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aUniversity of Rijeka, Faculty of Civil Engineering, Croatia
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Abstract

In this work a new three-dimensional geometrically non-linear hexahedral mi-

cropolar finite element enhanced with incompatible modes is presented. The

analytical model is expressed in terms of Biot-like stress and couple-stress ten-

sors and corresponding Biot-like strain and curvature tensors, with a linear,

elastic and isotropic constitutive law. The numerical model is derived based

on the principle of virtual work, and the residual derivation together with the

linearisation and static condensation procedure is given in detail. The newly

developed finite element is tested against the analytical solution of the geometri-

cally non-linear micropolar pure bending problem and the element accuracy and

robustness is compared against hexahedral Lagrangian finite elements of first

and second order on several numerical examples. It is shown that the newly

presented element is fast convergent, more robust and more accurate than the

available Lagrangian elements. Moreover, the operator split and static con-

densation provide for a significantly lower computational cost than standard

elements.
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1. Introduction

The so-called size-effect phenomenon observed in experimental analysis of

materials with a non-negligible microstructure (e.g. [1], [2], [3]), not taken into

account in the classical continuum mechanics, has motivated the research com-

munity to come out with extended continuum models. These alternative contin-5

uum theories serve as a tool to overcome the limitations imposed by the classical

theory, but with a cost of additional degrees of freedom and additional material

parameters in the model. Nowadays, a step forward in the development and

application of such extended models which would allow an accurate description

of modern, manufactured materials such as nanostructured and multilayered10

materials is of high interest. In the alternative micropolar theory introduced by

the Cosserat brothers [4], there exists an independent microrotation field repre-

senting the local orientation of a material point, in addition to the displacement

field known from the classical continuum theory. Therefore, couple-stress and

curvature tensors are also present in the model, leading to six independent ma-15

terial parameters needed to describe such a material [5].

Linear micropolar elasticity has been thoroughly analysed in the theoretical

(e.g. [6], [7], [8]) and numerical (e.g. [9], [10], [11], [12]) frameworks in a nu-

merous number of works, where here just a part of the extensive list is given.

The theoretical aspects of the non-linear micropolar models has been widely20

analysed in [13], [14], [15], among many others. On the contrary, as mentioned

in [16], in the 3D geometrically non-linear regime the numerical solutions are

not broadly present, with two known papers ([17], [18]) dealing with standard

three-dimensional finite-element procedures. In addition, it is observed that

the geometrically nonlinear finite elements presented in [18] are computation-25

ally expensive and fail to converge in certain highly deformed configurations.

Consequently, a demand for accurate, robust and inexpensive finite elements

persists.

In this work we present a new geometrically non-linear finite element with

an incompatible-mode enhancement in the displacement field, while keeping30
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the microrotation interpolation linear, which can undergo large displacements

and large 3D rotations. A special care is taken for the treatment of large 3D

rotations, which are not additive and do not commute. Due to the existence

of the incompatible-mode parameters, the system of equations is described in

terms of three independent vector fields. According to Ibrahimbegović [19], the35

most convenient solution procedure for this kind of system is the operator split

technique which enables separate solution of the equilibrium equations [20], a

solution procedure commonly used in computational plasticity. In the present

case, the operator split is very efficient, since the extra equation remains linear.

The outcome of the paper is as follows. First, the analytical model of a40

three-dimensional geometrically non-linear analytical model is presented. Next,

the numerical model of a hexahedral geometrically non-linear finite element

with enhanced displacement interpolation (using incompatible modes) is de-

rived starting from the principle of virtual work. All the details regarding the

complex linearisation and static condensation procedure is given. A step-by-45

step algorithm implementation is outlined. The newly presented finite element

is tested against the analytical solution of a pure bending problem, and its

performance, robustness and accuracy is compared against existing geometri-

cally non-linear Lagrangian finite elements of first and second order on several

numerical examples.50

2. Geometrically non-linear micropolar analytical model

A brief description of the governing equations of a geometrically non-linear

micropolar model is given here. A detailed derivation of the model can be found

in [21].

