On Darmon's program for the Generalized Fermat equation, II - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

On Darmon's program for the Generalized Fermat equation, II

Résumé

We obtain additional Diophantine applications of the methods surrounding Darmon's program for the generalized Fermat equation developed in the first part of this series of papers. As a first application, we use a multi-Frey approach combining two Frey elliptic curves over totally real fields, a Frey hyperelliptic curve over $\mathbb{Q}$ due to Kraus, and ideas from the Darmon program to give a complete resolution of the generalized Fermat equation $$x^7 + y^7 = 3 z^n$$ for all integers $n \ge 2$. Moreover, we explain how the use of higher dimensional Frey abelian varieties allows a more efficient proof of this result due to additional structures that they afford, compared to using only Frey elliptic curves. As a second application, we use some of these additional structures that Frey abelian varieties possess to show that a full resolution of the generalized Fermat equation $x^7 + y^7 = z^n$ depends only on the Cartan case of Darmon's big image conjecture. In the process, we solve the previous equation for solutions $(a,b,c)$ such that $a$ and $b$ satisfy certain $2$ or $7$-adic conditions and all $n \ge 2$.

Dates et versions

hal-04421243 , version 1 (27-01-2024)

Identifiants

Citer

Nicolas Billerey, Imin Chen, Luis Dieulefait, Nuno Freitas. On Darmon's program for the Generalized Fermat equation, II. 2024. ⟨hal-04421243⟩
43 Consultations
0 Téléchargements

Altmetric

Partager

More