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A Generalized Multiscale Bundle-Based
Hyperspectral Sparse Unmixing Algorithm

Luciano C. Ayres, Ricardo A. Borsoi, José C. M. Bermudez, Sérgio J. M. de Almeida

Abstract—In hyperspectral sparse unmixing, a successful ap-
proach employs spectral bundles to address the variability of the
endmembers in the spatial domain. However, the regularization
penalties usually employed aggregate substantial computational
complexity, and the solutions are very noise-sensitive. We gen-
eralize a multiscale spatial regularization approach to solve
the unmixing problem by incorporating group sparsity-inducing
mixed norms. Then, we propose a noise-robust method that can
take advantage of the bundle structure to deal with endmember
variability while ensuring inter- and intra-class sparsity in
abundance estimation with reasonable computational cost. We
also present a general heuristic to select the most representative
abundance estimation over multiple runs of the unmixing process,
yielding a solution that is robust and highly reproducible.
Experiments illustrate the robustness and consistency of the
results when compared to related methods.

Index Terms—Hyperspectral data, spectral variability, sparse
unmixing, multiscale.

I. INTRODUCTION

In hyperspectral image (HSI) analysis, spectral unmixing
(SU) consists of determining the spectral signatures of the
materials contained in the scene (i.e., the endmembers – EMs)
and the proportions in which they are present in each pixel
of the image [1]. Most SU approaches are based on a linear
mixture model (LMM) [1], which assumes that each pixel
in the HSI consists of a linear combination of the EMs,
weighted by their fractional abundances. However, variations
in atmospheric, lighting, and environmental conditions that
commonly occur in a scene can have a significant impact on
the spectral signatures of the EMs contained in an HSI [2].
Because of this spectral variability, the spectrum representing
an EM can change as a function of its position in the HSI.

The use of large libraries of spectra is a typical approach
to deal with spectral variability in SU [2]. Among existing
methods, those based on sparse regression, considered com-
putationally efficient, assume that the reflectance of pixels in
an HSI can be described as a linear combination of a few EM
signatures from a large spectral library known a priori (typi-
cally constructed from laboratory or in situ measurements) [3].
However, spectral libraries are often not available for a given
HSI. Recent work proposed methods for extracting structured
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Borsoi, Université de Lorraine, CNRS, CRAN, Vandoeuvre-lès-Nancy, e-mail:
raborsoi@gmail.com; S. J. M. de Almeida, Universidade Católica de Pelotas,
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spectral libraries directly from the observed HSI [4]. Such
approaches usually apply EM extraction algorithms (EEAs) to
subsets of pixels randomly sampled from the HSI. This ran-
domness causes EMs obtained at each extraction to be slightly
different, representing the spectral variability in the HSI.

In [5], the authors propose to introduce mixed norms in
the sparse SU optimization problem with structured spec-
tral libraries to promote group sparsity. A new penalty is
proposed to control inter- and intra-structure sparsity, which
can considerably improve SU performance when compared to
typically used sparsity penalties. However, the results of this
technique depend on the initialization of the abundances in the
optimization problem. Furthermore, when used in conjunction
with spectral libraries extracted from the HSI via methods such
as [4], the estimated abundances are random variables and may
be different for each run of the method.

Another challenge with these techniques is their sensitivity
to the presence of noise due to the large number of signatures
in the library. Integrating regularizations that promote spatial
smoothness of the abundances improves the performance of
sparse SU algorithms in noisy conditions, but at the expense of
a considerable increase in computational complexity [6], [7]. A
fast sparse SU algorithm (called MUA), based on superpixels
and a multiscale strategy, has recently been proposed for the
SU problem without using structured libraries [8]. Despite the
positive results obtained in [8], [9] with a sparsity penalty
based on the L1 norm, this solution is not suitable to tackle the
challenge of spectral variability through structured libraries.

