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ELASTICA ENERGY REGULARIZATION VIA GRAPH CUTS*

DANIEL ANTUNEST, JACQUES-OLIVIER LACHAUD*, AND HUGUES TALBOT?

Abstract. We propose a graph cut model to optimize bidimensional shapes with respect to the
elastica energy. At each iteration our model selects the shape of minimum elastica value among a
set of candidates generated by a discrete process that we call the balance coefficient flow. In this
work we show how the balance coefficient flow relates with the curve-shortening flow and how our
model can be included in an image segmentation pipeline. Finally, we provide a study to evaluate
the effects of our model in the image segmentation task.

Key words. Shape Optimization, Elastica, Image Segmentation, Mean Curvature Flow, Digital
Estimators

1. Introduction. A digital set D is defined as any collection of points that can
be positioned in a regular grid. In the bidimensional case, it is a subset of the integer
plane, i.e., D C Q C Z2, where Q is a compact set. Digital images are one of the most
prevalent examples of digital sets and also an important source of applications.

Common tasks in digital images are recognizing shapes or semantically coherent
objects (segmentation), removing noise and blur (restoration), interpolate data (in-
painting) and compression (image coding). An important class of models optimize a
crafted functional energy adapted to the problem to be solved. In this class, the use
of geometric priors, such as perimeter, area and curvature are commonly employed.

These models are built on classical mathematical theory, in which semi-continuity
is often assumed. A common issue with most models using geometric priors lies in
their discretization step, where the digital nature of the images are often considered
as a necessary evil. This results in poor estimations of geometric quantities, and that
is particularly important for high-order measures as curvature.

An important and challenging energy to optimize is the Elastica. Previous works
reported its benefits in inpainting [29, 5, 11] and segmentation [21, 44, 33, 2]. In
particular, the squared curvature penalization favors the so called completion property,
which favors the segmentation of connected components. The completion property is
particularly useful in the segmentation of thin and elongated objects, such as blood
vessels. In continuous terms, the elastica is defined for a contour C as

EC) = /Conrﬂnst.

In this paper, we propose a purely discrete model to minimize the Elastica energy
using multigrid convergent estimators. These estimators are conceived for digital sets
and provide guarantees of convergence with respect to finer and finer image grid
resolutions. We show that our model evolves digital shapes to the shape of optimum
elastica energy, escaping local minimum. Moreover, we show how to use our model
in image processing tasks and give several illustrations. Finally, the model is highly
parallelizable and present competitive running times with respect to state of the art
methods. Our present running times could be further improved in a GPU setting.

2. Related work. The elastica has been introduced in image processing by
Mumford [31] where the completion property (i.e., its preference for connected curves)
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is particularly emphasized. The completion property is interesting for solving classical
problems in imaging such as inpainting and segmentation, either to complete contours
of wrongly disconnected segmented regions or to better extrapolate image level sets
in regions without data.

In [11], the authors derive the 4th order Euler-Lagrange equation of their elastica
regularized model to solve the inpainting problem. A gradient descent alike method
is employed to find its root, but the model suffers from numerical instability and
high running times. That is one of the main difficulties in minimizing the elastica
under a continuous formulation. Some optimization properties of the elastica were
studied in [1] and some techniques can be applied to mitigate the numerical instability
as was done in [5]. In this work, the curvature is implicitly represented by a vector
field acting under some constraints that are incorporated into the optimization energy.
This alternative representation induces a reduction of one order in the equations solved
during optimization. This strategy has been refined and explored more recently by [41]
(inpainting) and [44, 15] (segmentation), where augmented lagrangian methods and
variations such as ADMM are utilized. Nonetheless, these models are vulnerable to
bad local optima and subject to high running times.

Due to the challenges posed by the necessary global optimization of the elastica,
some authors propose to use alternative energies that preserve, in some sense, the
elastica properties and are more tractable from the optimization point of view. In [7]
a convex relaxation of the elastica is proposed and in [21, 43] the total curvature is
used as an alternative to the elastica. The advantage of these models is that they
induce convex energies, with methods that can optimize them globally. Nonetheless,
the running time issue persists.

Finally, combinatorial methods were also proposed for elastica minimization. The
premise behind such methods is that reducing the precision in the energy computation
leads to a global optimization with smaller running times and without damping too
much the results. In [17], a quadratic binary energy is proposed to solve segmentation
with elastica regularization, but only squared angles are considered. A more general
binary representation is given in [33] using concepts of integral geometry to obtain
nice results for segmentation and inpainting. We also found elastica regularization
in [38, 40] models for segmentation. In these works, the epiconvergent curvature
estimator of [8] is used to approach the curvature term in a linear programming
formulation for segmentation. Finally, graph cuts [4], negative cycle detection [39],
and partial enumeration [34, 2] strategies were also explored for the tasks of denoising
and segmentation.

