h′(x) = α
∂2G(x)

∂x2
+

∂2G(x)

∂y2
+

∂2G(x)

∂z2

=
αx2 + y2 + z2 − (α+ 2)σ2

σ4
G(x) = p(x).G(x)

and

(ex.∇)2h′(x) =
∂2h′(x)

∂x2
=

∂2p(x).G(x)

∂x2

=
∂2p(x)

∂x2
.G(x) + 2

∂p(x)

∂x
.
∂G(x)

∂x
+ p(x).

∂2G(x)

∂x2

Since we have

lim
x→0

G(x) =
1

2πσ2
; lim
x→0

∂G(x)

∂x
= 0 ; lim

x→0

∂2G(x)

∂x2
= −

1

2πσ4

lim
x→0

p(x) = −
α+ 2

σ2
; lim
x→0

∂p(x)

∂x
= 0 ; lim

x→0

∂2p(x)

∂x2
=

2α

σ4

it comes

lim
x→0

(ex.∇)2h′(x) =
3α+ 2

2πσ6

and Eq. (1) is solved iff α = − 2
3

.
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