This work proposes a method to handle spectral variability
of EMs in the SU problem while maintaining a reason-
able computational cost and being robust to noise. Moti-
vated by methods used in neuroimaging [10], we aim to
obtain reproducible SU solutions [11], i.e., using the same
algorithm and data, the results should be consistent, even
considering randomness in some steps of the method. The
main contributions of this paper can be summarized as: 1)
We generalize the multiscale spatial regularization problem
formulated in the MUA algorithm [8] to solve the sparse
SU problem with structured libraries, allowing the use of
more general sparsity-inducing penalties, such as those based
on mixed norms [5]; 2) We propose a heuristic based on
a graph centrality criterion to select reproducible abundance
estimates (i.e., with less influence of randomness on the SU
process) from K runs of the method. Experimental results
show that the proposed method provides high quality results
with significantly less dispersion when compared to state-of-
the-art algorithms. Codes to reproduce the experimental results
are available at http://github.com/lucayress/GMBUA.
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II. STRUCTURED SPARSE SPECTRAL UNMIXING

Considering the LMM, an HSI Y ∈ RL×N with L bands,
N pixels and P EMs can be written as:

Y = AZ+N , (1)

where the abundances Z ∈ RP×N are subject to the non-
negativity (ANC) and sum-to-one (ASC) constraints [1].
A ∈ RL×P represents the matrix of EMs. Column ap,
p = 1, . . . , P , of A is the signature of of the pth EM. N
is the additive noise. Using LMM allowing for consideration
of spectral variability requires a representation of any given
material using more than one EM.

A. SU with structured EM libraries
Following [5], consider replacing A in LMM (1) with a

structured spectral library B ∈ RL×Q. B is composed of P
structures Bp (p = 1, . . . , P ). The columns of the pth structure
are different spectral signatures of the pth EM of the HSI:

Y = BX+N , B =
[
B1 | B2 | . . . | BP

]
. (2)

In (2), X ∈ RQ×N contains the abundances associated
with each spectral signature in B. Each submatrix Bp ∈
RL×mGp represents a group Gp of mGp signatures. Then,
Q =

∑P
p=1 mGp

is the total number of spectra. The ith
representative of the Gp group in the dictionary is denoted
as bGp,i (i.e., bGp,i is the ith column of Bp). We can extract
from (2) the expression of a single pixel yn, n = 1, . . . , N ,
in terms of the “global” abundance of the pth material [5]:

yn =

P∑
p=1

zpap =

P∑
p=1

(mGp∑
i=1

xGp,i

)(∑mGp

i=1 xGp,ibGp,i∑mGp

i=1 xGp,i

)
.

(3)
where xGp,i is the abundance associated with bGp,i, and zp is
the total abundance coefficient for material p in yn.

Sparse SU consists of recovering the X abundances from
the observed Y HSI, given the B dictionary. We can then
formulate the following optimization problem:

X̂ = arg min
X∈∆P

1

2
∥Y −BX∥2F + λR(X) , (4)

where R(X) is a regularization penalty that promotes sparsity,
λ ∈ R+ is a regularization parameter, ∥ · ∥F is the Frobenius
norm, and ∆P denotes the set of coefficient matrices whose
abundances satisfy the ANC and ASC constraints.

B. Mixed sparsity-promoting norms (penalties)
The regularization penalty R(X) plays a key role in the

performance of sparse SU algorithms. In [5], Drumetz et
al. propose the use of group sparsity by introducing mixed
norms in the sparse SU optimization problem to enforce
sparsity within each group and between different groups from
structured libraries of EMs automatically extracted from HSI
as in [4]. The mixed two-level norm ℓG,r,s is defined for any
pair of positive real numbers, r and s, as:

∥x∥G,r,s ≜

(
P∑

p=1

(mGp∑
i=1

|xGp,i
|r
)s/r)1/s

=

(
P∑

p=1

∥xGp
∥sr

)1/s

.

(5)

Operating on columns and summing the results across all pix-
els, the authors in [5] defined the sparsity penalty through the
ℓG,r,s norm of the coefficient matrix as R(X) = ∥X∥G,r,s ≜∑N

n=1 ∥xn∥G,r,s. Considering this penalty, the sparse SU
problem (4) was solved in [5] using the alternating direction
method of multipliers. However, R(X) is non-convex for
various values of r and s, which makes the solution computa-
tionally costly and initialization dependent. We highlight that
while extracting the B library from the HSI [4] can relieve the
need for spectral libraries to be known a priori, this strategy
has limitations as it relies on the presence of pure pixels and
on the EEAs yielding reliable results. Moreover, it can add
significant variability to the SU results.