In practice, the compromise between precision and running times does not play
as well as expected. To obtain results of good quality, these combinatorial methods
must run for a long time. As an alternative, one may consider optimization over a
subdomain of the image such as in contour-evolution models. The classical active
contour model (snakes) [23] and its variants [10, 12] have an embedded curvature
component that is reflected on the Curve-Shortening Flow (CSF) of level sets in
the case of geodesic active contours, or the CSF of the explicit curve in the case of
snakes. The CSF is the unidimensional case of the mean curvature flow and can
be reproduced in a discrete setting [30]. This has been explored in processes such
as threshold dynamics [18, 19], or morphological operations sequence [32]. However,
these methods cannot easily integrate a data term. In [42], a two-step optimization
process is proposed to solve a Chan-Vese alike model and threshold dynamics is used
to optimize the length penalization term of the model while a separated optimization
process is used for the data term.
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Fig. 3.1: Elastica minimization via graph cuts. Our model builds one graph for each
member of a pre-defined neighborhood of the initial shape. A cost function is defined
such that the minimum cut of the graphs reflects the energy we aim to optimize with
its desired regularization terms. Finally, we select the shape with minimum elastica
value, estimated via a multigrid convergent estimator. The process is repeated for the
selected shape and it stops after a fixed number of iterations. In our experiments on
image segmentation, we use regularization terms for data and curvature.
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In the last years, novel estimators of geometric properties have appeared, for in-
stance to estimate accurately the curvature along the boundary of digitized shapes [36,
37, 13, 14]. In common, they have the desirable property of multigrid convergence
which defines a notion of convergence across digitizations of the target shape with
higher and higher resolutions. This is important because it guarantees an upper
bound on the curvature estimation error which decreases to zero as the resolution
increases. This is not true for the curvature estimator of Bruckstein et al. [8] for
example, which is acccurate only for finer and finer sampling of continuous curves.
These novel estimators motivate us to propose models for imaging tasks that could
take advantage of their multigrid convergence property.

3. Main contributions. We describe a discrete process to evolve digital shapes
and we show that under some conditions this process behaves similarly to the curve-
shortening flow. Next we demonstrate experimentally that the former process can be
used to optimize shapes with respect to their elastica value and that the optimum
shape is attained in some cases. Finally, we propose a graph cut model that inte-
grates our first two results to execute the task of image segmentation. (the model
is diagramized in Figure 3.1). We present several illustrations of our segmentation
model and we compare it against the grabcut model [35]. Source code, experiments
and figures are made publicly available !

4. Estimation of geometric quantities on digital data. Let C : [0,t] — R?
a parameterized plane curve with continuous first and second derivatives. In this case,

Lhttps://danoan.github.io/graph-flow
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d,X

Fig. 4.1: Digitization ambiguity. The middle image (in green) is a valid digitization
for both the left and right continuous shapes (in blue).

we can easily compute the curvature at some point P(t) = (z(t),y(t)) € C by using
the formula

(0" (1) =/ (" (1)
@@+ y )

What about if we do not know the curve equation, but instead, we have a finite
set of points that is an exact sampling C 7 That is, a finite sequence P is an ezact
sampling of C whenever each element of P is an element of C and the order of the
points in the sequence corresponds to the ordering of points P when moving along
C. In this case, we can approach the curve C by a sequence of straight lines joining
consecutive points of P and estimate the curvature by computing the angle defect
between consecutive lines. This estimation is convergent (in the epi-convergent sense)
as long as the sampling points are sufficiently numerous [9, 8].

The result above is not valid for curves lying in digital domains like images.
We do not have an exact sampling. Instead, curve samples are constrained to lie
in the digital grid. That condition creates ambiguities, which are clearly illustrated
in Figure 4.1 where the same digitization represents two quite distinct shapes. Of
course, one may refine the grid to reach a precision close to an exact sampling, but
this is highly undesirable due to memory and running time complexity, in particular
for image processing tasks. Furthermore, the polygonal contour is still locally very
jagged, with only 4 possible directions. The above mentionned curvature estimator
would not be convergent whatever the refinement.

Consequently we need a criterion to evaluate the quality and speed of convergence
of geometric estimators according to the resolution of the digital grid. This criterion
is the multigrid convergence property (e.g., see [24]). Let X be a Euclidean shape
and 0X its topological boundary. We further denote D(X,h) := X N hZ? its Gauss
digitization as a collection of points, Q(z, h) its pixel representation (a collection of
squares of side h), ApX its interpixel contour as a collection of axis aligned edge
segments of length h, and finally 9, X the digitized contour, which is the union of all
edge segments of Ay X. See Figure 4.2 for an illustration of notations.

k(t) =

DEFINITION 4.1 (Multigrid convergence for local geometric quantites). A local
discrete geometric estimator Z of some geometric quantity z is uniformly multigrid
convergent for some family X of Fuclidean shapes if and only if, for any X € X, there
exists a grid step hx > 0 such that the estimate 2(D(X,h), P,h) is defined for all
P e opX with0 < h < hx, and for any Q € 0X,
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Fig. 4.2: Tllustration of notations: the shape X, its topological boundary 90X, its
(Gauss) digitization D(X,h) = X NhZ? seen as a collection of points, its pixel repre-
sentation Q(X,h) which is a set of squares of side h, the interpixel contour A, X as
a set of axis-aligned edge segments, and the digitized boundary 95 X, a subset of R?
that is the union of all edges of the interpixel contour, or equivalently the topological
boundary of the union of all the squares of Q(X, h).

where Tx : R\ {0} — RT has null limit at 0. This function defines the speed of
convergence of Z towards z for X.

