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Abstract

This paper introduces a novel domain adaptation technique for time series data,
called Mixing model Stiefel Adaptation (MSA), specifically addressing the chal-
lenge of limited labeled signals in the target dataset. Leveraging a domain-dependent
mixing model and the optimal transport domain adaptation assumption, we exploit
abundant unlabeled data in the target domain to ensure effective prediction by estab-
lishing pairwise correspondence with equivalent signal variances between domains.
Theoretical foundations are laid for identifying crucial Stiefel matrices, essential
for recovering underlying signal variances from a Riemannian representation of
observed signal covariances. We propose an integrated cost function that simul-
taneously learns these matrices, pairwise domain relationships, and a predictor,
classifier, or regressor, depending on the task. Applied to neuroscience problems,
MSA outperforms recent methods in brain-age regression with task variations using
magnetoencephalography (MEG) signals from the Cam-CAN dataset.

1 Introduction
Multivariate time series data is ubiquitous in a wide range of applications, such as remote
sensing, finance, and neuroscience. In numerous scenarios, observed time series result
from linear combinations of underlying signals of interest. In remote sensing, measured
spectral bands are linear mixtures of endmember spectra (e.g., water, grass, wood) with
coefficients corresponding to the proportions of these endmembers within the observed
scene [27]. In neuroscience, a suitable generative model for magnetoencephalography
(MEG) and electroencephalography (EEG) data is the linear instantaneous mixing
model, leveraging the inherent linearity of Maxwell’s equations [23].
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Figure 1: Illustration of MSA for a regression task. Source and target covariance ma-
trices, ΣS

i and ΣT
i , exhibit different patterns in their original spaces. Embedding them

into xS
i and xT

i and then jointly learning optimal transport plan π and orthogonal bases
US and UT alleviate this problem by finding components that matter for prediction.

Covariance matrices have emerged as powerful descriptors for diverse data types,
offering valuable insights into the underlying relationships within multivariate data. The
application of Riemannian geometry to covariance matrices [42] has paved the way for
innovative solutions in tasks such as classification [45, 21] and regression [40, 41, 7].
These models have been successfully employed in the analysis of multivariate time series
data, including applications in remote sensing [10] and M/EEG [3, 47, 28] applications.
Notably, recent studies have revealed the competitiveness of shallow covariance-based
models when compared to deep learning techniques in neuroscience [14].

However, the challenge of domain adaptation poses a substantial hurdle in the analysis
of multivariate time series data. For example, when data are measured using different
sensors or at different periods, domain shifts occur, making it difficult to apply classifiers
or regressors across domains directly. Domain adaptation addresses these shifts by align-
ing data [11, 30]. This challenge is particularly pronounced in M/EEG, where changes
in recording devices, head morphology, experimental protocol, or data collection sites
can induce shifts. It is especially crucial in applications like brain-computer interfaces
(BCI) [25, 48, 31, 39, 6] and brain age prediction [33], where limited labeled data in the
target domain necessitates effective adaptation techniques.

In this paper, we propose Mixing model Stiefel Adaptation (MSA), a novel domain
adaptation approach for time series data under mixing models. We address the challeng-
ing problem of adapting models when the target domain has limited labeled data while
a fully labeled source domain is available. Our approach involves the identification of
two Stiefel matrices that are used to align the covariances of both source and target data.
When applied to a Riemannian representation of the covariances of observed signals,
these matrices facilitate the recovery of underlying signal variances. To achieve this,
MSA simultaneously learns these matrices and a predictor. The proposed framework is
general enough to be applied to both classification and regression tasks.

In the subsequent sections, we provide a detailed exposition of our novel approach. We
show that MSA outperforms recent approaches in brain-age regression using magnetoen-
cephalography (MEG) signals from the Cam-CAN dataset [44] while accommodating
task variations.
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2 Domain shift and covariance matrices under mixing
models

This section presents time series under mixing models in the context of domain adap-
tation with mixing matrices that differ from one domain to another. These data are
summarized with covariance matrices as discussed in the introduction. Then, the “opti-
mal transport domain adaptation (OTDA) assumption" is introduced: we assume that,
for large enough domains, there exists a permutation matrix that associates source
variances with target variances. Furthermore, the main tools of Riemannian geometry
associated with covariance matrices are presented.

2.1 Mixing models in a domain adaption context
Domain adaptation is a core machine learning technique used to enhance model perfor-
mance when there is a distribution shift between the source and target domains denoted
S and T , respectively. When the source domain provides labeled data for training, and
only a fraction of the target domain is labeled, the problem is known as semi-supervised
domain adaptation.

Domain specific mixing model We consider the covariance matrices of the signal as
features for regression and classification. We assume that the signal is the sum of a
mixed signal of interest plus an independent noise. Hence, for any domain D ∈ {S, T },
the covariance matrix of the ith signal is

ΣD
i ≜ AD

[
diag(pD

i ) 0q×(p−q)

0(p−q)×q ND
i

]
(AD)⊤ ∈ Rp×p (1)

where AD is the domain-specific mixing matrix, pD
i = [pDi,1, . . . , p

D
i,q]

⊤ ∈ Rq con-
tains the variances of the unmixed signal of interest, 0 is the zero matrix and ND

i ∈
R(p−q)×(p−q) is the covariance matrix of the noise.

