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Evaluating the influence of a multiaxial static preload on the dynamic
properties of elastomers

A.-S. Lectez1, E. Verron1, B. Huneau1
1 École Centrale de Nantes, GeM-UMR CNRS 6183,
1 rue de la Noë, BP 92101, 44321 Nantes cedex 3, France

ABSTRACT: A general experimental procedure is proposed to characterize the dynamic properties of elas-
tomers under large static multiaxial preloads through tension-torsion tests.The experimental set-up is presented,
before paying attention to the post-treatment. Because of the heterogeneity of the strain induced by torsion,
calculating stresses is too complex, and it is proposed to use some global equivalent quantities. Storage and
loss moduli in both tension and shear are then deduced from these quantities, extending classical definitions of
dynamic moduli around an undeformed state to a deformed one. Then, the influence of frequency and amplitude
on loss and storage moduli is studied, as well as the influence of the preload. The preload is represented either
by measures of the strain, through invariants of the Hencky strain tensor, either by its static moduli in tension
and shear. Finally, the validity of the proposed procedure is discussed.

1 INTRODUCTION

Elastomers are widely used in industry for their anti-
vibration properties. One of such application concerns
engine mounts, which are subjected to complex mul-
tiaxial loading conditions. Indeed, engine mounts are
often submitted to small oscillations, caused by either
perturbations from road or excitations of the engine,
superimposed on a large multiaxial static preload due
to engine weight. The objective here is to character-
ize elastomers under such conditions, focusing on fre-
quencies between 0.1 Hz and 30 Hz. In the case of
small uniaxial tension or shear oscillations without
any preload, DMA analysis is classically used to mea-
sure the dynamic properties of elastomers (see for ex-
ample Menard (2008), and Höfer and Lion (2009)).
Other authors have included a static preload, consid-
ering uniaxial tension and/or compression for both
preload and oscillations (see for example Meinecke
and Maksin (1980), Dutta and Tripathy (1990), Cho
and Youn (2006), Rendek and Lion (2010), Thorin
et al. (2012), and Wollscheid and Lion (2013)) but
very few consider multiaxiality and preloading during
their measurements (Azoug et al. (2013), Suphadon
et al. (2010), and Suphadon (2010)). These authors
have performed biaxial experiments on cross-shaped
specimens, simple shear oscillations superimposed on
a pure shear preload and free pure torsion oscilla-
tions superimposed on a uniaxial tension preload re-
spectively. However, considering tension-torsion tests

on a cylindrical specimen is particularly adapted for
multiaxial characterization. Indeed, it offers the pos-
sibility to combine several levels of uniaxial exten-
sion (tension or compression) with several levels of
shear through torsion. Thus, multiple amplitude lev-
els as well as multiple modes of deformation (that is
to say multiaxiality) can be prescribed on a unique
sample. In this context, this paper follows three ob-
jectives:

• To present these original tests, consisting in
applying a tension-torsion preload with sev-
eral amounts of extension and angles, followed
by small oscillations, either in uniaxial ten-
sion/compression or in pure torsion while the
preload is maintained;

• To develop an adapted procedure of post-
treatment;

• To observe the influence of the amplitude and di-
rection of the preload on the dynamic properties
of the material, as well as the influence of both
frequency and amplitude of oscillations.

First, the method of tension-torsion characterization is
presented through the description of the experimental
procedure and the chosen analysis of raw data. Then,
raw and post-treated results will be exposed, before
discussing the influence of preload, frequency and os-
cillations on the dynamic properties of the materials.
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Attention will be paid on the validity of the approach
and on its limitations.