For a global geometric quantity (e.g. perimeter, area, volume), the definition re-
mains the same, except that the mapping between X and 0y X is no longer necessary.

Recently, estimator for curvature and perimeter estimators have been proved
multigrid convergent. We propose to use such estimators to estimate the elastica
energy of digital shapes. Let us define a digital analogue to the Elastica energy,
which uses two such estimators:

(4.1) B (D(X,h),h,a.B)) = > 3(e) (a+ Ba2(D(X,h),¢é,h) ).

e€EAR X

The symbol é denotes the center of the edge e. The function § denotes the elementary
length estimator, i.e., a measure of length is assigned to each edge e of the digi-
tal curve ApX. The elementary length is computed using the A-MST estimator of
tangent [27, 25], proven multigrid convergent for the family of convex shapes that
are twice differentiable and have continuous curvature. The speed of convergence is
O(h'/3). Tt simply defines the elementary length of an edge as the scalar product
between the edge vector and the convergent tangent vector estimate.

The function &, denotes an estimator of curvature. We use the integral invariant
estimator [13], proven multigrid convergent for the family of compact shapes in the
plane with 3-times differentiable contour. The radius of the integration ball is a
parameter of this curvature estimator and its convergence speed is of the order of
O(h3) for radii chosen as r = ©(h3) [26]. We present its definition since it is at the
core of the model proposed in this paper.

(4.2) fir(D(X, h), P, h) = % (”; — Avea(D(B,(P),h) N D(X,h), h)) :
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Fig. 5.1: Balance coefficient zero-level set. Evolving the initial contour (colored
in white) to the zero-level set of the balance coefficient (colored in black) is closeley
related with the curve-shortening flow.

where the estimation of area for some digital set D is defined as @(D,h) =
h?Card (D).

Equation (4.2) estimates the curvature as a scaling factor of the difference between
the intersection area of the digitized shape with a disk of radius r centered at point
P of the contour and half the disk area. Therefore, we can say that the curvature is
lower at points in which the balance between intersected and non intersected points
is closer to zero.

In the following, we simply write D to specify a digital shape and we omit the
grid step h to simplify expressions (or, putting it differently, we assume that the shape
of interest is rescaled by 1/h and we set h = 1).

5. Balance coefficient flow. Let X C R? be a Euclidean shape, r a positive
real number and P an arbitrary point of R2. We define the balance coefficient w, of
X at P as

u (X, P) = <’T;2 — Area(B,(P) N X)> .

We observe that the balance coefficient definition is similar to the integral invariant
estimator of curvature in equation (4.2) (we can model the continuous domain as
a digital domain with an infinitely small grid step). However, we do not use it to
estimate the curvature, but rather as an indicator of the local degree of convexity of
the shape, even for points distant to the shape boundary.

In the following, we use the balance coefficient to define the balance coefficient
flow

DEFINITION 5.1 (Balance coefficient flow). Let X C Q be a Euclidean shape and
r > 0 the radius of the disk used to compute the balance coefficient. We define the
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Fig. 6.1: Geometric interpretation of the balance coefficient flow. A single
iteration of the balance coefficient flow evolves the shape X to the shape X’ such that
any disk of radius r centered at any point of the contour of X’ intersects an area of
712 /2 of the initial shape X.

balance coefficient flow for discrete time steps as the sequence of Euclidean shapes

X=X,
(5.1) vkeZk>0, X faeafu(x®,2) <o}

6. Balance coefficient and curve-shortening flow. One iteration of the bal-
ance coefficient flow applied on shape X is equivalent to find the shape X’ such that for
any disk of radius r centered at any point of the contour of X', the intersection of the
disk with the shape X equals 772/2. This interpretation is illustrated in Figure 6.1.

Let us show the link between the balance coefficient flow and the curve-shortening
flow. First we rewrite the balance coeflicient flow as a contour evolution. Let us denote
€ := 9X© the boundary of X . Then, for z € C(©, let (¥ (z) be a solution to
the equation

(6.1) U (X 2 4+ 92 (z)) = 0,

€9 ()] <,
with n(® (z) the outward normal vector at x to the boundary of the shape X,
Specifying [€(?)(z)| < r clearly imposes a unique solution to (6.1), provided r < 1/k
(k being the curvature value at ). Then the contour evolution of C(*) is defined as:

(6.2) cmzz{ammyxecmﬁ,

where ¢(®) is the mapping from C(®) to CM)| such that 2 maps to 4 ¢ (z)n® ().
The following proposition indicates that C") coincides with the boundary of X (1)
under some hypotheses.