III. PROPOSED METHOD

In this section, we present the proposed structured sparse SU
algorithm (called GMBUA – Generalized Multiscale Bundle-
based Unmixing Algorithm), which has two key parts. First, we
develop a multiscale spatial regularization approach capable of
considering a wide variety of sparsity penalties, such as the
norm ℓG,r,s, in an efficient manner. Then, we propose a strat-
egy to mitigate the effect of randomness involved in extracting
the spectral library from the HSI (as in, e.g., [4]) and in the
SU process. This strategy uses a centrality criterion applied to
a graph representing different abundance realizations.

A. Multiscale approach for sparse and structured SU
Consider a spectral library B extracted from HSI using

the an algorithm such as, e.g., [4]. We define the multiscale
decomposition of the sparse SU problem at (4) as a spa-
tial transformation promoted by an operator W ∈ RN×M ,
M < N , applied to the HSI and to the abundances [8]:

YC = YW, XC = XW, (6)

where YC ∈ RL×M , XC ∈ RQ×M , and subscript C refers to
the new approximate (coarse) image domain. The W operator,
built based on a superpixel decomposition of Y, averages the
pixels in spatially homogeneous regions of the HSI where the
abundances are relatively constant. This spatial smoothness of
the abundances can then be exploited by formulating the sparse
SU problem in the approximate domain according to (6):

X̂C = arg min
XC∈∆P

1

2
∥YC −BXC∥2F + λCR(XC) . (7)

Note that in (7) R is applied to the abundances at the
approximation scale. Hence, as long as R does not directly use
the spatial organization of the different pixels in the image, this
procedure can be extended to any sparsity penalty. Problem (7)
can be solved in the same way as (4). The X̂C estimate is then
mapped back to the original spatial scale, denoted by D, via
the operation X̂D = X̂CW

∗ ∈ RQ×N , where operator W∗

replicates the pixels from X̂C at all pixel locations of the same
superpixel at the D scale. Thus, X̂D provides an estimate of
the spatial structure of the abundance maps.

Next, the approximate X̂D abundance matrix is used to
regularize the SU problem at the original scale:

X̂ = arg min
X∈∆P

1

2
∥Y−BX∥2F +λR(X)+

β

2
∥X̂D−X∥2F , (8)
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where β is a regularization parameter. The higher complexity
of the solutions of (7) and (8) has been efficiently solved in [8]
for the case where R(X) = ∥X∥1,1. This solution, however,
cannot easily be generalized to other norms.

To enable simple solutions for other norms, we reformulate
the multiscale approach by expressing (8) equivalently as:

X̂ = arg min
X∈∆P

1

2

∥∥∥∥ [ Y√
βX̂D

]
−
[

B√
βI

]
X

∥∥∥∥2
F

+ λR(X). (9)

By defining Ỹ =
[
Y⊤,

√
βX̂⊤

D
]⊤

and B̃ =
[
B⊤,

√
βI
]⊤

, this
problem can be written in the same form as (4):

X̂ = arg min
X∈∆P

1

2

∥∥Ỹ − B̃X
∥∥2
F
+ λR(X) . (10)

Problem (10) is equivalent to the sparse SU (4) without spatial
regularization, and with an HSI and dictionary given by Ỹ and
B̃, respectively. Consequently, both (7) and (10) can be solved
using the same algorithms developed to solve the problem (4).
In particular, in this paper we will consider R(X) to be the
mixed norm ℓG,r,s. This allows us to use the strategy described
in [5] to solve the optimization problems. We omit the details
for brevity. After solving (10), the global abundances Ẑ are
then calculated by aggregating the abundances in each group
of solution X̂ (as shown in (3)).

