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I. INTRODUCTION

In hyperspectral image (HSI) analysis, spectral unmixing (SU) consists of determining the spectral signatures of the materials contained in the scene (i.e., the endmembers -EMs) and the proportions in which they are present in each pixel of the image [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. Most SU approaches are based on a linear mixture model (LMM) [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF], which assumes that each pixel in the HSI consists of a linear combination of the EMs, weighted by their fractional abundances. However, variations in atmospheric, lighting, and environmental conditions that commonly occur in a scene can have a significant impact on the spectral signatures of the EMs contained in an HSI [START_REF] Borsoi | Spectral in hyperspectral data unmixing: A comprehensive review[END_REF]. Because of this spectral variability, the spectrum representing an EM can change as a function of its position in the HSI.

The use of large libraries of spectra is a typical approach to deal with spectral variability in SU [START_REF] Borsoi | Spectral in hyperspectral data unmixing: A comprehensive review[END_REF]. Among existing methods, those based on sparse regression, considered computationally efficient, assume that the reflectance of pixels in an HSI can be described as a linear combination of a few EM signatures from a large spectral library known a priori (typically constructed from laboratory or in situ measurements) [START_REF] Iordache | Sparse unmixing of hyperspectral data[END_REF]. However, spectral libraries are often not available for a given HSI. Recent work proposed methods for extracting structured L. C. Ayres, J. C. M. Bermudez, Universidade Federal de Santa Catarina, Florianópolis-SC, e-mail: lucayress@gmail.com, j.bermudez@ieee.org; R. A. Borsoi, Université de Lorraine, CNRS, CRAN, Vandoeuvre-lès-Nancy, e-mail: raborsoi@gmail.com; S. J. M. de Almeida, Universidade Católica de Pelotas, Pelotas-RS, e-mail: sergio.almeida@ucpel.edu.br.

This work has been supported in part by the National Council for Scientific and Technological Development (CNPq), Coordination of Superior Level Staff Improvement (CAPES) and Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS). spectral libraries directly from the observed HSI [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF]. Such approaches usually apply EM extraction algorithms (EEAs) to subsets of pixels randomly sampled from the HSI. This randomness causes EMs obtained at each extraction to be slightly different, representing the spectral variability in the HSI.

In [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF], the authors propose to introduce mixed norms in the sparse SU optimization problem with structured spectral libraries to promote group sparsity. A new penalty is proposed to control inter-and intra-structure sparsity, which can considerably improve SU performance when compared to typically used sparsity penalties. However, the results of this technique depend on the initialization of the abundances in the optimization problem. Furthermore, when used in conjunction with spectral libraries extracted from the HSI via methods such as [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF], the estimated abundances are random variables and may be different for each run of the method.

Another challenge with these techniques is their sensitivity to the presence of noise due to the large number of signatures in the library. Integrating regularizations that promote spatial smoothness of the abundances improves the performance of sparse SU algorithms in noisy conditions, but at the expense of a considerable increase in computational complexity [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF], [START_REF] Zhang | Spectral-spatial weighted sparse regression for hyperspectral image unmixing[END_REF]. A fast sparse SU algorithm (called MUA), based on superpixels and a multiscale strategy, has recently been proposed for the SU problem without using structured libraries [START_REF] Borsoi | A fast multiscale spatial regularization for sparse hyperspectral unmixing[END_REF]. Despite the positive results obtained in [START_REF] Borsoi | A fast multiscale spatial regularization for sparse hyperspectral unmixing[END_REF], [START_REF] Ayres | A homogeneity-based multiscale hyperspectral image representation for sparse spectral unmixing[END_REF] with a sparsity penalty based on the L 1 norm, this solution is not suitable to tackle the challenge of spectral variability through structured libraries.

This work proposes a method to handle spectral variability of EMs in the SU problem while maintaining a reasonable computational cost and being robust to noise. Motivated by methods used in neuroimaging [START_REF] Du | A novel approach for assessing reliability of ICA for FMRI analysis[END_REF], we aim to obtain reproducible SU solutions [START_REF] Adali | Reproducibility in matrix and tensor decompositions: focus on model match, interpretability, and uniqueness[END_REF], i.e., using the same algorithm and data, the results should be consistent, even considering randomness in some steps of the method. The main contributions of this paper can be summarized as: 1) We generalize the multiscale spatial regularization problem formulated in the MUA algorithm [START_REF] Borsoi | A fast multiscale spatial regularization for sparse hyperspectral unmixing[END_REF] to solve the sparse SU problem with structured libraries, allowing the use of more general sparsity-inducing penalties, such as those based on mixed norms [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF]; 2) We propose a heuristic based on a graph centrality criterion to select reproducible abundance estimates (i.e., with less influence of randomness on the SU process) from K runs of the method. Experimental results show that the proposed method provides high quality results with significantly less dispersion when compared to state-ofthe-art algorithms. Codes to reproduce the experimental results are available at http://github.com/lucayress/GMBUA. arXiv:2401.13161v1 [cs.CV] 24 Jan 2024 II. STRUCTURED SPARSE SPECTRAL UNMIXING Considering the LMM, an HSI Y ∈ R L×N with L bands, N pixels and P EMs can be written as:

Y = AZ + N , (1) 
where the abundances Z ∈ R P ×N are subject to the nonnegativity (ANC) and sum-to-one (ASC) constraints [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF].

A ∈ R L×P represents the matrix of EMs. Column a p , p = 1, . . . , P , of A is the signature of of the pth EM. N is the additive noise. Using LMM allowing for consideration of spectral variability requires a representation of any given material using more than one EM.

A. SU with structured EM libraries

Following [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF], consider replacing A in LMM (1) with a structured spectral library B ∈ R L×Q . B is composed of P structures B p (p = 1, . . . , P ). The columns of the pth structure are different spectral signatures of the pth EM of the HSI:

Y = BX + N , B = B 1 | B 2 | . . . | B P . (2) 
In ( 2), X ∈ R Q×N contains the abundances associated with each spectral signature in B.

Each submatrix B p ∈ R L×m Gp represents a group G p of m Gp signatures. Then, Q = P p=1
m Gp is the total number of spectra. The ith representative of the G p group in the dictionary is denoted as b (i.e., b Gp,i is the ith column of B p ). We can extract from (2) the expression of a single pixel y n , n = 1, . . . , N , in terms of the "global" abundance of the pth material [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF]:

y n = P p=1 z p a p = P p=1 m Gp i=1 x Gp,i m Gp i=1 x Gp,i b Gp,i m Gp i=1 x Gp,i .
(3) where x Gp,i is the abundance associated with b Gp,i , and z p is the total abundance coefficient for material p in y n .

Sparse SU consists of recovering the X abundances from the observed Y HSI, given the B dictionary. We can then formulate the following optimization problem:

X = arg min X∈∆ P 1 2 ∥Y -BX∥ 2 F + λR(X) , (4) 
where R(X) is a regularization penalty that promotes sparsity, λ ∈ R + is a regularization parameter, ∥ • ∥ F is the Frobenius norm, and ∆ P denotes the set of coefficient matrices whose abundances satisfy the ANC and ASC constraints.

B. Mixed sparsity-promoting norms (penalties)

The regularization penalty R(X) plays a key role in the performance of sparse SU algorithms. In [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF], Drumetz et al. propose the use of group sparsity by introducing mixed norms in the sparse SU optimization problem to enforce sparsity within each group and between different groups from structured libraries of EMs automatically extracted from HSI as in [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF]. The mixed two-level norm ℓ G,r,s is defined for any pair of positive real numbers, r and s, as:

∥x∥ G,r,s ≜ P p=1 m Gp i=1 |x Gp,i | r s/r 1/s = P p=1 ∥x Gp ∥ s r 1/s . ( 5 
)
Operating on columns and summing the results across all pixels, the authors in [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF] defined the sparsity penalty through the ℓ G,r,s norm of the coefficient matrix as R(X) = ∥X∥ G,r,s ≜ N n=1 ∥x n ∥ G,r,s . Considering this penalty, the sparse SU problem (4) was solved in [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF] using the alternating direction method of multipliers. However, R(X) is non-convex for various values of r and s, which makes the solution computationally costly and initialization dependent. We highlight that while extracting the B library from the HSI [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF] can relieve the need for spectral libraries to be known a priori, this strategy has limitations as it relies on the presence of pure pixels and on the EEAs yielding reliable results. Moreover, it can add significant variability to the SU results.

III. PROPOSED METHOD

In this section, we present the proposed structured sparse SU algorithm (called GMBUA -Generalized Multiscale Bundlebased Unmixing Algorithm), which has two key parts. First, we develop a multiscale spatial regularization approach capable of considering a wide variety of sparsity penalties, such as the norm ℓ G,r,s , in an efficient manner. Then, we propose a strategy to mitigate the effect of randomness involved in extracting the spectral library from the HSI (as in, e.g., [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF]) and in the SU process. This strategy uses a centrality criterion applied to a graph representing different abundance realizations.