2.2 Covariance matrices in the Riemannian geometry framework
We utilize the Riemannian geometry of symmetric positive definite matrices for both
regressing outcomes and classifying covariance matrices. This approach is theoretically
grounded, as supported by studies such as [42, 37]. In practical applications, the use
of Riemannian geometry for covariance matrices demonstrates strong performance,
notably in EEG [47, 7] and MEG [14, 33] applications.

Riemmanian geometry of S++
p The covariance matrices belong to the set of p × p

symmetric positive definite matrices denoted S++
p . The latter is open in the set of

p × p symmetric matrices denoted Sp, and thus is a smooth manifold [8]. A vector
space is defined at each Σ ∈ S++

p , called the tangent space and denoted TΣS++
p . It

is equal to Sp, the ambient space. Equipped with a smooth inner product, a smooth
manifold becomes a Riemannian manifold. To do so, we leverage the affine invariant
Riemannian metric [42]. Indeed, it gives good theoretical properties to the S++

p manifold
such as being geodesically complete and works well in practice [3, 47, 7]. Given
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Γ,Γ′ ∈ Sp, this metric writes ⟨Γ,Γ′⟩Σ = Tr
(
Σ−1ΓΣ−1Γ′) and the corresponding

norm is ∥Γ∥Σ =
√
⟨Γ,Γ⟩Σ.

Riemannian mean on S++
p The Riemannian distance (or geodesic distance) associated

with the affine invariant metric is dS++
p

(Σ,Σ′) =
∥∥log (Σ−1/2Σ′Σ−1/2

)∥∥
F

with log :

S++
p → Sp being the matrix logarithm. It should be noted that, since the Riemannian

metric is affine invariant, dS++
p

is also affine invariant, i.e. for every A ∈ Rp×p

invertible, we have dS++
p

(AΣA⊤,AΣ′A⊤) = dS++
p

(Σ,Σ′). In the following, we
vectorize covariance matrices ΣD

i in a tangent space TΣS++
p . A classical choice for the

base point is the Riemannian mean Σ. This mean, denoted as Σ, is defined for a set
Σ1, . . . ,Σn ∈ S++

p as

Σ ≜ argmin
Σ∈S++

p

n∑
i=1

dS++
p

(Σ,Σi)
2 (2)

and is computed with a Riemannian gradient descent [37, 49].

Linearization of the S++
p manifold The affine invariant metric induces the Riemannian

exponential expΣ : Sp → S++
p which is such that, for t ∈ [0, 1], expΣ(tΓ) is the

geodesic with initial position Σ and speed Γ. The inverse operator is the Riemannian
logarithm logΣ : S++

p → Sp. This operator is preponderant in the rest of the paper since
it transforms covariance matrices that belong to a Riemannian manifold into elements
of Sp, a vector space. Furthermore, the Riemannian logarithm can be vectorized using
the operator ϕΣ defined such that ∥logΣ(Σ′)∥Σ = ∥ϕΣ(Σ

′)∥2 and that is

ϕΣ(Σ
′) ≜ vec

(
log
(
Σ

−1/2Σ′
iΣ

−1/2
))

. (3)

Depending on the context, the operator vec is either the full vectorization (hence
ϕΣ(Σ

′) ∈ Rp2

) or the vectorization of the upper triangular part with off-diagonal
elements multiplied by

√
2 to preserve the norm (hence ϕΣ(Σ

′) ∈ Rp(p+1)/2).

Riemannian geometry for domain adaptation For any D ∈ {S, T }, we denote the
source and target embeddings by

xD
i ≜ ϕ

Σ
D (ΣD

i ) (4)

where Σ
D

is the Riemannian mean of the ΣD
i . Finally, it should be noted that, due to the

equation (8) and the affine invariance of the Riemannian distance, we have that

Σ
D
= ADED(AD)⊤ (5)

where ED is a block diagonal matrix with the upper left block equal to diag(p̄) ∈ Rq×q

with elements p̄l = (
∏n

i=1 p
S
i,l)

1/n = (
∏n

i=1 p
T
il )

1/n.

2.3 Regression and classification with mixed and domain shifted
signals

We consider two classical models in M/EEG on the decision function for regression
and classification problems. These models relate outcomes yDi with the variances
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{pDil }
q
l=1 [19, 5, 12]. We extend these models to domain adaptation, and notably, we

assume parameters β0, . . . , βq ∈ R of these decision functions to be equal between
source and target domains.

Predicition models: regression and classification For regression problems, a classical
assumption is the existence of a log-linear relationship between the value to regress
yDi of the ith subject in domain D and the associated variances pDil (1), i.e., there exists
β0, . . . , βq such that

yDi =

q∑
l=1

βl log(p
D
il ) + β0 + εDi (6)

where εDi is a random noise. Considering a binary classification problem1 with outcomes
in {−1, 1}, the second model assumes that yDi is the sign of a log-linear regression on
{pDil }

q
l=1, i.e.,

yDi = sign

(
q∑

l=1

βl log(p
D
il ) + β0 + εDi

)
(7)

where sign(a) = 1 if a ≥ 0 and −1 otherwise.

OTDA assumption An additional assumption is the optimal transport domain adapta-
tion (OTDA) assumption. In our setup, we assume there exists a matrix π ∈ Π(n,m) ≜{
π ∈ Rn×m : πij ≥ 0,π1m = 1

n1n,π
⊤1n = 1

m1m

}
, the set of discrete joint distri-

butions of uniform marginals, such that

pS
i = pT

j if πij > 0. (8)

This assumption is tightly related to the assumption of preserved conditional distribution
stated in [11]. Indeed, the authors assume the label information is preserved by the
transformation π, i.e., for every i, PS(y|pS

i ) = PT (y|m(pS
i )) with PD the conditional

probability distribution on the domain D and m(pS
i )

⊤ = (π[pT
1 , · · · ,pT

m]⊤)[i,:]. This
assumption holds in our setup if the noise εDi has the same distribution for the two
domains.