PROPOSITION 6.1. If r is small enough, the boundaries of shapes X© and X1
are Jordan curves, and the boundary of shape X(©) is twice differentiable, then C™V) is
the boundary of XV, and the mapping o(© between C© and C™V) is bijective.
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Proof. By definition, the curve C(? is the boundary of shape X (9. Being twice
differentiable the curve C(®) has a reach that is greater than some p > 0.2 Hence, any
point at distance lower than p from C(®) has a unique closest point on this curve, in
the direction normal to the curve.

Let « be a point on C(9) and let y = 0¥ (2) = x + €@ (2)n(® (x). Obviously, the
smaller is r, the closer is C™V) from C(®). From the definition of balance coefficient,
one can see that the displacement that is solution to (6.1) cannot exceed %nrz. So
if 1 < 4/2p/Kmax, Where Kmax is the maximum absolute curvature of the curve, then
the point y is within the reach of the curve C(9. It follows that the mapping o(®
is bijective. It is also continuous since all functions are continuous (the area of the
shape intersected by a ball is continuous with respect to a displacement of the ball
center). Hence C(V) is a Jordan curve within the reach of C(?). It has therefore an
interior component 1.

It is clear also that y € X since u,(X(®,y) = 0. Let us denote z(\) =
(I =Nz + \y.

If u, (X ) < 0 then u, (X, 2()\)) is by construction strictly increasing for
increasing values of 0 < A < 14 v, v < 1, and so becomes positive for 1 < A < 14 wv.
In this case C(°) was concave at z, so the straight segment [z,v] is included in X )
and g(/ )lies on its boundary. We have also XY N [z,y] C I, and x lies in the interior
of X1,

If u, (X© 2) > 0 then u,(X© 2(\)) is by construction strictly decreasing for
increasing values of 0 < A < 1+4v, v < 1, and so becomes negative for 1 < A\ < 1+wv.
In this case C(?) was convex at z, so the straight segment [, y[ is excluded from X @
and y lies on its boundary. We have also X1 0 [z(1),z(1 4+ v)] € I and x(1 + v) lies
in the interior of X,

In both case we can see that y lies on the boundary of X, So ™) c XM, Since
both are Jordan curves they must coincide and CY) = 9X(). Finally, the interior of
X @ must coincide with I since both are finite, they share the same boundary, and
they share points (whether the boundary is convexe or concave). a0

The proof tells us that the radius r must be smaller that min(y/2p/Kmax; 2/FKmax)s
for p > 0 smaller than the reach of the shape and kp,,x the maximal absolute curvature
of the shape.

Let us recall that the curve-shortening flow for a small time step ¢ > 0, may be
defined as:

r®.—ax
(6.3) r® .= {a: +te(z)n(z),z € F(O)} ,

denoting by x(x) the curvature of the curve at point z and by n(x) the outward
normal vector at x.

Of course, there are implicitly defined variants of this formulation that allows
topology changes, but we will restrict ourselves here to proving the similarity between
the balance coefficient flow and the curve-shortening flow when there is no topology
change.

2

PROPOSITION 6.2. For small enough r, setting t = ér . assuming C(© =T 45

a twice differentiable Jordan curve, then the Hausdorff distance between CV) and T'®)

2Let us recall recall that the reach is the infimum distance between a shape and its medial axis.
Any point within the reach has a unique closest point to the shape by definition.
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Fig. 6.2: Balance coefficient and curve-shortening flow (CSF). We approximate
the contour X at P by a parabola. Next, we compute the point P’ such that the
balance coeflicient equals to zero. Our approximation produces an error A, highlighted
in magenta, that is of order O(r%).

is some O(t?), more precisely we get:

W) 0y < 3,3 42
d (C F )— 4 maxtL .

Proof. Let y € C™V. According to Proposition 6.1, there is a point P e CO such
that y = 0(O(P). Let y = P +tx(P)n(P). We show that ||y — ¢/[| < 3x3,,,t2, which
induces the result (we could have chosen g’ first, and obtain the same y)

We center the reference frame on P with y-axis aligned with the normal vector
n(P). Since r is small enough, the contour is well approximated by the parabola
f(z):= ”(P) 22 in this frame.