Equilibrium equations in material description. In the geometrically non-linear55

regime, a body, when deformed exhibits large displacements and large rotations,

leading to a non-negligible difference between the deformed and undeformed

configurations. Here, we choose to express the equilibrium equations in the

3



so-called material description as

DIV(QB) +PV = 0, (1)
60

DIV(QG) + ax(QBFT − FBTQT) +MV = 0, (2)

together with the corresponding boundary conditions

(QB)N = PS and (QG)N = MS, (3)

where Q represents the microrotation tensor belonging to the so-called special

orthogonal SO(3) Lie group (i.e. Q−1 = QT, det(Q) = +1 and Q = expφ̂)

where φ̂ is a skew-symmetric tensor belonging to the so(3) Lie algebra [22].

The microrotation tensor Q defines the relation between two sets of orthonor-65

mal vectors in the deformed and undeformed configuration, representing the

orientation of the material point. In (2), F = GRADx = x⊗∇X = GRADu+I

represents the deformation gradient tensor, x being the point position vector,

∇X the partial differential operator (nabla) with respect to the material frame

of reference, u the displacement vector and I the identity tensor. Also, B and70

G represent the Biot-like stress and Biot-like couple-stress tensor, respectively,

while PV, MV, PS, MS represent the vectors of body and surface loadings per

unit of undeformed volume/area [21], [18].

Non-linear kinematic equations. The non-linear kinematic equations are derived

by enforcing the equivalence between the strong form of the equilibrium equa-75

tions and the principle of virtual work first applied by Reissner on geometrically

exact 3D beams [23], leading to

E = QTF− I, (4)

K = −1

2
ϵ :
(
QTGRADQ

)
, (5)

where E represents the Biot-like strain tensor, owing to its resemblance to the

standard Biot strain tensor in classical elasticity. Correspondingly, K repre-

sents the Biot-like curvature tensor, while ϵ is Ricci’s alternation tensor. The80

matemathical operator ” : ” represents the double contraction product. Both

strain and curvature tensors are in general non-symmetric.
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Constitutive equations. In this work we focus explicitly on geometrically non-

linear effects and keep the constitutive equations linear, which, in the tensor

form read85

B = λ(tr E)I+ (µ+ ν)E+ (µ− ν)ET (6)

G = α(tr K)I+ (β + γ)K+ (β − γ)KT, (7)

with λ and µ as the Lamé constants and ν, α, β and γ as the additional material

parameters taking place in micropolar elasticity.

In other words, the relation between the Biot-like stress tensor and the Biot-

like strain tensor is given as B = T : E, where the fourth order constitutive

tensor T is equal to90

T = λ I⊗ I+ (µ+ ν)I + (µ− ν)IT, (8)

I = ei ⊗ ej ⊗ ei ⊗ ej being a fourth order identity tensor [18]. The second

constitutive equation is likewise equal to G = D : K where the fourth order

constitutive tensor D is equal to

D = α I⊗ I+ (β + γ)I + (β − γ)IT. (9)

Micropolar parameters λ, µ, ν, α, β, γ can be defined in terms of mate-

rial parameters consisting of the shear modulus G, Poisson’s ratio n, coupling95

number N , polar ratio ψ and the characteristic lengths for bending and torsion

lb and lt, via [18]:

λ =
2n G

1− 2n
, µ = G, ν =

G N2

1−N2
,

α =
2G l2t (1− ψ)

ψ
, β = G l2t , γ = G(4l2b − l2t ),

(10)

For more details considering the geometrically non-linear micropolar model,

together with the additional micropolar material parameters, see [21] and [18].
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3. Geometrically nonlinear micropolar hexahedral finite element with100

incompatible modes

We follow Reissner [23] and start by writing the virtual work principle

Vi − Ve = G(u,Q;u,φ) =

�
V

(
E : B+K : G

)
dV −

�
V

(u ·PV +φ ·MV) dV

−
�
Sp

(u ·PS +φ ·MS) dS = 0.

where we introduce the virtual strain and curvature tensors which follow from

(4) and (5) as

E = QT(GRADu+ φ̂
T
F), (11)

K = QTGRADφ. (12)

The virtual work equation can thus be written as105

G(u,Q,u,φ) =

�
V

(
(QTGRADu) : B+ (QTφ̂

T
F) : B+ (QTGRADφ) : G

)
dV

−
�
V

(u ·PV +φ ·MV) dV −
�
Sp

(u ·PS +φ ·MS) dS = 0,

(13)

where a superimposed bar is used to represent virtual fields. The domain is

chosen to be discretised using isoparametric hexahedral finite elements with

eight nodes with numbering convention as shown in Figure 1.