2 METHOD

2.1 Experimental procedure

An Instron ElectroPuls E10000 Linear-Torsion ma-
chine has been used for the tests. The maximal dis-
placement reachable with this machine is 60 mm,
while several turns can be imposed. Capacities of
the load and torque cells are respectively 1 kN and
25 N.m. Quasi-cylindrical specimens have been spe-
cially designed for this application. The design was
driven by several rules as the stability of deforma-
tion, and the amplitude and modes of deformation to
reach while respecting machine specifications. Figure
1 shows the specimen placed in the machine. The ra-

Figure 1: View of the specimen in the machine tests

dius of the perfectly cylindrical part of the specimen
is 7 mm, while the total length of the rubber part is
34 mm. The elastomeric material of the specimen is
closed from the one of an engine mount: it contains
natural rubber (NR) and is carbon black filled (30
phr). In order to determine the relationship between
strain, and displacements and angles practically pre-
scribed by the machine, stereo digital image correla-
tion (SDIC) has been used: large quasi-static com-
bined tension-torsion loading conditions have been
prescribed on a specimen on which a white speckle
pattern has been applied, filmed by two synchronized
cameras. From these measurements are deduced the
relationship between λ, the extension in the central
zone of the specimen and D, the global displacement
imposed by the machine on the one hand, and be-
tween τ , the angle per unit of length and α the global

angle imposed by the machine on the other hand:

λ = 0.039D+ 1 (1)

τ = 0.033α (2)

with D in mm, α in rad and τ in rad.mm−1. Be-
fore each test, specimens have been accommodated
in order to reduce the Mullins effect, with 5 load-
ing/unloading cycles at the highest loading condi-
tions, which are combined uniaxial tension until λ =
2.5 and torsion until τ = 0.09 rad.mm−1 (D = 38.5
mm and α = 158◦). A rate of extension λ̇ = 10−2 s−1

is imposed during accommodation. Then, each tests
is composed of two steps:

• A large quasi-static preload of combined torsion
and uniaxial tension or compression. In order
to impose quasi-static conditions during the first
step, the uniaxial displacement rate is fixed at
ǫ̇ = 10−3 s−1.

• uniaxial tension-compression or pure torsion
small oscillations with a frequency 0.1 Hz ≤ f ≤
30 Hz.

A map of loading conditions during the first step
is shown in Figure 2: each final point of loading is
represented by its coordinates in terms of extension λ
and angle per unit of length τ . These points have been
chosen in order to ensure different levels of ampli-
tude and multiaxiality of deformation. All loading are
proportional. For uniaxial tension-compression oscil-
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Figure 2: Mapping of the loading points in terms of extension
and angle per unit of length during the preload

lations, 9 levels of amplitude have been chosen in
terms of strain with respect to the unloaded config-
uration: 0.01% ≤ ǫ0 ≤ 7%. For pure torsion oscilla-
tions, 10 levels of amplitude have been considered:
0.01% ≤ ǫ0 ≤ 10%.

2.2 Post-treatment

During tests, displacements and angles are prescribed,
and load and torque are measured. As the objective
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is to characterize the material, some intrinsic me-
chanical quantities have to be calculated from these
raw data. Practically, we want to extend the defini-
tion of the storage and loss moduli, classically de-
fined for small oscillations around an undeformed
state, with uniaxial tension/compression tests (quan-
tities are noted E ′ and E ′′ respectively), or shear
tests (G′ and G′′ respectively).Yet, their calculation is
based on stresses and strains. From Eqs. (1)-(2) and
the hypothesis of a perfect cylinder, strains quantities
are easily determined. While it is possible to calculate
stresses at the outer radius of the cylinder in the case
of quasi-static pre-extension followed by torsion with
the method of Penn and Kearsley (1976) (see Lectez
et al. (2014)), the calculation is too complex and re-
quires too many hypothesis for multiaxial and non
quasi-static conditions, which is the case for some of
oscillations here. Thus, calculation of stresses is dif-
ferent according to the loading conditions: the case
of uniaxial tension-compression during the preload as
well as the oscillations is treated differently as the
other cases.