Prediction from covariance matrices These models motivate the recovery of pD
i from

xD
i . The following proposition indicates that, under the mixing model (1), this recovery

is possible through orthogonal projections of xS
i and xT

j with well-chosen matrices.
The latter belongs to the Stiefel manifold, the set of q-dimensional orthogonal basis in
Rp2

denoted St(p2, q) ≜ {U ∈ Rp2×q : U⊤U = Iq}.

Proposition 2.1 (Stiefel projections). Given source and target embeddings, xS
i and

xT
j (4), following mixing models (1), with πij > 0 (8), there exist US ,UT ∈ St(p2, q)

such that

(US)⊤xS
i =(UT )⊤xT

j =[log(pi,1/p̄1), . . . , log(pi,q/p̄q)]
⊤

where pi,l ≜ pSi,l = pTj,l, ∀l ∈ J1, qK,

1Throughout the paper, classification problems are presented with two classes only to simplify the
exposition. The extension to multiple classes is straightforward.
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The proof is available in the Appendix A.1. Intuitively, US and UT extract the signal
of interest and unmix it, i.e., invert AS and AT . Thus, these Stiefel matrices remove the
shift between source and target domains. Combining Proposition 2.1 with models (6)
and (7) gives two new models that relate xD

i with yDi .

Corollary 2.2 (Realined predictive models). For all D ∈ {S, T } and under mixing
models (1), there exists UD ∈ St(p2, q) and β0, · · · , βq ∈ R such that the data (xD

i , y
D
i )

follow the models:

yDi =

q∑
l=1

βl

(
(UD)⊤xD

i

)
l
+ β0 + εDi ,

in regression, and

yDi = sign

(
q∑

l=1

βl

(
(UD)⊤xD

i

)
l
+ β0 + εDi

)

in classification.

We finish this section by pointing out that until now, xD
i ∈ Rp2

. In practice, we use the
half vectorization as explained in section 2.2 to reduce the dimension of the embeddings
to d ≜ p(p+ 1)/2.

3 Joint learning of US , U T and β

In the last section, we defined our data, their underlying mixing model, and the
domain adaptation setup. We now present an algorithm to learn US , UT and
β = [β0, · · · , βq] ∈ Rq+1 from data.

Setup We assume having access from a fully labeled source domain and a partially
labeled target domain. Indeed, n source data, {(xS

i , y
S
i )}ni=1, are concatenated into

(XS ,yS) ∈ Rn×d × Rn. Among the m targets data, mk are labeled, {(xT
i , y

T
i )}mk

i=1,
and concatenated into (XTℓ ,yTℓ) ∈ Rmk×d × Rmk . Overall, (XS ,yS ,XTℓ ,yTℓ)
constitutes the training set. The remaining target data {xT

i }mi=mk+1 are unlabeled, and
the goal is to predict their associated outcomes {yT

i }mi=mk+1.

3.1 Learning problem
Overall loss Based on models from section 2, we propose a loss function to jointly
estimate US ,UT , and β for regression and classification problems. Given γ, ρ ≥ 0,
the overall loss is

L(US ,UT ,β,π) ≜ Lsup.(U
S ,UT ,β)+γLmet.(U

S ,UT ,π)+ρLGr(U
S ,UT ). (9)

This loss is a sum of three terms: an empirical risk Lsup. on the score functions, a
metric learning loss Lmet. between the embeddings (US)⊤xS

i and (UT )⊤xT
i and a

regularization loss LGr to control how far span(UT ) is from span(US).
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Empirical risk Lsup. The loss function on the score function is a regularized empirical
risk on the source data and the few labeled target data

Lsup.(U
S ,UT ,β) ≜

∑
D∈{S,Tℓ}

|D|∑
i=1

L
(
yDi ,β⊤(UD)⊤xD

i + β0

)
+ ε ∥β∥22 (10)

where L : R× R → R, and ε ≥ 0. For a regression problem, we leverage the classic
square error L(y, ŷ) = (y − ŷ)2. For a binary classification problem in {−1, 1}, the
chosen loss function is the logistic loss L(y, ŷ) = log (1 + exp(−yŷ)).

Metric learning loss Lmet. Then, we introduce the metric learning loss that enhances
the estimation of US and UT leveraging a geometrical point of view. First, we leverage
optimal transport (OT) [38, 18] to estimate a mapping π ∈ Π(n,m) between the source
and target domains and hence bring closer points from the domains with a high value of
πij . Second, we compute intra-domain affinity matrices K(y) so that two points with
similar yi should be brought closer. Overall, this metric learning loss function is

Lmet.(U
S ,UT ,π) ≜

OT loss︷ ︸︸ ︷
⟨C(XSUS ,XT UT ),π⟩

+
∑

D∈{S,Tℓ}

|D|
n+mk

⟨C(XDUD,XDUD),K(yD)⟩

︸ ︷︷ ︸
similarity loss

(11)

where ⟨ξ,η⟩ ≜ Tr(ξ⊤η), (C(X,X ′))ij ≜
∥∥xi − x′

j

∥∥2
2

and K(y) is an affinity ma-
trix: for a regression problem, we leverage the normalized Gaussian kernel whose
elements are (K(y))ij = exp(− 1

2 (yi − yj)
2)/
∑

l,m exp(− 1
2 (yl − ym)2); for classifi-

cation problems, we use the matrix with elements (K(y))ij = 1yi=yj
/
∑

l,m 1yl=ym
.

