Supplementary information for

Aquifer conditions, not irradiance determine the potential of photovoltaic energy for groundwater pumping across Africa

Simon Meunier^{a,b,*}, Peter K. Kitanidis^c, Amaury Cordier^{a,b}, Alan M. Macdonald^d

^a Université Paris-Saclay, CentraleSupélec, CNRS, GeePs, 91192 Gif-sur-Yvette, France

^b Sorbonne Université, CNRS, GeePs, 75252 Paris, France

^c Department of Civil and Environmental Engineering, Stanford University, Stanford, United States

^d British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AS, Scotland, United Kingdom *Corresponding author: Simon Meunier (<u>simon.meunier@centralesupelec.fr</u>)

Supplementary Figure 1 – Block diagram of the model

 α : azimuth of the photovoltaic (PV) modules, β : borehole losses coefficient, $c_{pv,loss}$: PV modules loss coefficient,

 Δt_{shut} : minimum shutdown time of the motor-pump before attempting to restart, η_{mp} : motor-pump efficiency,

 $G_{\rm bn}$: beam normal irradiance, $G_{\rm gh}$: global horizontal irradiance, $G_{\rm dh}$: diffuse horizontal irradiance,

 G_{pv} : irradiance on the plane of the PV modules, $H_{b,s}$: static water depth, H_{st} : aquifer saturated thickness, H_b : water depth in the borehole,

 $H_{\rm p}$: head due to pipe losses, $H_{\rm bb}$: borehole depth, $H_{\rm mp}$: motor-pump depth, K : junction losses coefficient,

 κ : albedo of the surrounding environment, ν : linear pipe losses coefficient, P: power produced by the PV modules,

 $P_{\rm p}$: peak power of the PV modules, Q: pumped flow rate, R: groundwater recharge, $r_{\rm b}$: borehole radius, T: aquifer transmissivity,

TDH: total dynamic head, θ : tilt of the PV modules, V: average daily pumped volume

Supplementary Figure 2 – Irradiance G_{pv} on optimally tilted PV modules (average over the year) for (a) 2014 and (c) 2017. Average daily pumped volume V for a PVWPS of size $P_p = 1000 \text{ W}_p$ for (b) 2014 and (d) 2017.

Supplementary Figure 3 - Irradiance G_{pv} on optimally tilted PV modules for (**a**) the most irradiated month and (**c**) the least irradiated month (average over the month). Average daily pumped volume V for a PVWPS of size 1000 W_p for (**b**) the most irradiated month and (**d**) the least irradiated month.

Irradiance G_{pv} on optimally tilted PV modules for (e) the most irradiated 3 days and (g) the least 3 days (average over the 3 days). Average daily pumped volume *V* for a PVWPS of size 1000 W_p for (f) the most irradiated 3 days and (h) the least irradiated 3 days.

Results for 2020.