2.2.1 Uniaxial case: tension-compression during
preload and oscillations

In this case, the Cauchy stress tensor is easy to cal-
culate since deformation is homogeneous. It reduces
to a unique component in the direction of extension:
during the preload, σ = N/s, where N is the mea-
sured load and s is the deformed surface, during oscil-
lations, this relationship is linearized to obtain the lin-
earized stress ∆σ, and finally, the infinitesimal strain
with respect to the preloaded configuration in the di-
rection of extension during the oscillations is: ǫ =
∆u/l, where ∆u is the small displacement imposed
during oscillations and l is the length of the specimen
after preload.

2.2.2 Multiaxial case: tension-torsion during the
preload and/or the oscillations

In this case, there is no simple way to calcu-
late stresses. Thus, we choose to introduce average
global quantities which are close to the definitions of
stresses, but which are not rigorously stresses. It is
chosen to study the global behavior in tension on the
one hand, and the global behavior in torsion on the
other hand, that is to say it is chosen to simplify the
problem and to consider both contributions as decou-
pled. For the equivalent stress in the tension direction,
the same definition is chosen as the stress in pure uni-
axial case: σ = N/s for the preload,∆σ for the oscilla-
tions. The infinitesimal strain in the tension direction
remains ǫ = ∆u/l.

Concerning the global quantity in the torsion direc-
tion, it is chosen to consider the torque reported to the
area moment of inertia, as an analogy with torsion of
a cylindrical bar: T = M/Ig, where ∆T is the equiv-
alent quantity, expressed in N.mm−3, M is the torque

during the preload and Ig is the area moment of iner-
tia after the preload. This relation is linearized to find
∆T , which corresponds to oscillations. The shear dy-
namic moduli are deduced from curves of ∆T with
respect to ∆τ , the linearized angle per unit of length.
Table 1 shows the mechanical quantities calculated
for each type of test.

Oscillations

Preload

Uniaxial
tension

Pure tension

Uniaxial tension

∆σ vs. ǫ

Uniaxial compression ∆T vs. ∆τ

tension-torsion ∆σ vs. ǫ,

pure torsion ∆T vs. ∆τ

Table 1: Mechanical quantities calculated for each test

2.2.3 Calculation of dynamic moduli

The dynamic moduli are defined in the framework of
linear viscoelasticity (see for example Ward (1983)).
An harmonic uniaxial infinitesimal strain is imposed:

ǫ(t) = ǫ0 sin(ωt), (3)

where ǫ0 is the strain amplitude, ω the angular fre-
quency and t the time. For small oscillations, the
stress can be approximated by:

σ(t) = σ0 sin(ωt+ φ), (4)

where σ0 is the stress amplitude and φ is the phase.
The stress can be rewritten as follows:

σ (t) = ǫ0E
′ sin (ωt) + ǫ0E

′′ cos (ωt) , (5)

with E ′ = cosφ σ0/ǫ0 and E ′′ = sinφ σ0/ǫ0. E
′ ap-

pears in the part of the stress which is in phase with
the strain, and is called storage modulus. E ′′ appears
in the part of the stress which is out-of-phase with the
strain, and is called loss modulus since it is directly
related to the energy dissipated during one cycle ∆W :

∆W =

∫
σdǫ = πE ′′ǫ2

0
. (6)

In our case, E ′ and E ′′, the dynamic moduli in ten-
sion, are deduced from the curves ∆σ versus ǫ, while
G′ and G′′, the shear dynamic moduli, are calculated
from curves ∆T versus ∆τ .