It should be noted that the joint distribution π estimates the permutation matrix from
the assumption of equation (8).

Grassmann loss LGr We now move on to the last term of the total loss (9). Unfor-
tunately, learning UT from data seems infeasible since we have few labels in the
target domain. To alleviate this problem, we regularize span(US) and span(UT ) to
be not too far apart. To do so, we leverage the Riemannian distance of the Grassmann
manifold [13], i.e.

LGr(U
S ,UT ) ≜

1√
2

∥∥US(US)⊤ −UT (UT )⊤
∥∥
F

=

[
q∑

i=1

sin(θi)
2

]1/2 (12)

where θ1, . . . , θk are the principle angles between US and UT [13]. It’s important
to note that as ρ → +∞ in the overall loss (9), span(UT ) → span(US), and hence
UT → USO for some q × q orthogonal matrix O. Thus, for q much lower than d, LGr
controls the complexity to estimate UT as desired.
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Algorithm 1 Alternate optimization

1: Initialize: (US ,UT ) ∈ St(d, q)2

2: repeat
3: Compute π∗ and β∗ as in (14)
4: Perform a Riemannian gradient descent step on St(d, q)2 of L∗ (15)
5: until convergence

3.2 Reduction to a problem on the Stiefel manifold St(d, q)2 and
optimization

We now discuss the optimization of the loss function (9). The optimization problem is
written

minimize
(US ,UT ,β,π)∈St(d,q)2×Rq×Π(n,m)

L(US ,UT ,β,π). (13)

Given (US ,UT ) ∈ St(d, q)2 fixed, L is easily minimized with respect to (β,π) ∈
Rq ×Π(n,m). Indeed, denoting

(β∗,π∗) = argmin
(β,π)∈Rq×Π(n,m)

L(US ,UT ,β,π), (14)

β∗ is computed with a ridge or logistic solver and π∗ with an OT solver. Hence, (13)
reduces to

minimize
(US ,UT )∈St(d,q)2

{
L∗(US ,UT ) ≜ L(US ,UT ,β∗,π∗)

}
. (15)

The latter is solved with a Riemannian gradient descent algorithm [1, 8] leveraging a
Riemannian Adam optimizer [4] on the Stiefel manifold [32]. This alternate optimization
procedure is summed up in algorithm 1.

3.3 Related work
Unsupervised subspace learning Numerous methods to address domain shifts
exist [50]. Focusing on subspace-based methods, Transfer Component Analysis
(TCA) [34] learns some transfer components across domains in a reproducing kernel
Hilbert space using maximum mean discrepancy to align source and target distributions.
Other methods such as Subspace Alignment [15], joint cross-domain classification and
subspace learning for unsupervised adaptation [16] and principle components-based
methods [31] learn source components leveraging target principal components to align
data from both domains. These methods are unsupervised in the sense they do not
use the target labels. In contrast, MSA benefits from target labels to simultaneously
learn embeddings, with the two Stiefel matrices, and the predictor, which helps with
low signal-to-noise ratio M/EEG applications. Indeed, [33] showed the inefficiency of
unsupervised domain adaptation methods such as [31] for brain age applications.

Semi-supervised rotation correction Methods tailored for domain adaptation in
M/EEG applications have emerged alongside domain-specific whitening (4). Rie-
mannian Procrustres Analysis (RPA) [39] aligns covariance matrix class centers by
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learning with a gradient descent a p× p orthogonal matrix, involving O(p2) parameters.
In the same spirit, Tangent Space Alignment (TSA) [6] aligns tangent space vector class
centers with a d× d orthogonal matrix, requiring O(p4) parameters, learned through
singular value decomposition. These methods apply only to classification datasets. In
comparison, MSA learns two Stiefel matrices, that is, O(p2q) parameters, where q is
user-defined. This hyperparameter has the benefit of controlling the cost computation
and the complexity of the model depending on the task. Furthermore, it applies to both
regression and classification tasks.

4 Numerical experiments
In this section, we assess the performance of MSA on a regression problem on MEG
data. This problem is subject-specific, i.e., each subject has one outcome. We have
two sets of subjects without any overlap from datasets where a shift has occurred,
such as variations in tasks performed by the subjects. In order to promote research
reproducibility, code is available on github2.

4.1 Regression on MEG data
Cam-CAN dataset We utilize the well-established Cambridge Center of Aging and
Neuroscience (Cam-CAN) dataset [44]. Our objective is to predict the age of individ-
uals based on their MEG recordings, a regression problem of significant interest in
neuroscience research. Indeed, results from [26] suggest that the prediction error of
models trained to learn age from brain data of healthy populations provides clinically
relevant information related to neurodegenerative anomalies physical and cognitive de-
cline. In this dataset, 646 subjects (319 female, 327 male) were collected with the same
306-channel VectorView MEG system (Elekta Neuromag, Helsinki) at 1kHz frequency.
Their age distribution is from 18.5 to 88.9 years with an average of 54.9± 18.4 years
with an almost uniform spread over the age range. The dataset is divided into two sets
of subjects with no overlap but with the same age distribution. Notably, the subjects per-
form different tasks, depending on the domain, during data acquisition. These tasks are
rest (eyes closed), passive (audio-visual stimuli), and somatosensory tasks (audio-visual
plus a manual response). Hence, we get one time series and one outcome, the age, per
subject. Preprocessing is applied to these time series; see Appendix B.1 for the details.
To get the semi-supervised setting, 10% of the target labels are kept in addition to the
source labels during training. Then, we predict ages with several methods, all involving
ridge regression.