Figure 1: Isoparametric hexahedral finite element with 8 nodes: real element in physical

space (left), parent element in natural coordinates (right)
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In order to obtain the residual load vector, the virtual kinematic fields have

to be approximated using chosen interpolations. The key idea is to choose110

the virtual displacement interpolation enhanced with the so-called incompatible

modes, as follows:

uh =

8∑
i=1

Ni(ξ, η, ζ)u
e
i +

3∑
i=1

Mi(ξ, η, ζ)α
e
i , (14)

where

Ni(ξ, η, ζ) =
1

8
(1+ξaξ)(1+ηaη)(1+ζaζ), ξa = ±1, ηa = ±1, ζa = ±1, i = 1, .., 8,

(15)

represent the Lagrange trilinear isoparametric shape functions, ue
i = ⟨u1i u2i u3i⟩T

is the vector of element virtual nodal displacements at node i, and αe
i =115

⟨α1i α2i α3i⟩T is the vector of the element virtual parameters for the incompat-

ible shape functions chosen as: M1 = 1− ξ2, M2 = 1− η2, and M3 = 1 − ζ2.

From (14) we can see that the displacement field interpolation consists of the

conventional (compatible) part and the enhanced (incompatible) part. The

choice of incompatible part as quadratic polynomials is made to complete the120

basis, which ensures higher accuracy of 8-node hexahedron. We note in passing

that one can also enhance 27-node element with cubic polynomials in the same

manner as described in [24].

The virtual microrotation field is interpolated by using only the standard

Lagrange interpolation:125

φh =

8∑
i=1

Ni(ξ, η, ζ) φ
e
i , (16)

where φe
i = ⟨φ1i φ2i φ3i⟩T is the vector of virtual nodal microrotations at

node i. For simplicity, first we analyse the first integral of equation (13) where

we introduce the interpolation of the virtual fields and apply tensor identities

defined in Appendix B of [18] to obtain
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�
V

(
(QTGRADu) : B+ (QTφ̂

T
F) : B+ (QTGRADφ) : G

)
dV =

�
V

(
8∑

i=1

ueT

i QB(Ni∇X) +

3∑
a=1

αeT

a QB(Ma∇X) +

8∑
i=1

φeT

i 2Niax
(
skew

(
FBTQT

))
+

8∑
i=1

φeT

i QG(Ni∇X)

)
dV,

(17)

where the operator ax (skew (•)) gives the axial vector of a skew-symmetric130

matrix. By substituting equation (17) in (13), and grouping terms multiplying

the corresponding virtual kinematic fileds we obtain

Anel
e=1

�
V

 8∑
i=1

〈
ueT

i φeT

i

〉 QB(Ni∇X)

2Niax
(
skew

(
FBTQT

))
+QG(Ni∇X)


 dV

+

�
V

(
3∑

a=1

αeT

a QB(Ma∇X)

)
dV

−
�
V

 8∑
i=1

〈
ueT

i φeT

i

〉
Ni

PV

MV

+

3∑
a=1

αeT

a MaPV

 dV

−
�
Sp

 8∑
i=1

〈
ueT

i φeT

i

〉
Ni

PS

MS

+

3∑
a=1

αeT

a MaPS

 dS = 0,

(18)

for any virtual parameters. Next, we introduce the vector of virtual element

nodal degrees of freedom as d
e
= ⟨de

1 d
e

2 . . . d
e

8⟩T, where d
e

i = ⟨ue
i φe

i ⟩
T

=

⟨u1i u2i u3i φ1i φ2i φ3i⟩
T
, i being the node number, giving135

Anel
e=1

8∑
i=1

d
eT

i

�
V

 QB(Ni∇X)