B. Selecting a consistent abundance estimate

The estimated abundances X̂ are random variables due to
randomness in both the spectral library extraction and SU
processes. Since library extraction typically involves applying
EEAs to randomly sampled pixels of the HSI significant vari-
ability can occur between different executions of the algorithm,
even when the EEA is reliable. This undesirable variability has
been often ignored, and choosing a representative solution is
not a trivial task. Inspired by strategies recently considered
for neuroscience applications [10], we propose a strategy to
obtain a representative and reproducible estimate.

First, assuming there exist pure pixels of each EM in the
image, K different spectral libraries are extracted from HSI
Y using a method such as, e.g., [4]. For each of them, SU is
performed using the algorithm described in the previous sub-
section, leading to K different abundance maps Ẑk with (k =
1, . . . ,K), which are stored in the set Ω =

{
Ẑ1, . . . , ẐK

}
.

Now, we construct a graph with K nodes, each representing
one of the solutions in Ω. The weighted adjacency matrix of
the graph is constructed based on a similarity measure Cuv

between each pair of solutions, Ẑu and Ẑv , computed based
on a linear assignment problem (LAP). More precisely, the
similarity between Ẑu and Ẑv , u ̸= v is calculated as

Cuv = min
P∈Π

1

N

∥∥Ẑu −PẐv

∥∥
F
, (11)

where Π represents the set of permutation matrices of dimen-
sion P . The minimization in (11) aims to align the abundance
maps in such a way as to eliminate permutation ambiguity in
the estimated abundances, and is efficiently solved in the form
of an LAP (using, e.g., the Hungarian algorithm [12]).

By calculating Cuv for u, v = 1, . . . ,K, u ̸= v, we
create a connected, undirected graph with no self-loops. A

minimum-cost sub-graph connecting all nodes is the next
step in computing a minimum spanning tree (MST) [13],
eliminating connections between unnecessary nodes. Finally,
we select the most representative run as the most central node
in the graph; this consists of the run corresponding to the node
with the largest number of connections to other nodes (runs)
in the graph. This solution, called the most representative, or
the best, is denoted by Z∗.

Note that the strategy proposed in this section is general and
can be applied to select a representative solution for any SU
algorithm that contains a significant degree of randomness. A
pseudocode for GMBUA is presented in Algorithm 1.

Algorithm 1: GMBUA
Input: Y, number of runs K, of EMs P , and of EM extractions T ,

percentage of pixels α, number of superpixels M ,
regularization parameters β, λ, λC .

1 Ω← ∅ (empty set);
2 Construct W based on the superpixel decomposition of Y;
3 for k = 1 to K do
4 Υ← ∅ (empty set);
5 for i = 1 to T do
6 Ψ← extract P EM candidates from ⌈αN⌉ pixels

randomly sampled from Y;
7 Υ← Υ

⋃
{Ψ} — store EM candidates in Υ;

8 end
9 {Bi}Pi=1 ← cluster the signatures in Υ into P groups;

10 X̂← perform multiscale unmixing solving (7) and (9);
11 Ẑk ← convert X̂ into global abundances with P EMs;
12 Ω← Ω

⋃
{Ẑk} — store each solution in Ω;

13 end
14 return Ẑ∗ ← the most representative abundance in the set Ω.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the GMBUA method with
the constrained least squares method (FCLSU), with the
Collaborative [14], Group [15], Elitist, [16] and Frac-
tional sparse SU based on different penalties [5], and with
SUnCNN [17], which is a deep learning-based method. For
quantitative comparisons, in addition to runtime, we use the
signal-to-reconstruction error ratio in dB [6], SRE(Ẑ) =
10 log10(∥Z∥2F /∥Z − Ẑ∥2F ), which evaluates the estimation
of the global abundances in cases where a reference abun-
dance matrix (i.e., ground-truth – GT) is known. Also, we
use SRE(Ŷ) = 10 log10(∥Y∥2F /∥Y − Ŷ∥2F ) to assess the
reconstructed image Ŷ. Qualitative evaluations were based
on the visualization of the global abundance maps gener-
ated by the algorithms. Results were obtained for optimal
regularization parameter values computed by grid search for
each experiment and algorithm. For the proposed method, we
considered K = 30 runs to compute the most representative
abundance maps in Algorithm 1. The algorithms were run in
MATLAB®, on a computer equipped with a Intel Core i7 9750H
processor @ 2.60 GHz and 16 GB of RAM.