Methods First, we compare MSA with ridge regressions that are trained on embeddings
either of the source domain or of the 10% labeled target domain, as in [40]. These
embeddings (4) are computed at the Riemannian mean (2) of the full dataset. We denote
these two methods Ridge - S and Ridge - Tℓ respectively. Then, we leverage
recently proposed methods for brain age prediction under domain shifts: ridge regres-
sions are trained either on the source domain or on the concatenation of the source and

2https://github.com/antoinecollas/MSA
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Figure 2: Mean absolute errors (MAE) of different regressors on the brain age
prediction problem of the Cam-CAN dataset (the lower, the better). The 646
subjects (p = 65) are split into source and target domains (323 subjects each) and are
associated with two different tasks. The latter are reported over each subfigure, e.g., the
subfigure (A) presents results with the rest for the source task and the passive task for
the target. 10% of the target labels are kept during training, and 100 different data splits
are performed.
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rameters on the brain age prediction problem of the Cam-CAN dataset (the lower,
the better). The source task is rest, and the target task is somatosensory. 10% of the
target labels are kept during training, and 100 different data splits are performed.
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Figure 4: Ablation study of the proposed loss (9) on the brain age prediction
problem of the Cam-CAN dataset. Mean absolute errors (MAE) of the full loss versus
when one of the terms is removed are reported (the lower, the better). The source task is
rest, and the target is somatosensory. 10% of the target labels are kept during training,
and 100 different data splits are performed.

labeled target domains with embeddings with domain-specific Riemannian means as pro-
posed in [33]. They are denoted Ridge Recenter - S and Ridge Recenter
- S ∪ T respectively. Recently, [7] proposed to use kernel ridge regression with an
RBF kernel for brain age prediction and showed state-of-the-art results. One kernel
per frequency band is computed with embeddings, i.e., Ki,j = exp(− 1

2σ2 ∥xi − xj∥22)
for xi,xj in XS and/or XTℓ and where σ2 is the hyperparameter of length scale.
Then, kernels are summed to get a single kernel. All labeled data (source and labeled
target) are used to compute the kernels. We denote this method RBF Recenter
- S ∪ Tℓ. Finally, MSA is denoted Ridge MSA - S ∪ Tℓ and is used with rank
q = 30. Performance with the best-performing hyperparameters is reported for all
methods.

Performance comparison Box plots of mean absolute errors (MAE) on the 90%
unlabeled data are reported in Figure 2 with training and testing on 100 different data
splits. First of all, we observe that training solely on the target set (Ridge - Tℓ) leads
to the worst MAE. Hence, applying the method of [40] is not recommended when too few
labels are available. Then, Ridge Recenter - S gives lower MAE than Ridge
- S, which shows the importance of considering domain adaptation techniques when
considering changes of tasks. The three other methods, Ridge Recenter - S ∪T ,
RBF Recenter - S ∪ Tℓ and Ridge MSA - S ∪ Tℓ all leverage these domain
adaptation techniques and the few labels from the test set. Since they use these additional
labels, they outperform the other methods. The RBF Recenter - S ∪ Tℓ is the
only non-linear model and performs slightly better than Ridge Recenter - S ∪T .
Overall, Ridge MSA - S ∪ T performs better than all other methods, regardless of
the considered pair of tasks.

Parameters sensitivity and ablation study Then, we study the hyperparameter sensi-
tivity of MSA. The three considered hyperparameters are γ, ρ and ε from the loss (9).
100 data splits are performed for each triplet value, and MAE is reported in Figure 3.
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This shows a certain robustness to the choice of hyperparameters. Finally, to assess
the need for the different losses in the overall loss (9), we ablate each one, search for
the best-remaining hyperparameters γ, ρ, and ε, and report MAE in Figure 4. We
observe that each ablation leads to poorer MAE, which empirically justifies using all
terms together in the full loss (9). In particular, removing the Grassmann loss drops
performance a lot because it resumes to estimate two different Stiefel matrices. Notably,
removing the optimal transport also leads to a high-performance drop, which motivates
the “OTDA assumption" introduced in section 2.1.

5 Conclusions
In conclusion, this paper has introduced a new domain adaptation approach for time se-
ries data under mixing models. The key innovation lies in utilizing a domain-dependent
mixing matrix (1) and the OTDA assumption (8). Indeed, we identified two Stiefel
matrices that, applied to a Riemannian representation of observed signal covariances,
recover variances from the underlying signal. An integrated cost function enabled simul-
taneous learning of these matrices, establishing pairwise relationships between source
and target domains and constructing task-specific predictors. Applied to MEG problems,
this approach has outperformed recent methods in brain-age regression.

6 Acknowledgments
The scientific Python ecosystem enabled numerical computation: Geoopt [29], Mat-
plotlib [22], Numpy [20], POT [17], Pyriemann [2], Pytorch [35], Seaborn [46], and
Sklearn [36].

12



References
[1] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization

algorithms on matrix manifolds. Princeton University Press, 2008.