We know that y = P + €9 (P)n(P) according to (6.1), where € (P) is the
local displacement of P which gives a zero balance coefficient. Let us determine
this displacement & := ¢(®)(P) in the normal direction, such that the intersection
of the disk with X equals half of the disk area. Let us say that the point of zero
balance coefficient is P’ and that A. is the intersection area of the displaced disk
(see Figure 6.2, right, for notations). Then,

1 A

"1
Aazﬂ = 27“5:/ —kxldr +£ A & e=—krl+ —.
2 6 2r

-

It remains to compute an upper bound for the error A. Let A be the leftmost
intersection point between the line A’B’ and the estimation disk. It is clear that A/2
is smaller than the region between A” A’ A3 and the arc going from A3 to A”. Let d
be the length of the segment A’A”.

Area(A"A'A3) = / r—/r?—22dz

2 d d
= —%sin‘l <;) +dr — 5 r2 — (2
d3
o
In general, d is bounded by %m“Q, hence it follows:

— < < —R°ro.

A @ 1 454
6r — 48
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Therefore,

To conclude the argument, we have:

ly =yl = [P + €O (P)n(P) - (P + tx(P)n(P))|
= |e — tw(P)|
1

1
6/{(P)7“2 —tk(P)| + £|I€(P)|37’4

IN

IN

1 3.4 : _ 1o
@M(P)\ T (since t = i )

IN

ll‘imaxt2 (since |k(P)] < Kmax)

which shows that the two contours are close in the Hausdorff sense. 0

Applying Proposition 6.1 at each time step k (writing (k) instead of (0) and
(k+1) instead of (1)) allows us to redefine the balance coefficient flow as the sequence
C®) | provided that the boundaries of X*) are twice differentiable Jordan curves.
But Proposition 6.2 applied on these consecutive curves tells us that the curves C%) =
dX®) are very close to the curve shortening flow, which induces twice differentiable
curves except at critical points. Proving that the flow X(*) also mimicks the curve-
shortening flow across critical points would require much more mathematical work
and is outside the scope of this paper.

The CSF has many interesting properties [22, 20, 16]. Among those, the CSF is
the continuous deformation that decreases the perimeter of a single closed curve at
the fastest speed; and it also preserves convexity. In particular, the CSF eventually
collapses the initial curve to a single point.

There are interesting links between the CSF and a variant of the heat equation
defined for the indicatrix function of a set [30]. In this same work, the authors
informally give a geometric interpretation for the CSF that is equivalent to our zero-
level set of the balance coefficient. A technique that emerged from the interpretation
of CSF as a heat equation is the so called threshold dynamics [18, 19]. However, the
use of threshold dynamics for image processing tasks is not immediate due to the
difficulty to inject a data fidelity term. That is not the case in our approach.

We are going to apply the balance coefficient flow in a discrete setting. In theory,
that means that we have some limitations regarding the choice of the estimation
radius r, the grid resolution h and the real curvature value at the estimation point.
In general, we need to respect

1
h<r<<—.
K

In the next section we show how to encode the balance coefficient flow in a graph
cut framework to optimize digital shapes with respect to (4.1) and how it can be
embedded in a image segmentation model as an elastica prior.

7. Elastica minimization of digital shapes via graph cuts. A cut C =
(S8,T) of a graph (V,€) is a partition of its vertices on subsets S and T. The set of
edges connecting vertices of S to vertices of T is called the cut-set of C' and it defines
the value of the cut, which is given by the sum of the edge capacities in the cut-set.
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We are going to model our optimization problem by defining a graph on the top
of our digital object (image). On this setting, a point (pixel) in the digital object
is mapped to a vertex in the graph and the edges and their capacities reflect the
problem we are trying to solve. In image segmentation, for example, the goal is to
find a partition of the pixels that separates the image in background and foreground
pixels. One can find this partition by finding the minimum cut of the graph [6].

In this section, we are going to use the graph cut approach to optimize pure
digital shapes (that is with no color information) with respect to energy (4.1). After
validation of this process, we are going to incorporate it into a graph cut model for
image segmentation model [6].

We recall our estimator for the elastica energy

(7.1) Bo(D) = 3 (&) ( a+ BR2(D, &) )

€eoD

Notice that we group all parameters in vector 6 = (h,r,«, 8). We remark that,
since it is composed of multigrid convergent estimators, the elastica estimator is also
multigrid convergent [25]. Our process can be divided in three parts. First we define
a neighborhood of shapes with respect with the given digitized object. Next, for each
shape in the neighborhood we create a candidate graph. A graph-cut optimization is
done in each candidate graph and the result of each optimization gives us a candidate
shape. Finally, we compute the elastica on the candidate shapes and select the one
with lowest elastica value.

7.1. Neighborhood of shapes. We start by defining a very simple neighbor-
hood of shapes. Of course, richer neighborhoods could be used, but we stick here to
this elementary one, which will prove to be sufficient in our experiments.

DEFINITION 7.1 (Neighborhood of shapes). Let D C Z? a digital shape. We
define its neighborhood N (D) as the set

N(D) = {D,DH,D*},

where DT (D™1) denotes a morphologic dilation (erosion) by a square of side 1.