Synthetic data (SD): To quantitatively evaluate the
performance of the algorithms, we generated an HSI from
synthetically generated abundance maps with 50 × 50 pixels
and P = 5 EMs, which are used as GT. Less than 1.5% of the
pixels are pure (i.e., have abundance greater than 0.95 for some
EM). To generate the EMs, a set of P signatures were first
extracted from the USGS library. These signatures were then
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Figure 1: SRE(Ẑ) distribution for the synthetic data and all algorithms.

multiplied by random piecewise linear functions as defined
in [18] to generate the EM signatures used in each HSI pixel,
incorporating spectral variability. The pixels were generated
following the LMM, where white Gaussian noise was added
to the data to yield signal-to-noise ratios (SNR) of 20 and 30
dB. To assess the reliability of the results generated by the
algorithms, R = 30 Monte Carlo executions were performed.
For each of the estimated abundances, we calculated the
SRE(Ẑ). The distributions of the respective results for each
method are shown in Figure 1 (only shown for the case of
20 dB SNR due to space limitations). In order to show the
influence of K on the performance of GMBUA, we also show
distribution results for K = 10 and K = 20. It is clear from
these results that GMBUA has led to a higher median SRE
and to a significantly smaller spread of solutions than any of
the other methods. Moreover, the spread of the distribution
of SRE(Ẑ) values decreases considerably with the increase
of K, significantly reducing the probability of a low-quality
solution. These distributions indicate that GMBUA is robust
to outliers, as it was able to generate consistently good results,
with the majority of samples having SREs larger than 7 dB.
By contrast, the SRE(Ẑ) values obtained using the competing
methods varied widely within a range of approximately 2 to
12 dB, with a considerable amount of samples having SREs
smaller than 5.5 dB.

Table I shows the median values of the SRE results. It
can be verified from Table I that the SUnCNN provided the
highest median SRE(Ẑ) for a 30 dB SNR, followed closely by
the GMBUA, Fractional, Collaborative and FCLSU methods.
Moreover, GMBUA performed significantly better than all the
other algorithms for a 20 dB and 10 dB SNR, with gains of
more than 1.5 dB and 2.6 dB in SRE(Ẑ), respectively. The
results of SUnCNN, on the other hand, were more sensitive
to the increase in the amount of noise in the HSI.

The main cause for this variation in SRE values is related to
the random sampling of image pixels during the construction
of the spectral library from the HSI [4]. This sampling leads
to significant variations in the quality of the obtained libraries
across runs, strongly impacting the results of the subsequent
unmixing process, as seen in Figure 1. Through the strategy
for selecting the most consistent abundance run, GMBUA mit-
igates the impact of poor quality library extractions, increasing

Table I: Quantitative results with the synthetic data (SD) and real data (Cuprite
HSI) for all algorithms.

Method Dataset SRE(Ẑ) SRE(Ŷ) Runtime (s)

FCLSU

SD 30 dB 10.58 28.04 1.02
SD 20 dB 6.58 29.93 1.01
SD 10 dB 4.08 24.26 0.80

Cuprite HSI – 39.49 48.28

Collaborative

SD 30 dB 10.62 28.05 6.25
SD 20 dB 6.62 29.95 5.97
SD 10 dB 4.08 24.27 4.41

Cuprite HSI – 37.02 137.67

Group

SD 30 dB 9.88 26.09 8.94
SD 20 dB 6.79 29.86 9.95
SD 10 dB 4.11 24.72 4.28

Cuprite HSI – 33.74 273.42

Elitist

SD 30 dB 9.54 26.35 10.78
SD 20 dB 6.84 29.92 10.59
SD 10 dB 4.21 24.14 4.39

Cuprite HSI – 36.01 275.37

Fractional

SD 30 dB 10.59 28.06 8.90
SD 20 dB 6.59 29.94 8.93
SD 10 dB 4.08 24.26 6.75

Cuprite HSI – 36.97 278.59

SUnCNN

SD 30 dB 10.89 27.10 168.40
SD 20 dB 7.08 29.87 161.21
SD 10 dB 3.99 23.92 157.68