A. Multiscale approach for sparse and structured SU Consider a spectral library B extracted from HSI using the an algorithm such as, e.g., [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF]. We define the multiscale decomposition of the sparse SU problem at (4) as a spatial transformation promoted by an operator W ∈ R N ×M , M < N , applied to the HSI and to the abundances [START_REF] Borsoi | A fast multiscale spatial regularization for sparse hyperspectral unmixing[END_REF]:

Y C = YW, X C = XW, (6) 
where Y C ∈ R L×M , X C ∈ R Q×M , and subscript C refers to the new approximate (coarse) image domain. The W operator, built based on a superpixel decomposition of Y, averages the pixels in spatially homogeneous regions of the HSI where the abundances are relatively constant. This spatial smoothness of the abundances can then be exploited by formulating the sparse SU problem in the approximate domain according to (6):

XC = arg min X C ∈∆ P 1 2 ∥Y C -BX C ∥ 2 F + λ C R(X C ) . (7) 
Note that in (7) R is applied to the abundances at the approximation scale. Hence, as long as R does not directly use the spatial organization of the different pixels in the image, this procedure can be extended to any sparsity penalty. Problem [START_REF] Zhang | Spectral-spatial weighted sparse regression for hyperspectral image unmixing[END_REF] can be solved in the same way as (4). The XC estimate is then mapped back to the original spatial scale, denoted by D, via the operation XD = XC W * ∈ R Q×N , where operator W * replicates the pixels from XC at all pixel locations of the same superpixel at the D scale. Thus, XD provides an estimate of the spatial structure of the abundance maps.

Next, the approximate XD abundance matrix is used to regularize the SU problem at the original scale:

X = arg min X∈∆ P 1 2 ∥Y -BX∥ 2 F +λR(X)+ β 2 ∥ XD -X∥ 2 F , ( 8 
)
where β is a regularization parameter. The higher complexity of the solutions of ( 7) and ( 8) has been efficiently solved in [START_REF] Borsoi | A fast multiscale spatial regularization for sparse hyperspectral unmixing[END_REF] for the case where R(X) = ∥X∥ 1,1 . This solution, however, cannot easily be generalized to other norms.

To enable simple solutions for other norms, we reformulate the multiscale approach by expressing (8) equivalently as:

X = arg min X∈∆ P 1 2 Y √ β XD - B √ βI X 2 F + λR(X). (9) 
By defining

Y = Y ⊤ , √ β X⊤ D ⊤ and B = B ⊤ , √ βI ⊤ , this
problem can be written in the same form as (4):

X = arg min X∈∆ P 1 2 Y -BX 2 F + λR(X) . (10) 
Problem ( 10) is equivalent to the sparse SU (4) without spatial regularization, and with an HSI and dictionary given by Y and B, respectively. Consequently, both ( 7) and ( 10) can be solved using the same algorithms developed to solve the problem (4).

In particular, in this paper we will consider R(X) to be the mixed norm ℓ G,r,s . This allows us to use the strategy described in [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF] to solve the optimization problems. We omit the details for brevity. After solving [START_REF] Du | A novel approach for assessing reliability of ICA for FMRI analysis[END_REF], the global abundances Ẑ are then calculated by aggregating the abundances in each group of solution X (as shown in ( 3)).

B. Selecting a consistent abundance estimate

The estimated abundances X are random variables due to randomness in both the spectral library extraction and SU processes. Since library extraction typically involves applying EEAs to randomly sampled pixels of the HSI significant variability can occur between different executions of the algorithm, even when the EEA is reliable. This undesirable variability has been often ignored, and choosing a representative solution is not a trivial task. Inspired by strategies recently considered for neuroscience applications [START_REF] Du | A novel approach for assessing reliability of ICA for FMRI analysis[END_REF], we propose a strategy to obtain a representative and reproducible estimate.