2.2.4 Characterizing the influence of the preload

Firstly, dynamic moduli are plotted as functions of
frequency and amplitude of oscillations, in order to
study their respective influences. Then the influence

3



of the preload on the dynamic moduli is investigated.
Usually, authors chose to plot dynamic moduli with
respect to the extension. This method is of course
not applicable if torsion is considered during preload.
Thus, it is proposed here to represent the preload
by two very interesting quantities, K2 and K3 which
are invariants of the Hencky strain tensor H (see
Criscione et al. (2000)):

K2 =
√

devH : devH (7)

K3 =
3
√
6

K3

2

det (devH) , (8)

where dev is the deviatoric operator. These invariants
have a special interest through their physical mean-
ing: K2 is the amplitude of distortion and K3 is a mea-
sure of multiaxiality (it is worth -1 for uniaxial com-
pression, 0 for pure shear and 1 for uniaxial tension).
Thus, they are well adapted to represent the preload.
An other try is to characterize the preload with its
static modulus rather than its strain state. The tension
static modulus is calculated as the tangent of the (λ,σ)
curve, while the torsion static modulus is the tangent
of the (T ,τ ) curve. Of course, static moduli depend on
the level of strain.

3 RESULTS

8 preloads, 5 frequencies and 10 amplitudes of oscil-
lations are studied, it is hence not possible to show all
the results here. A few curves are shown as examples,
and the main tendencies observed on the whole data
are summed up.

3.1 Influence of frequency and amplitude of
oscillations

Three main observations are made from all tests:

• Storage modulus decreases when the amplitude
increases and increases when the frequency in-
creases;

• No clear trend appears concerning the evolu-
tion of the loss modulus with respect to the fre-
quency;

• For most of preload levels, the loss modulus first
increases with amplitude, then decreases. The
amplitude point at which the evolution changes
depends on preload.

Figure 3 illustrates the first item, showing the evolu-
tion of E ′ with respect to the frequency and the am-
plitude of oscillations, for a pure torsion preload τ =
0.09 rad.mm−1 (point 6 in Figure 2).
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Figure 3: Evolution of the tension storage modulus with respect
to frequency and amplitude of oscillations for uniaxial tension-
compression oscillations after a pure torsion preload τ = 0.09
rad.mm−1

3.2 Influence of preload

In order to study the influence of preload on dynamic
moduli, E ′ and E ′′ are plotted against K2, which rep-
resents the amplitude of the preload, and K3, the mea-
sure of multiaxiality during preload. Figure 4 shows
the evolution of E ′ with respect to K2 and K3 for uni-
axial tension-compression oscillations with an ampli-
tude ǫ= 0.4%, a frequency f = 0.1 Hz. Each point on
graphs represents a preload of Figure 2. No very clear
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Figure 4: Evolution of the tension storage modulus with respect
to the amplitude of distorsion and mode of distorsion of the
preload, for uniaxial tension-compression oscillations of ampli-
tude 0.4 % at 0.1 Hz.

trends appear on these graphs, it is quite difficult to
describe the evolution of E ′ as a function of K2 and
K3. Similar observations are made for G′, E ′′ and G′′.

Figure 5 shows the evolution of E ′ with respect to
Es, the static modulus for the same conditions of fre-
quency and amplitude as above; a logarithmic scale is
adopted. Except for the fourth point, a monotonic evo-
lution appears, the storage modulus increases with the
static modulus, in a quite linear manner on the loga-
rithmic plot.
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Figure 5: Tension storage modulus with respect to the static mod-
ulus in logarithmic scale, for uniaxial tension-compression oscil-
lations at 0.1 Hz, with 0.4% of amplitude

4 DISCUSSION

4.1 Influence of the frequency, amplitude and
preload

The evolution observed on the storage moduli with
frequency and amplitude when data are not too noisy
are coherent with the trends observed by other authors
who studied the dynamic moduli after a preload (see
for example Dutta and Tripathy (1990) and Cho and
Youn (2006)). Few authors studied the evolution of
the loss moduli with the frequency and the ampli-
tude under a preload. Rendek and Lion (2010) ob-
served also an increase followed by a decrease of
the loss modulus when the amplitude increases, while
Wollscheid and Lion (2013) observed a quasi constant
evolution. The change of evolution of the loss mod-
ulus is comparable to the Payne effect (or Fletcher-
Gent), observed during oscillations without preload
(see for example Payne (1962a), Payne (1962b), Luo
et al. (2010)). Yet, this effect is highly dependent
on the elastomer composition, which could explain
the difference of observations (Payne and Whittaker
(1971)).