2Niax
(
skew

(
FBTQT

))
+QG(Ni∇X)

 dV +

3∑
a=1

αeT

a

�
V

QB(Ma∇X)dV

−
8∑

i=1

d
eT

i

�
V

Ni

PV

MV

 dV −
3∑

a=1

αeT

a

�
V

MaPVdV −
8∑

i=1

d
eT

i

�
Sp

Ni

PS

MS

 dS

−
3∑

a=1

αeT

a

�
Sp

MaPSdS = 0, (19)
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or written in an expanded form

Anel
e=1


⟨deT

1 d
eT

2 . . . d
eT

8 ⟩
�
V



 QB(N1∇X)

2N1ax
(
skew

(
FBTQT

))
+QG(N1∇X)

 QB(N2∇X)

2N2ax
(
skew

(
FBTQT

))
+QG(N2∇X)


[
...
] QB(N8∇X)

2N8ax
(
skew

(
FBTQT

))
+QG(N8∇X)





dV

− ⟨deT

1 d
eT

2 . . . d
eT

8 ⟩
�
V



Ni

PV

MV


Ni

PV

MV


[
...
]

Ni

PV

MV





dV − ⟨deT

1 d
eT

2 . . . d
eT

8 ⟩
�
Sp



Ni

PS

MS


Ni

PS

MS


[
...
]

Ni

PS

MS





dS

+ ⟨αeT

1 αeT

2 αeT

3 ⟩
�
V


QB(M1∇X)

QB(M2∇X)

QB(M3∇X)

 dV

−⟨αeT

1 αeT

2 αeT

3 ⟩


�
V


M1PV

M2PV

M3PV

 dV +

�
Sp


M1PS

M2PS

M3PS

 dS


 = 0, (20)

Here we recognise that (20) has to hold true for arbitrary virtual parameters

leading to the element residual force vector ge and the element incompatible-

mode residual vector ge,α as

Anel
e=1

(
d
eT

ge +αeTge,α

)
= Anel

e=1

(
d
eT

(qint,e − qext,e) +αeT(qint,e,α − qext,e,α)

)
= 0,

(21)

where qint,e represents the element vector of internal forces, qext,e represents the140

element vector of external forces and ge,α represents the element incompatible-
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mode residual vector with qint,e,α as the internal-force incompatible-mode vec-

tor and qext,e,α as the external-force incompatible-mode vector.

The element internal-force vector at node i is thus equal to

qint,e
i =

�
V

 QB(Ni∇X)

2Niax(skew(FB
TQT)) +QG(Ni∇X)

 dV, (22)

while the element incompatible-mode residual vector ge,α is equal to145

ge,α = qint,e,α − qext,e,α, (23)

where

qint,e,α =

�
V


QB(M1∇X)

QB(M2∇X)

QB(M3∇X)

 dV, qext,e,α =

�
V


M1PV

M2PV

M3PV

 dV+

�
Sp


M1PS

M2PS

M3PS

 dS.

(24)

Thus, the present numerical model is described by a set of non-linear equa-

tions defined as functions of three independent variables u, Q and α. A lengthy,

but otherwise straight-forward method for solving this system of non-linear

equations would be to linearize the whole system and solve it as a sequence of150

linear equations for all independent variables. However, since the incompatible-

mode parameters are defined only element-wise, i.e. they are not shared between

elements, a static condensation approach is possible, which significantly reduces

the number of equations we need to solve. The static condensation is part of a

so-called operator split solution method, consisting of expressing the incompat-155

ible mode parameter αe as a function of the remaining variables. After that,

linearisation of the residual vectors is performed, which allows us to solve the

system of nonlinear equations as a sequence of linear problems.
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3.1. Incompatible-mode residual ge,α at the element level

In order to obtain the incompatible-mode parameter αe we note that the160

incompatible-mode residual at the element level

ge,α =

�
V


QB(M1∇X)

QB(M2∇X)

QB(M3∇X)

 dV − qext,e,α, (25)

must be equal to zero for a particular value of ue, Qe and αe. Here we

analyse the incompatible-mode residual equation where we aim to express the

incompatible-mode parameter αe explicitly. In order to do that, important

equalities defined in [21] outlined below are used and introduced into equation165

(25).