7.2. Computation of candidates. We are going to define a directed weighted
graph and set its edge weights such that we can evolve the shape towards the zero-
level set of its balance coefficient. Since the balance coefficient is a local quantity,
it is sufficient to define the graph in a band around the initial contour. This some-
what complex approach to computing a zero-level set of a function has the great
advantage of allowing the integration of other terms in its formulation, like fitting to
data. Experiments will show that it has a tremendous effect on the quality of image
segmentation results.

Let dp : £ — R be the signed Euclidean distance transformation with respect
to shape D. The value dp(P) gives the Euclidean distance between P ¢ D and
the closest point in D. For points P € D, dp(P) gives the negative of the distance
between P and the closest point not in D. Let n be a positive integer number.

DEFINITION 7.2 (Optimization band). Let D C Q C Z? be a digital set . The
optimization band O, (D) is defined as

On(D):={PeQ| —n<dp(P)<n}.
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Table 7.1: Edge capacity function. M is defined as max.c¢ c(e).

edge e c(e) for
{vp,vg} | 5 (ur(D,P) +ur(D,Q)) | {vr,vq} € &u
{orys) i op € Vs
{vp,t} M vp € Vi

DEFINITION 7.3 (Candidate graph). Let D C Q C Z? a digital set. The candidate
graph G(n, D, V, &) of D with optimization band n is defined such that:

V={uvp|PecO,(D)}U{s,t},
E=E,UE,
Eu={{vp,v0} | P € O,(D) and Q € Ny(P) },
Eqt = { {s,vp} | dp(P)=—n } U { {vp,t} |dp(P)=n }

The vertices s, ¢ are virtual vertices representing the source and target vertices as
it is common in a minimum cut framework. We denote Ny(P) the set of 4-adjacent
neighbors of P. The innermost (outermost) pixels of the optimization band are con-
nected to the source (target), and we identify such vertices as

Vs :={vp € Q| dp(P) = —n},
Vi :={vp € Q|dp(P)=n}.

The set £, comprises all the edges having the source as their starting point or the
target as their endpoint. In Table 7.1 we describe the edge capacity function.

A cut in a graph separates the vertices in source and target components. Our
model is defined such that the source component of the minimum cut gives the next
shape in balance-coefficient flow.

7.3. Candidate Selection. The graph-cut optimization applied to each candi-
date graph results in a candidate shape. At this step, we simply compute the elastica
energy on each candidate shape using (7.1) and then we select the candidate with
lowest elastica value.

The Graph Flow Algorithm (GFA), Algorithm 7.1, summarizes the process. Some
experiments are shown on Figure 7.1 and Figure 7.2.

Algorithm 7.1 Graph Flow Algorithm (GFA).

Input: A digital set D; the optimization band n; parameter vector 6= (h,r, a, B);
the maximum number of iterations maxIt;
D©+—D
t<—20
while t < mazIt do

r® «— Uprenpo {mincut(g(D’)} {Computation of candidates}

DD« argmin Eg(D') {Candidate selection}

D/EP(t)

t+—1t+1

end while
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Fig. 7.1: GFA experiments. In the left, the evolution of various shapes given by
the GFA (h = 1/8,r = 2), that is, the estimation disk has a radius of 16 pixels. The
red and blue contours highlight initial and final contours. The green contour is the
optimum solution. The top right graph describes the reduction in elastica energy.
The dotted line marks the optimum energy value (an Euclidean disk of radius 8, or
a disk digitization with 64 pixels of radius with A = 1/8). The bottom right graph
displays the evolution of the Hausdorff distance between the optimal shape and the
final shape given by GFA with respect to the radius of the estimation disk. It points
out the importance of a right choice of the balance coefficient radius.

Remarkably, the GFA escapes premature local minima and even achieves the
global optimum of the elastica energy for some cases. In Figure 7.2 we show the
results of elastica minimization for © = (r = 2,h = 1/8, a0 = 1/1024,3 = 1). The
GFA correctly expands the shapes to the optimum disk of radius 32. However, we
may have a premature interruption of the evolution if a small estimation disk radius is
chosen, as illustrated in the bottom right graph of Figure 7.1. The computations can
be done in parallel for each member of the neighborhood of shapes. Table 7.2 shows
the running times where the candidate graphs are evaluated in parallel. These times
can be further improved by parallelizing the computation of the balance coefficient
as well as the elastica estimator evaluation. Finally, the GFA is easily modifiable to
accomodate image terms, which makes it suitable for image processing tasks. Next,
we are going to explore some of these possibilitites in image segmentation.
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Fig. 7.2: GFA can expand the initial shape. Shapes evolutions by GFA with
O(h=1/8,r =2, =1/1024, 5 = 1) as the elastica estimator parameters. The green
contour highlights the optimum shape.

Table 7.2: Running time of GFA. The GFA achieves running times lower than
one second per iteration (executed in a Intel Corei7 1.8GH z processor with 16gb of
ram). These running times could be further improved, for instance by parallelization
of balance coefficient or elastica energy computations.