First, assuming there exist pure pixels of each EM in the image, K different spectral libraries are extracted from HSI Y using a method such as, e.g., [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF]. For each of them, SU is performed using the algorithm described in the previous subsection, leading to K different abundance maps Ẑk with (k = 1, . . . , K), which are stored in the set Ω = Ẑ1 , . . . , ẐK . Now, we construct a graph with K nodes, each representing one of the solutions in Ω. The weighted adjacency matrix of the graph is constructed based on a similarity measure C uv between each pair of solutions, Ẑu and Ẑv , computed based on a linear assignment problem (LAP). More precisely, the similarity between Ẑu and Ẑv , u ̸ = v is calculated as

C uv = min P∈Π 1 N Ẑu -P Ẑv F , (11) 
where Π represents the set of permutation matrices of dimension P . The minimization in [START_REF] Adali | Reproducibility in matrix and tensor decompositions: focus on model match, interpretability, and uniqueness[END_REF] aims to align the abundance maps in such a way as to eliminate permutation ambiguity in the estimated abundances, and is efficiently solved in the form of an LAP (using, e.g., the Hungarian algorithm [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]). By calculating C uv for u, v = 1, . . . , K, u ̸ = v, we create a connected, undirected graph with no self-loops. A minimum-cost sub-graph connecting all nodes is the next step in computing a minimum spanning tree (MST) [START_REF]On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF], eliminating connections between unnecessary nodes. Finally, we select the most representative run as the most central node in the graph; this consists of the run corresponding to the node with the largest number of connections to other nodes (runs) in the graph. This solution, called the most representative, or the best, is denoted by Z * .

Note that the strategy proposed in this section is general and can be applied to select a representative solution for any SU algorithm that contains a significant degree of randomness. A pseudocode for GMBUA is presented in Algorithm 1. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the GMBUA method with the constrained least squares method (FCLSU), with the Collaborative [START_REF] Iordache | Collaborative sparse regression for hyperspectral unmixing[END_REF], Group [START_REF] Meier | The group lasso for logistic regression[END_REF], Elitist, [START_REF] Kowalski | Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients[END_REF] and Fractional sparse SU based on different penalties [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF], and with SUnCNN [START_REF] Rasti | SUnCNN: Sparse unmixing using unsupervised convolutional neural network[END_REF], which is a deep learning-based method. For quantitative comparisons, in addition to runtime, we use the signal-to-reconstruction error ratio in dB [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF], SRE( Ẑ) = 10 log 10 (∥Z∥ 2 F /∥Z -Ẑ∥ 2 F ), which evaluates the estimation of the global abundances in cases where a reference abundance matrix (i.e., ground-truth -GT) is known. Also, we use SRE( Ŷ) = 10 log 10 (∥Y∥ 2 F /∥Y -Ŷ∥ 2 F ) to assess the reconstructed image Ŷ. Qualitative evaluations were based on the visualization of the global abundance maps generated by the algorithms. Results were obtained for optimal regularization parameter values computed by grid search for each experiment and algorithm. For the proposed method, we considered K = 30 runs to compute the most representative abundance maps in Algorithm 1. The algorithms were run in MATLAB ® , on a computer equipped with a Intel Core i7 9750H processor @ 2.60 GHz and 16 GB of RAM.

Synthetic data (SD): To quantitatively evaluate the performance of the algorithms, we generated an HSI from synthetically generated abundance maps with 50 × 50 pixels and P = 5 EMs, which are used as GT. Less than 1.5% of the pixels are pure (i.e., have abundance greater than 0.95 for some EM). To generate the EMs, a set of P signatures were first extracted from the USGS library. These signatures were then multiplied by random piecewise linear functions as defined in [START_REF] Thouvenin | Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[END_REF] to generate the EM signatures used in each HSI pixel, incorporating spectral variability. The pixels were generated following the LMM, where white Gaussian noise was added to the data to yield signal-to-noise ratios (SNR) of 20 and 30 dB. To assess the reliability of the results generated by the algorithms, R = 30 Monte Carlo executions were performed.

For each of the estimated abundances, we calculated the SRE( Ẑ). The distributions of the respective results for each method are shown in Figure 1 (only shown for the case of 20 dB SNR due to space limitations). In order to show the influence of K on the performance of GMBUA, we also show distribution results for K = 10 and K = 20. It is clear from these results that GMBUA has led to a higher median SRE and to a significantly smaller spread of solutions than any of the other methods. Moreover, the spread of the distribution of SRE( Ẑ) values decreases considerably with the increase of K, significantly reducing the probability of a low-quality solution. These distributions indicate that GMBUA is robust to outliers, as it was able to generate consistently good results, with the majority of samples having SREs larger than 7 dB. By contrast, the SRE( Ẑ) values obtained using the competing methods varied widely within a range of approximately 2 to 12 dB, with a considerable amount of samples having SREs smaller than 5.5 dB.