Concerning the influence of the preload, character-
izing the preload with the strain measures K2 and
K3 is not pertinent, since no clear trend appears.
However, some interesting results are obtained when
studying the evolution of E ′ as a function of Es: a
quasi-linear curve is obtained on the log plot. This
quasi-linearity is also found for others frequencies.
Of course, curves are not superimposed, since E ′ de-
pends on the frequency while Es does not. Hence, a
linear regression can be proposed, giving two param-
eters which depend on the frequency. Figure 6 shows
the comparison between the experimental curve of
Figure 5 and the linear regression:

E ′ = αEβ
s , where α = 0.59 and β = 0.83, (9)

β being dimensionless and α in MPa1−β. This rela-
tionship is very interesting, since it directly relates
the static property Es, which can be known either ex-
perimentally or deduced from a hyperelastic model,

0 5 10 15 20 25
0

5

10

15

20

25

E
s
 (MPa)

E
′  (

M
P

a
)

 

 

experimental

E’= α E
s

β

Figure 6: Comparison between the measured and calculated ten-
sion storage moduli with respect to the static modulus, for uni-
axial tension-compression oscillations at 0.1 Hz, with 0.4% of
amplitude

with the storage modulus E ′. It has been found that
the tension loss modulus E ′′ follows also this kind of
law. However, it is not the case for the shear storage
and loss moduli, G′ and G′′, on which the results are
noisy.

4.2 Validity of the method

4.2.1 Using a large displacement machine for
small oscillations

Using this kind of machine, and particularly load and
torque cells adapted for large loading conditions can
be questionable. Indeed, variations of load and torque
during oscillations are often very small in front of
the maximum measurable. Data are thus very noisy in
some cases, which renders the study of the influence
of the frequency and amplitude on dynamic properties
harder, even if some trends have been observed. How-
ever, using this machine allows us to perform various
multiaxial tests with a unique experimental set-up and
above all, to study the influence of a large preload on
the dynamic properties.

4.2.2 Extending definitions of loss and storage
moduli

For some of the amplitudes imposed, non-linearities
are observed on the linearized stress-strain curves.
Yet, the calculation of loss and storage moduli is
based on the linearity hypothesis. Thus, the approx-
imated relationship (5) does not hold anymore, since
harmonic of higher orders are no longer negligible.
One can speak of several loss and storage moduli,
which interpretation becomes complex (see for exam-
ple Govindjee and Simo (1992)). Despite of this loss
of accurate meaning, the loss and storage moduli as
calculated in this paper still remain global compari-
son tools: E ′ and G′ are indicators of the evolution
of the stiffness while E ′′ and G′′ are dissipation in-
dicators. This is illustrated by Figure 7: in this case,
the linearized stress-strain curve is slightly non-linear,
but E ′ can be plotted and indicates the global change
of stiffness. The loss and storage moduli remains use-
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ful, but does not permit to completely characterize the
dynamic behavior since it does not characterize the
non-linearity.
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Figure 7: Linearized stress with respect to infinitesimal strain,
uniaxial compression preload to λ = 0.67, f=20 Hz

5 CONCLUSION

In this paper, an original experimental procedure ded-
icated to dynamic properties of elastomers under a
large multiaxial quasi-static preload has been pre-
sented. A method to post-treat these tests have been
presented, based on the calculation of loss and stor-
age moduli, usually calculated from non preloaded
experiments. The validity of their use for our exper-
iments has been discussed. Even if non linearity ap-
pears for small oscillations, the loss and storage mod-
uli are used as global indicators of stiffness and dissi-
pation. Finally, it has been highlighted that it is more
interesting to study the influence of the preload on
the dynamic properties comparing the static modulus
to the dynamic ones rather than using strains as rep-
resentation of the preload. It would be interesting to
study if a similar power law is obtained for other elas-
tomers.
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