By introducing expression (9) into the element incompatible-mode residual

(25) and by applying tensor identities defined in Appendix B of [18] we obtain:

QB(Ma∇X)

= Q (T : E) (Ma∇X)

= λQ (Ma∇X) tr(E) + (µ+ ν)QE (Ma∇X) + (µ− ν)QET (Ma∇X) .

(26)

Now we can rewrite the incompatible-mode residual vector (25) using (26) as

ge,α =

�
V


λQ (M1∇X) tr(E) + (µ+ ν)QE (M1∇X) + (µ− ν)QET (M1∇X)

λQ (M2∇X) tr(E) + (µ+ ν)QE (M2∇X) + (µ− ν)QET (M2∇X)

λQ (M3∇X) tr(E) + (µ+ ν)QE (M3∇X) + (µ− ν)QET (M3∇X)

 dV

− qext,e,α = 0. (27)

Next, by introducing the interpolation of the displacement field as170

uh =

8∑
i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b. (28)

into the Biot-like strain tensor, and the obtained result in equation (26) we get

11



QB(Ma∇X) (29)

= λQ (Ma∇X)∇T
XQT

(
8∑

i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b

)

+ λQ (Ma∇X) tr
(
QT
)
− 3λQ (Ma∇X)

+ (µ+ ν)
(
∇T

XMa∇X

)( 8∑
i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b

)

+ (µ+ ν)I(Ma∇X)− (µ+ ν)Q(Ma∇X)

+ (µ− ν)Q∇X(Ma∇T
X)QT

(
8∑

i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b

)

+ (µ− ν)QQ(Ma∇X)− (µ− ν)Q(Ma∇X) (30)

The detailed derivation procedure is given in Appendix A. Next, we substi-

tute equation (30) in the element residual vector (27), and, by grouping terms

multiplying the same variables, obtain new matrices multiplying the element

nodal displacements and the incompatible-mode parameters giving the follow-175

ing final form of the incompatible-mode residual vector:

F̃eue +Heαe = rα,e + qext,e,α, (31)

where the matrices F̃e and He and the vector rα,e are independent of ue and αe.

Thus, we can see that equation (31) is linear considering the incompatible-mode

parameter αe which allows us to express it as

αe = He−1
(
rα,e + qext,e,α − F̃eue

)
. (32)

The form of matrices F̃e and He and the form of the vector rα,e are obtained180

as given next.

3.1.1. Matrix F̃e

The block matrix F̃aj is equal to

F̃aj = λQ(Ma∇X)(Nj∇X)TQT+(µ+ν)(Nj∇X)T(Ma∇X)I+(µ−ν)Q(Nj∇X)(Ma∇X)TQT,

(33)

12



giving the [9× 24] element matrix as

F̃e =

�
V


F̃11 F̃12 F̃13 F̃14 F̃15 F̃16 F̃17 F̃18

F̃21 F̃22 F̃23 F̃24 F̃25 F̃26 F̃27 F̃28

F̃31 F̃32 F̃33 F̃34 F̃35 F̃36 F̃37 F̃38

 dV. (34)

3.1.2. Matrix He
185

The block matrix Hab is equal to

Hab = λQ(Ma∇X)(Mb∇X)TQT+(µ+ν)(Mb∇X)T(Ma∇X)I+(µ−ν)Q(Mb∇X)(Ma∇X)TQT,

(35)

giving the [9× 9] element matrix:

He =

�
V


H11 H12 H13

H21 H22 H23

H31 H32 H33

 dV. (36)

3.1.3. Vector rα,e

The block vector rαa is equal to

rαa = −λQ (Ma∇X) tr
(
QT
)
+ 3λQ (Ma∇X)− (µ− ν)QQ(Ma∇X) + (µ− ν)Q(Ma∇X)

− (µ+ ν)I(Ma∇X) + (µ+ ν)Q(Ma∇X), (37)

giving the [9× 1] element vector190

rα =


rα1

rα2

rα3

 . (38)

Even thought it is observed that this problem is linear considering the

incompatible-mode parameters, it is still highly non-linear regarding the dis-

placements and rotations.