[2] Alexandre Barachant, Quentin Barthélemy, Jean-Rémi King, Alexandre Gram-
fort, Sylvain Chevallier, Pedro L. C. Rodrigues, Emanuele Olivetti, Vladislav
Goncharenko, Gabriel Wagner vom Berg, Ghiles Reguig, Arthur Lebeurrier, Erik
Bjäreholt, Maria Sayu Yamamoto, Pierre Clisson, and Marie-Constance Corsi.
pyRiemann/pyRiemann: v0.5. In Zenodo. Zenodo, June 2023. Version Number:
v0.5.

[3] Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten.
Multiclass Brain–Computer Interface Classification by Riemannian Geometry.
IEEE Transactions on Biomedical Engineering, 59(4):920–928, 2012.

[4] Gary Becigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimization
Methods. In International Conference on Learning Representations, 2019.

[5] Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, and
Klaus-robert Muller. Optimizing Spatial filters for Robust EEG Single-Trial
Analysis. IEEE Signal Processing Magazine, 25(1):41–56, 2008.

[6] Alexandre Bleuzé, Jérémie Mattout, and Marco Congedo. Transfer Learning for the
Riemannian Tangent Space: Applications to Brain-Computer Interfaces. In 2021
International Conference on Engineering and Emerging Technologies (ICEET),
pages 1–6, 2021.

[7] Clément Bonet, Benoit Malézieux, Alain Rakotomamonjy, Lucas Drumetz,
Thomas Moreau, Matthieu Kowalski, and Nicolas Courty. Sliced-Wasserstein on
Symmetric Positive Definite Matrices for M/EEG Signals. In Proceedings of the
40th International Conference on Machine Learning, pages 2777–2805. PMLR,
July 2023.

[8] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cam-
bridge University Press, 2023.

[9] Yilun Chen, Ami Wiesel, Yonina C. Eldar, and Alfred O. Hero. Shrinkage
Algorithms for MMSE Covariance Estimation. IEEE Transactions on Signal
Processing, 58(10):5016–5029, 2010.

[10] Antoine Collas, Arnaud Breloy, Chengfang Ren, Guillaume Ginolhac, and Jean-
Philippe Ovarlez. Riemannian Optimization for Non-Centered Mixture of Scaled
Gaussian Distributions. IEEE Transactions on Signal Processing, 71:2475–2490,
2023.

[11] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal
Transport for Domain Adaptation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(9):1853–1865, September 2017. Conference Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence.

13



[12] Sven Dähne, Frank C. Meinecke, Stefan Haufe, Johannes Höhne, Michael Tanger-
mann, Klaus-Robert Müller, and Vadim V. Nikulin. SPoC: a novel framework for
relating the amplitude of neuronal oscillations to behaviorally relevant parameters.
NeuroImage, 86:111–122, February 2014.

[13] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algo-
rithms with orthogonality constraints. SIAM journal on Matrix Analysis and
Applications, 20(2):303–353, 1998. Publisher: SIAM.

[14] Denis A. Engemann, Apolline Mellot, Richard Höchenberger, Hubert Banville,
David Sabbagh, Lukas Gemein, Tonio Ball, and Alexandre Gramfort. A reusable
benchmark of brain-age prediction from M/EEG resting-state signals. NeuroImage,
262:119521, November 2022.

[15] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsu-
pervised Visual Domain Adaptation Using Subspace Alignment. In 2013 IEEE
International Conference on Computer Vision, pages 2960–2967, December 2013.
ISSN: 2380-7504.

[16] Basura Fernando, Tatiana Tommasi, and Tinne Tuytelaars. Joint cross-domain clas-
sification and subspace learning for unsupervised adaptation. Pattern Recognition
Letters, 65:60–66, November 2015.

[17] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie
Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras,
Nemo Fournier, Léo Gautheron, Nathalie T. H. Gayraud, Hicham Janati, Alain
Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy,
Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. POT:
Python Optimal Transport. Journal of Machine Learning Research, 22(78):1–8,
2021.

[18] Edouard Grave, Armand Joulin, and Quentin Berthet. Unsupervised Alignment of
Embeddings with Wasserstein Procrustes. In Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, pages 1880–
1890. PMLR, April 2019.

[19] Moritz Grosse-Wentrup and Martin Buss. Multiclass Common Spatial Patterns
and Information Theoretic Feature Extraction. IEEE Transactions on Biomedical
Engineering, 55(8):1991–2000, August 2008.

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020. Publisher:
Springer Science and Business Media LLC.

14



[21] Zhiwu Huang and Luc Van Gool. A Riemannian Network for SPD Matrix Learning.
In Association for the Advancement of Artificial Intelligence (AAAI), 2017.

[22] John D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science
& Engineering, 9(3):90–95, 2007. Publisher: IEEE COMPUTER SOC.

[23] Matti Hämäläinen, Riitta Hari, Risto J. Ilmoniemi, Jukka Knuutila, and Olli V.
Lounasmaa. Magnetoencephalography—theory, instrumentation, and applications
to noninvasive studies of the working human brain. Reviews of Modern Physics,
65(2):413–497, April 1993.

[24] Mainak Jas, Denis A. Engemann, Yousra Bekhti, Federico Raimondo, and Alexan-
dre Gramfort. Autoreject: Automated artifact rejection for MEG and EEG data.
NeuroImage, 159:417–429, October 2017.