Pixels It Time | Time/It
Triangle 33256 120 49.6s 0.4s
Square 51259 60 24.6s 0.4s
Flower 119789 | 150 | 132.8s 0.9s
Bean 100504 | 300 | 148.4s 0.5s

8. Application in image segmentation. In this section, we explore the po-
tential of the GFA in the image segmentation task by extending it to include a data
fidelity term. For images, since the digitization process cannot be done with an arbi-
trary resolution, we set h = 1 in all experiments. The experiments were executed on
an Intel Corei7 1.8GH z processor with 16gb of RAM. The source code and complete
experiment report are available at: https://danoan.github.io/graph-flow.

The goal of this experiment is to illustrate the regularization properties of the
GFA and to highlight the role of the data term in our approach. The data term
employed in this experiment is the same used by Boykov-Jolly in their classical graph
cut model [6].

8.1. Data term. We update the graph construction described in subsection 7.2
to accomodate the data term. In particular, we define two new sets of vertices V¢,
and Vy, as the set of foreground and background seeds, respectively. Those are given
as input.

Let & € {0, 1}!P! represent the label of each pixel in the image (0 for background
and 1 for foreground). We define the data term as

data(D,vr, ) = Vr Z P(xp) + 7 Z Z P(P,Q)

PeD PeD QeN4(P)

where 7, > 0 and 7, > 0 are parameters controlling the influence of the regional and
boundary terms, respectively. Given the image I : Q — [0, 1]2, the unary and pairwise
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Table 8.1: Updated capacity function. The capacity function of Table 7.1 is
updated to accommodate the data term. The constant M is simply the maximum of
all capacities, i.e. M = max.cg c(e).

edge e c(e) for
{vp,vQ} | B- (ur(D,P) +ur(D,Q)) + v - d(pP.@) {vp,v0} € &u
¥ - 1(0) P € On(D),vp & Vg UVpg
{s,0p} M vp € Vs UVs,
¥r - (1) P € On(D),vp & Vig UV,
{vp,t} M vp € Vi UV,

terms are defined as

—lngg(I(P)), if.’l?p:O

Y(xp) =
—lang(I(P)), ifajp:l,
o [ I(P) —1(Q))°
vy ={ () Qe

0, otherwise.

The terms Hy, and Hy, are mixed Gaussian distribution constructed from the fore-
ground and background seeds. The updated capacity function is described in Ta-
ble 8.1. To handle bias due to the magnitude difference between data and geometry
terms, we normalize them in groups. Regional and boundary terms 1, ¢ are normal-
ized to the interval [0, 1] with respect to their values. The same is done, separately,
for the curvature term.

To minimize parameter dependence from the image input, we apply the following
normalization factor to the data term.

E(Io,Oé = 17B = 1)
dam(—’o»%« = 17717 = 1) .

That is, data(ly,y- = 1,7 = 1) will have the same value as E(IO, a=1,3=1) after
normalization.

Table 8.2: Distribution of selected images. The quantity of selected images per
Coco super-category. A total of 212 images were selected.

Person Vehicle Food Animal Outdoor Obj. Sports
24 22 22 34 16 19
Kitchenware Furniture Appliance Electronics Indoor Obj.
19 17 9 10 19

8.2. Experiments. We need an initial contour to start the GFA. The initial
contour is given by the grabcut algorithm [35], a variant of classical graph cut seg-
mentation [6] which is implemented in the OpenCV library.
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Table 8.3: Supervised experiment parameters. List of the GFA parameters for
the supervised segmentation experiment.

Estimation radius Opt. band width  Neighborhood size Iterations
(r) (n) (k) (maxit)
5 4 3 20
Length weight Curvature weight Boundary weight Region weight
(o) B (7o) ()
10 1 1 1

Table 8.4: Supervised experiment running times. The average time per iteration
is of 0.7s.

Highest Lowest Average Average per iteration
50.3s 3.3 15.1s 0.7s

For this experiment, we used a selection of 212 images of the Validation 2017 sub-
set of the Coco dataset [28]. The Coco dataset comprises over 328k images spreaded
over 91 categories and 11 super-categories. Table 8.2 summarizes the quantity of se-
lected images per super-category. The following experiment studies the influence of
inserting the data term into the graphcut formulation. It consists in the following
steps:

1. manual selection of foreground and background seeds for each selected image;

2. computation of the grabcut segmentation;

3. and then using the grabcut segmentation as input for two versions of the
GFA: one with the data term described in the previous section and another
without.

In Figure 8.1 we show a sample of the images used in the experiment. All the results
are available online at the paper’s website. Table 8.3 lists the GFA parameters used
for this experiment.