3.2. Linearisation of the residual force vector ge and the incompatible-mode

residual ge,α
195

The solution of this nonlinear problem can be obtained by the Newton-

Raphson iterative solution procedure, for which the residual vectors have to be

linearised, as follows:
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Lin

 g

gα

 =

 g

gα

+

 ∆g

∆gα

 = 0, (39)

which written on the element level reads

Lin

 ge

ge,α

 =

 ge

ge,α

+

 ∆ge

∆ge,α

 . (40)

If we separate these equations we will obtain the following general structure:200

Lin[ge] = ge +∆ge = qint,e − qext,e +Ke∆de + FeT∆αe = 0, (41)

Lin[ge,α] = ge,α +∆ge,α = ge,α + Fe∆de +He∆αe = 0, (42)

which can be written in the matrix form asKe FeT

Fe He

∆de

∆αe

 =

qext,e − qint,e

−ge,α

 , (43)

where Ke represents the element tangent stiffness matrix obtained by using the

conventional Lagrange interpolation, as presented in [21] and [18]. However,

since we required the incompatible-mode residual to be zero for a chosen value205

of ue, Qe and αe, i.e. ge,α(ue,Qe,αe) = 0, the previous system of equations is

reduced to Ke FeT

Fe He

∆de

∆αe

 =

qext,e − qint,e

0

 . (44)

Element matrices Ke and Fe from equation (43) are described in detail

in Appendix B, while matrix He is equal to the one obtained for the zero

incompatible-mode residual and is defined in Section 3.1.2.210

In order to eliminate the presence of the unknown incompatible-mode pa-

rameter increment ∆αe we perform the so-called static condensation at the

element level by expressing ∆αe from the second equation (442) as

∆αe = −He−1

Fe∆de (45)

and substitute it in the first equation (441) which gives a reduced (condensed)

stiffness matrix215
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K̃e = Ke − FeTHe−1

Fe. (46)

From this point on we follow the standard finite element assembly procedure.

For clearer understanding, the step-by-step algorithm implementation together

with the iterative update procedure is given in Appendix C.

4. Numerical examples

The newly presented enhanced finite element which we will refer to as220

Hex8NLIM is implemented in The Finite Element Analysis Programme FEAP

[25]. The implemented finite element is thus tested against a non-linear mi-

cropolar analytical solution available in the literature [26] on a pure-bending

problem of a cantilever beam. Precision and robustness of the element is tested

for high-curvature deformation states and a parameter sensitivity analysis has225

been performed. The finite-element performance is then compared against the

geometrically non-linear hexahedral Lagrangian finite elements of first and sec-

ond order presented in [18], which we refer to as Hex8NL and Hex27NL. A

genuine 3D deformation is considered on a cantilever beam curved in plane

with an out-of-plane loading and the obtained results are compared against a230

solution in classical elasticity and the numerical results from [18].

4.1. Pure bending problem of a cantilever beam

The pure-bending state of a beam is a state in which the beam is bent into a

circular shape with the beam cross-sections planar and perpendicular to the axis

of the beam. The micropolar analytical solution of this problem in the linear235

regime is given by Gauthier and Jahsman [8], where it is shown that the resul-

tant bending moment has to be applied as a combination of a linearly varying

longitudinal load and a constant moment load in an exactly defined proportion,

in order to obtain a pure bending state [27]. Furthermore, it is observed that

the characteristic bending length is the material parameter responsible for stiffer240

response of the structure analysed, representing the microstructural effect. In
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order to test finite elements in the geometrically nonlinear regime, an analytical

solution of the pure bending problem in the geometrically nonlinear micropolar

elasticity has been provided in [18], representing a micropolar generalisation of

the Euler-elastica solution. However, it is observed that the solution given in245

[18] is valid only for thin specimens, where through-the-thickness stresses and

strains do not significantly develop. In what follows we will refer to solution

[18] as the approximate analytical solution. A closed-form analytical solution of

the pure bending problem is given in [26], where in addition to the stiffening

effect due to the microstructure of the material, the softening effect due to non-250

linearity is present, which is not recognised in the approximate solution [18].

We refer to the solution [26] as the exact analytical solution.