[25] Vinay Jayaram, Morteza Alamgir, Yasemin Altun, Bernhard Scholkopf, and
Moritz Grosse-Wentrup. Transfer Learning in Brain-Computer Interfaces. IEEE
Computational Intelligence Magazine, 11(1):20–31, February 2016.

[26] Tobias Kaufmann, Dennis van der Meer, Nhat Trung Doan, Emanuel Schwarz,
Martina J. Lund, Ingrid Agartz, Dag Alnæs, Deanna M. Barch, Ramona Baur-
Streubel, Alessandro Bertolino, Francesco Bettella, Mona K. Beyer, Erlend Bøen,
Stefan Borgwardt, Christine L. Brandt, Jan Buitelaar, Elisabeth G. Celius, Simon
Cervenka, Annette Conzelmann, Aldo Córdova-Palomera, Anders M. Dale, Do-
minique J. F. de Quervain, Pasquale Di Carlo, Srdjan Djurovic, Erlend S. Dørum,
Sarah Eisenacher, Torbjørn Elvsåshagen, Thomas Espeseth, Helena Fatouros-
Bergman, Lena Flyckt, Barbara Franke, Oleksandr Frei, Beathe Haatveit, Asta K.
Håberg, Hanne F. Harbo, Catharina A. Hartman, Dirk Heslenfeld, Pieter J. Hoek-
stra, Einar A. Høgestøl, Terry L. Jernigan, Rune Jonassen, Erik G. Jönsson, Peter
Kirsch, Iwona Kłoszewska, Knut K. Kolskår, Nils Inge Landrø, Stephanie Le Hel-
lard, Klaus-Peter Lesch, Simon Lovestone, Arvid Lundervold, Astri J. Lunder-
vold, Luigi A. Maglanoc, Ulrik F. Malt, Patrizia Mecocci, Ingrid Melle, Andreas
Meyer-Lindenberg, Torgeir Moberget, Linn B. Norbom, Jan Egil Nordvik, Lars
Nyberg, Jaap Oosterlaan, Marco Papalino, Andreas Papassotiropoulos, Paul Pauli,
Giulio Pergola, Karin Persson, Geneviève Richard, Jaroslav Rokicki, Anne-Marthe
Sanders, Geir Selbæk, Alexey A. Shadrin, Olav B. Smeland, Hilkka Soininen,
Piotr Sowa, Vidar M. Steen, Magda Tsolaki, Kristine M. Ulrichsen, Bruno Vellas,
Lei Wang, Eric Westman, Georg C. Ziegler, Mathias Zink, Ole A. Andreassen, and
Lars T. Westlye. Common brain disorders are associated with heritable patterns
of apparent aging of the brain. Nature Neuroscience, 22(10):1617–1623, October
2019. Number: 10 Publisher: Nature Publishing Group.

[27] Nirmal Keshava and John F Mustard. Spectral unmixing. IEEE signal processing
magazine, 19(1):44–57, 2002. Publisher: IEEE.

[28] Reinmar J. Kobler, Jun-ichiro Hirayama, Qibin Zhao, and Motoaki Kawanabe.
SPD domain-specific batch normalization to crack interpretable unsupervised
domain adaptation in EEG, October 2022.

15



[29] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian Opti-
mization in PyTorch, 2020. _eprint: 2005.02819.

[30] Wouter M. Kouw and Marco Loog. A Review of Domain Adaptation without
Target Labels. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(3):766–785, 2021.

[31] Gal Maman, Or Yair, Danny Eytan, and Ronen Talmon. Domain Adaptation
Using Riemannian Geometry of Spd Matrices. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4464–4468, May 2019. ISSN: 2379-190X.

[32] Jonathan H Manton. Optimization algorithms exploiting unitary constraints. IEEE
transactions on signal processing, 50(3):635–650, 2002. Publisher: IEEE.

[33] Apolline Mellot, Antoine Collas, Pedro LC Rodrigues, Denis A Engemann, and
Alexandre Gramfort. Harmonizing and aligning M/EEG datasets with covariance-
based techniques to enhance predictive regression modeling. bioRxiv, pages
2023–04, 2023. Publisher: Cold Spring Harbor Laboratory.

[34] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain
Adaptation via Transfer Component Analysis. IEEE Transactions on Neural
Networks, 22(2):199–210, February 2011. Conference Name: IEEE Transactions
on Neural Networks.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[37] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian Framework
for Tensor Computing. International Journal of Computer Vision, 66(1):41–66,
January 2006.

[38] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport: With Ap-
plications to Data Science. Foundations and Trends® in Machine Learning, 11(5-
6):355–607, February 2019. Publisher: Now Publishers, Inc.

[39] Pedro Luiz Coelho Rodrigues, Christian Jutten, and Marco Congedo. Riemannian
Procrustes Analysis: Transfer Learning for Brain–Computer Interfaces. IEEE
Transactions on Biomedical Engineering, 66(8):2390–2401, August 2019.

16



[40] David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, and Denis A
Engemann. Manifold-regression to predict from MEG/EEG brain signals without
source modeling. Advances in Neural Information Processing Systems, 32, 2019.

[41] David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, and Denis A.
Engemann. Predictive regression modeling with MEG/EEG: from source power
to signals and cognitive states. NeuroImage, 222:116893, November 2020.

[42] Lene Theil Skovgaard. A Riemannian Geometry of the Multivariate Normal Model.
Scandinavian Journal of Statistics, 11(4):211–223, 1984. Publisher: [Board of the
Foundation of the Scandinavian Journal of Statistics, Wiley].