The first observation is that the GFA regularizes the initial grabcut segmentation
contour with respect to the elastica energy. In Figure 8.2 we display the tangent
profile of both grabcut segmentation and the one corrected by the GFA. We clearly
observe the regularization effect of the GFA with respect to the grabcut profile. The
value of the elastica energy of the contour and its number of inflection points is also
greatly reduced, as summed up in Figure 8.4b.

The second observation is that the data term has an important role in the quality
of the segmentation with respect to precision and recall metrics. This is shown in the
box plot of Figure 8.4a. That means that a contour evolution model with no data
term, such as threshold dynamics, is insufficient to recover segmentations of good
quality. In fact, executing the GFA without data term will eventually transform the
contour in one or more circles, and we can have an arbitrary bad value for the recall.
We can see some of these undesirable effects in the third line of Figure 8.1: the kite
area is overly reduced; the motorcycle is separated in two disconnected components;
and the giraffe loses parts of its ears.

The third observation is that the GFA indeed presents the completion effect, which
was expected from regularization by the elastica energy. This property is particularly
useful for the segmentation of thin and elongated objects, but not only. It also helps
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(d) GFA with data term

Fig. 8.1: Some results of the image segmentation experiment. Coco annota-
tions are shown in the first line. In the next rows we present the same image segmented
by grabcut and corrected by the GFA without and with data term.

to remove oversegmented components which are particularly common in graph cut
based models. In Figure 8.3 we give some examples of contour completion.

Finally, we remark that all image segmentations were executed using the same set
of parameters. That is not ideal. Low resolution images should be segmented using a
smaller estimation radius, for example. Therefore, all the results presented here could
be eventually improved by tuning the parameters accordingly. An example of this is
given in Figure 8.5.

A summary of the running time is presented in Table 8.4. The average running
time per iteration is of 0.7s. We remark that in several cases we need fewer than 5
iterations to greatly improve the regularization metrics such as elastica and inflection
points. However, to recover the completion effect we may need more iterations.
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(a) Grabcut segmentation (left) and corrected segmentation by GFA (right).
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(b) Tangent profile for grabcut (left) and GFA (right) segmentations.

Fig. 8.2: Contour regularization. The GFA normalizes the contour with respect
to the elastica energy. This is illustrated by the tangent profile of the grabcut seg-
mentation and the one corrected by GFA.

(b) Segmentation corrected by GFA

Fig. 8.3: Contour completion. The GFA favors connected components due to
the completion effect of the elastica energy. That is particularly useful to avoid
oversegmentation artefacts.

9. Conclusion. We presented a discrete shape evolution algorithm driven by
the elastica energy. The GFA is built on recent results on the multigrid convergence
of curvature and tangent estimators and its main step consists in computing the
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Fig. 8.4: Summary statistics. The GFA give results as good as grabcut with respect
to precision and recall, but with a much simpler and easy to describe (and to store)
contour.

minimum cut of candidate graphs. A candidate graph is constructed for each element
in a neighborhood of shapes of the current digital set and its minimum cut gives a
candidate shape. At each iteration, the GFA selects the candidate shape with lowest
elastica energy. We have shown that our model can escape local energy minima
during the shape evolution by using a very simple neighborhood of shapes. Indeed,
our experiments converged to the shape of minimum elastica energy.

Next, we presented some applications in image segmentation. The GFA produces
contours with fewer inflection points, smoother tangent profiles and lower elastica
energy than those produced by grabcut. That is done while keeping high values of
precision and recall with respect to the Coco annotated images used in our experi-
ments.

One of the strengths of our model is that the curvature estimation is based on
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(a) Using r =5 ((P+ R)/2=0.78) (b) Using r =3 ((P+ R)/2 =0.94)

Fig. 8.5: Parameter tuning. The GFA was executed with the same set of parameters
for all images, but we can recover better results by tuning the parameter for each image
separately. In this example, the low scale of the image asks for a lower estimation
radius. The precision plus recall average goes from 0.78 to 0.94 by using a radius of
3 instead of 5.

digital data solely and it is not attached to a curve model, which may restrict the
curve evolution and pose technical difficulties regarding its update. Secondly, the
GFA is highly parallelizable and we believe that a GPU implementation will greatly
reduce the running times of our algorithm . The bottleneck is in the minimum cut
computation, as it is difficult to come up with a parallel implementation, but since
the latter is computed along a thin band of the shape contour, we believe that this is
a minor problem.

There are some possible paths for future work. Firstly, the graph construction part
of the algorithm can be optimized. In the current version, the graph is constructed at
every iteration, but most of the time, the graph structure changes very slightly and this
can be used to optimize its construction. Secondly, we use a very simple neighborhood
of shapes in the supervised segmentation problem, i.e., based on dilations and erosions
of the initial shape. The contour completion property of the model could be enhanced
by employing different neighborhoods. For example, we could elongate the initial
shapes in regions of high curvature to obtain a stretched neighborhood of shapes.
This could be particularly useful in the segmentation of thin and elongated objects
such as blood vessels.
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