Table I shows the median values of the SRE results. It can be verified from Table I that the SUnCNN provided the highest median SRE( Ẑ) for a 30 dB SNR, followed closely by the GMBUA, Fractional, Collaborative and FCLSU methods. Moreover, GMBUA performed significantly better than all the other algorithms for a 20 dB and 10 dB SNR, with gains of more than 1.5 dB and 2.6 dB in SRE( Ẑ), respectively. The results of SUnCNN, on the other hand, were more sensitive to the increase in the amount of noise in the HSI.

The main cause for this variation in SRE values is related to the random sampling of image pixels during the construction of the spectral library from the HSI [START_REF] Somers | Automated extraction of image-based endmember bundles for improved spectral unmixing[END_REF]. This sampling leads to significant variations in the quality of the obtained libraries across runs, strongly impacting the results of the subsequent unmixing process, as seen in Figure 1. Through the strategy for selecting the most consistent abundance run, GMBUA mitigates the impact of poor quality library extractions, increasing other methods. Fractional provided the noisiest abundances, and there was a considerable mixture between the muscovite and buddingtonite materials. GMBUA provided the accurate and sparse abundance maps, presenting homogeneous regions with adequately separated components, most notably for the alunite mineral.

The SRE( Ŷ) results and the execution times for all algorithms can be seen in Table I. The FCLSU and SUnCNN methods achieved the highest SRE( Ŷ), reconstructing the pixels very closely, whereas Group achieved the lowest SRE( Ŷ). The execution times show that each of the K unmixing runs inside GMBUA is comparable to the Fractional method and much lower than those of SUnCNN. Thus, the proposed spatial regularization strategy does not add a considerable computation burden to the algorithm, with the extra time coming from the different executions required for selecting a consistent solution.

V. CONCLUSIONS

In this paper, we proposed a generalized multiscale spatial regularization approach to solve the sparse SU problem with structured spectral libraries. The proposed method addresses the variability of EMs with robustness to noise while maintaining a reasonable computational complexity. In addition, we proposed a graph-based approach for determining the most representative abundance estimate over multiple SU runs, significantly increasing the robustness to the randomness of the EMs extraction process and, thus, the reproducibility of the results. Experiments demonstrated the superior performance of the proposed method when compared to related algorithms.
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Figure 1 :

 1 Figure 1: SRE( Ẑ) distribution for the synthetic data and all algorithms.

Figure 2 :

 2 Figure 2: Estimated abundance maps for the synthetic dataset with an SNR of 20 dB. The sampled abundance maps are the ones corresponding to the median SRE( Ẑ) results for each algorithm.

Figure 3 :

 3 Figure 3: Estimated abundance maps for a random execution of the SU algorithms on the Cuprite HSI (a reference map is shown on the left).

Table I :

 I Quantitative results with the synthetic data (SD) and real data (Cuprite HSI) for all algorithms.

the reproducibility of the results. From Table I, the Collaborative and Fractional algorithms obtained the highest SRE( Ŷ) for the cases of 20 and 30 dB SNR, providing the closest reconstruction of the HSI, while GMBUA and Group performed better in 10 dB SNR. However, a higher SRE( Ŷ) does not imply a better abundance reconstruction performance since the unmixing problem is typically ill-posed, and different abundance solutions might yield similar SRE( Ŷ). Observing the estimated global abundance maps for the 20 dB SNR scenario shown in Fig. 2 (the abundance corresponding to the FCLSU, Collaborative and Group algorithms were omitted due to space limitations), we can see that GMBUA generates abundances that are more similar to the reference one (GT), especially for the abundance maps of EMs 2 and 5. For the other EMs, the proposed method yields similar but less noisy abundance maps.

Real data: In this experiment, we used the well-known Cuprite HSI [START_REF] Drumetz | Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms[END_REF], with 250×191 pixels and 188 spectral bands. This HSI contains several exposed minerals, including alunite, buddingtonite, chalcedony, kaolinite, muscovite and sphene. Since we do not have access to a GT for this dataset, we rely on a qualitative evaluation of the estimated abundance maps. Thus, we display in Figure 3 the abundance maps obtained from a single execution of the algorithms, selected at random (the abundances corresponding to the FCLSU, Collaborative and Group algorithms are not displayed due to space limitations) and a reference map of different minerals in Cuprite scene for comparison.

By observing the abundance maps, we see that the deep learning-based SUnCNN method in general could reasonably identify the materials in the scene but had some issues with alunite and chalcedony, which are not well separated. The Elitist method did not perform well for this HSI, where the structures of kaolinite, sphene, and buddingtonite in the scene can be identified but are extremely mixed compared to the