[43] S. Taulu, J. Simola, and M. Kajola. Applications of the signal space separation
method. IEEE Transactions on Signal Processing, 53(9):3359–3372, September
2005. Conference Name: IEEE Transactions on Signal Processing.

[44] Jason R. Taylor, Nitin Williams, Rhodri Cusack, Tibor Auer, Meredith A. Shafto,
Marie Dixon, Lorraine K. Tyler, Cam-CAN, and Richard N. Henson. The Cam-
bridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Struc-
tural and functional MRI, MEG, and cognitive data from a cross-sectional adult
lifespan sample. NeuroImage, 144:262–269, 2017.

[45] Oncel Tuzel, Fatih Porikli, and Peter Meer. Pedestrian detection via classification
on riemannian manifolds. IEEE transactions on pattern analysis and machine
intelligence, 30(10):1713–1727, 2008. Publisher: IEEE.

[46] Michael L. Waskom. seaborn: statistical data visualization. Journal of Open
Source Software, 6(60):3021, 2021. Publisher: The Open Journal.

[47] Florian Yger, Maxime Berar, and Fabien Lotte. Riemannian Approaches in
Brain-Computer Interfaces: A Review. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 25(10):1753–1762, October 2017.

[48] Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, and Yannick
Berthoumieu. Transfer Learning: A Riemannian Geometry Framework With
Applications to Brain–Computer Interfaces. IEEE Transactions on Biomedical
Engineering, 65(5):1107–1116, May 2018.

[49] Hongyi Zhang and Suvrit Sra. First-order Methods for Geodesically Convex
Optimization. In Conference on Learning Theory, pages 1617–1638. PMLR, June
2016. ISSN: 1938-7228.

[50] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. A Comprehensive Survey on Transfer Learn-
ing. Proceedings of the IEEE, 109(1):43–76, January 2021. Conference Name:
Proceedings of the IEEE.

17



A Technical details

A.1 Proof of Proposition 2.1
Without loss of generality, we assume that π is the identity, and thus, from equation (8)
diag(pS

i ) = diag(pT
i ). Given W S = (Σ

S
)−1/2AS(ES)1/2 ∈ O(p), we have

log
(
(Σ

S
)
−1/2ΣS

i (Σ
S
)
−1/2
)
= W S log

(
(ES)

−1/2ES
i (E

S)
−1/2
)
(W S)⊤.

This implies that

xS
i = vec

(
log
(
(Σ

S
)
−1/2ΣS

i (Σ
S
)
−1/2
))

= (W S ⊗W S) vec
(
log
(
(ES)

−1/2ES
i (E

S)
−1/2
))

.

Since log
(
(ES)−1/2ES

i (E
S)−1/2

)
is a block diagonal matrix whose upper q × q block

is diag (log(pi,1/p̄1), . . . , log(pi,q/p̄q)), there exists a basis Q = [U ,U⊥] ∈ O(d)
such that

vec
(
log
(
(ES)

−1/2ES
i (E

S)
−1/2
))

= U [log(pi,1/p̄1), . . . , log(pi,q/p̄q)]
⊤
+U⊥n

S
i

where nS
i = U⊤

⊥ vec
(
log
(
(ES)−1/2ES

i (E
S)−1/2

))
. It follows that for US ≜ (W S ⊗

W S)U , we have

(US)⊤xS
i = [log(pi,1/p̄1), . . . , log(pi,q/p̄q)]

⊤
.

Applying the same reasoning to the target embeddings, we get that for UT ≜ (W T ⊗
W T )U , we have (UT )⊤xT

i = [log(pi,1/p̄1), . . . , log(pi,q/p̄q)]
⊤.

B Numerical experiments details

B.1 Datasets preprocessing
We follow the preprocessing steps proposed in [14, 33] for the Cam-CAN dataset. We
apply a FIR band-pass filter between 0.1 and 49Hz. We decimate the signals to get a
sampling frequency of 200Hz. To compensate for environmental noise, we perform
a temporal signal-space-separation (tSSS) method [43] with a chunk duration of 10
seconds and a correlation threshold of 98%. Then, we retain channels corresponding
to magnetometers. Each filtered recording is segmented in 10s epochs without overlap.
Then, epochs are filtered into 7 frequency bands: 0.1-1, 1-4, 4-8, 8-15, 15-26, 26-35,
and 35-49Hz. We performed artifact rejection by thresholding extreme peak-to-peak
amplitudes on single epochs using the local autoreject method [24]. We average the
epochs and compute one covariance matrix per subject and per frequency band using
the Oracle Approximating Shrinkage (OAS) estimator [9]. Then, principal component
analysis transforms them to matrices of size p = 65 . We compute embeddings
xD
i , still for each frequency band, using the function ϕ from equation (3). Finally,

these embeddings of all frequency bands are concatenated into one embedding per
subject.
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B.2 MEG additional figures
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Figure 5: Scatter plots of different regressors on the brain age prediction problem
of the Cam-CAN dataset. R2 scores are reported for each method on each pair of tasks
(the higher, the better).
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task is somatosensory. Each quantity is computed 100 times with different data splits
and then averaged.
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Figure 7: Fraction of pairs πij with less than a given number of years difference on
the brain age prediction problem of the Cam-CAN dataset for different numbers
of iterations of the Algorithm 1. The source task is rest, and the target task is
somatosensory. Given a number of iterations, the optimal transport plan π is computed
100 times with different data splits and then averaged.
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