Cuprite HSI – 38.62 1142.99

GMBUA

SD 30 dB 10.72 26.31 K×17.04
SD 20 dB 8.60 28.82 K×17.70
SD 10 dB 6.79 25.12 K×13.77

Cuprite HSI – 37.06 K×344.98

the reproducibility of the results.
From Table I, the Collaborative and Fractional algorithms

obtained the highest SRE(Ŷ) for the cases of 20 and 30
dB SNR, providing the closest reconstruction of the HSI,
while GMBUA and Group performed better in 10 dB SNR.
However, a higher SRE(Ŷ) does not imply a better abundance
reconstruction performance since the unmixing problem is
typically ill-posed, and different abundance solutions might
yield similar SRE(Ŷ). Observing the estimated global abun-
dance maps for the 20 dB SNR scenario shown in Fig. 2
(the abundance corresponding to the FCLSU, Collaborative
and Group algorithms were omitted due to space limitations),
we can see that GMBUA generates abundances that are more
similar to the reference one (GT), especially for the abundance
maps of EMs 2 and 5. For the other EMs, the proposed method
yields similar but less noisy abundance maps.

Real data: In this experiment, we used the well-known
Cuprite HSI [5], with 250×191 pixels and 188 spectral bands.
This HSI contains several exposed minerals, including alunite,
buddingtonite, chalcedony, kaolinite, muscovite and sphene.
Since we do not have access to a GT for this dataset, we
rely on a qualitative evaluation of the estimated abundance
maps. Thus, we display in Figure 3 the abundance maps
obtained from a single execution of the algorithms, selected
at random (the abundances corresponding to the FCLSU,
Collaborative and Group algorithms are not displayed due to
space limitations) and a reference map of different minerals
in Cuprite scene for comparison.

By observing the abundance maps, we see that the deep
learning-based SUnCNN method in general could reasonably
identify the materials in the scene but had some issues with
alunite and chalcedony, which are not well separated. The
Elitist method did not perform well for this HSI, where the
structures of kaolinite, sphene, and buddingtonite in the scene
can be identified but are extremely mixed compared to the
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Figure 2: Estimated abundance maps for the synthetic dataset with an SNR
of 20 dB. The sampled abundance maps are the ones corresponding to the
median SRE(Ẑ) results for each algorithm.

K-Alunite 150C

and/or Muscovite
Alunite+Kaolinite

Chaceldony

Buddingtonite

Kaolinite pxl
Kaolinite wxl

K-Alunite 450C
K-Alunite 250C

Figure 3: Estimated abundance maps for a random execution of the SU
algorithms on the Cuprite HSI (a reference map is shown on the left).

other methods. Fractional provided the noisiest abundances,
and there was a considerable mixture between the muscovite
and buddingtonite materials. GMBUA provided the accurate
and sparse abundance maps, presenting homogeneous regions
with adequately separated components, most notably for the
alunite mineral.

The SRE(Ŷ) results and the execution times for all algo-
rithms can be seen in Table I. The FCLSU and SUnCNN
methods achieved the highest SRE(Ŷ), reconstructing the pix-
els very closely, whereas Group achieved the lowest SRE(Ŷ).
The execution times show that each of the K unmixing runs
inside GMBUA is comparable to the Fractional method and
much lower than those of SUnCNN. Thus, the proposed
spatial regularization strategy does not add a considerable
computation burden to the algorithm, with the extra time
coming from the different executions required for selecting
a consistent solution.

V. CONCLUSIONS

In this paper, we proposed a generalized multiscale spatial
regularization approach to solve the sparse SU problem with
structured spectral libraries. The proposed method addresses

the variability of EMs with robustness to noise while main-
taining a reasonable computational complexity. In addition,
we proposed a graph-based approach for determining the
most representative abundance estimate over multiple SU runs,
significantly increasing the robustness to the randomness of the
EMs extraction process and, thus, the reproducibility of the
results. Experiments demonstrated the superior performance
of the proposed method when compared to related algorithms.
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