4.1.1. Thin cantilever beam [18]

First we choose to test the new finite element on the example described in

[18] for which we know that the difference between the two available analytical255

solutions is negligible. We model a thin cantilever beam subject to end loading

resulting in a pure moment, shown in Figure 2. The dimensions of the cantilever

are L = 10 m, h = 0.1 m and b = 1 m, and, in order to capture the size-effect the

value of the characteristic bending length is varied as lb ∈ {0.01, 0.02, 0.04, 0.08}

m. The resultant bending moment chosen asMz = 0.01π Nm is applied through260

a linearly varying surface loading PS1 and a constant surface moment loading

MS3 in the proportion defined in equations (16) and (17) from [26], which has

to be strictly respected in order to obtain a pure bending state. In addition, the

surface loading PS1 has to be applied as a follower load, i.e. it has to remain

orthogonal to the cantilever cross-section during the whole deformation process.265
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Figure 2: Thin cantilever beam subject to bending

The engineering material parameters are taken as E = 1200 N/m
2
and

n = 0.0 which give the Lamé constants µ = 600 N/m2 and λ = 0 N/m2. The

parameter ν is chosen to be equal to ν = 200 N/m2, corresponding to N = 0.5,

but in this example it can have an arbitrary value since it does not affect the solu-

tion. The engineering parameters which exist only in the 3D analysis are chosen270

as ψ = 1 and lt = 0.02 m, but, since they also do not affect the solution, they

can also have arbitrary values, giving α = 0 N and β = 0.24 N. The chosen value

of the characteristic bending length give γ ∈ {0.0, 0.72, 3.6, 15.12} N. Along the

left-hand edge of the specimen the following displacements and microrotations

are restrained u1(0, y, z) = u3(0, y, z) = φ1(0, y, z) = φ2(0, y, z) = φ3(0, y, z) =275

0, for y ∈ [0, h] and z ∈ [0, b], while the vertical displacement is restrained only

on the bottom, i.e. u2(0, 0, z) = 0 for z ∈ [0, b]. Furthermore, the cylindrical

bending is accomplished by additionally restraining the displacements in the z

direction along the whole cantilever, i.e. u3(x, y, z) = 0 for x ∈ [0, L], y ∈ [0, h]

and z ∈ [0, b]. The obtained numerical results are presented in Tables 1, 2 and280

3 for Hex8NL, Hex8NLIM and Hex27NL, respectively, for a mesh of 16 finite

elements propagating in the longitudinal direction. The relative error obtained

in the kinematic fields is expressed as ε = |uN−uA

uN
| · 100% where subscripts N

and A are referred to numerical and analytical solutions. It can be observed

that the first order Lagrangian element gives very poor results for such a coarse285

mesh. The newly presented Hex8NLIM element and the Lagrangian element

of second order almost reproduce the analytical result for such a coarse mesh,
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with a slightly higher accuracy of the enhanced Hex8NLIM element. However,

the computational time needed for the Hex8NLIM element to converge is more

than 25 times lower than for the Hex27NL element, which makes it significanlly290

more efficient. By increasing the finite element mesh the analytical result is

approached in all fields for all three elements.

Table 1: Results in node P = (10.0, 0.1, 1.0) obtained using 16× 1× 1 Hex8NL elements, A

= Analytical, N = Numerical, LS = Number of load steps, ε = error

lb LS
u1 u2 φ3

niter
CPU

A N ε [%] A N ε [%] A N ε [%] time

0.01 1 -7.774 -0.028 99.67 7.096 0.575 91.90 2.534 0.115 95.46 5 0.16 sec

0.02 1 -3.814 -0.027 99.29 6.387 0.560 91.23 1.603 0.112 93.01 5 0.17 sec

0.04 1 -0.718 -0.022 96.94 3.123 0.508 83.74 0.649 0.102 84.28 5 0.15 sec

0.08 1 -0.071 -0.013 81.69 0.956 0.370 61.30 0.192 0.074 61.46 5 0.14 sec

Table 2: Results in node P = (10.0, 0.1, 1.0) obtained using 16× 1× 1 Hex8NLIM elements,

A = Analytical, N = Numerical, LS = Number of load steps, ε = error

lb LS
u1 u2 φ3

niter
CPU

A N ε [%] A N ε [%] A N ε [%] time

0.01 4 -7.774 -7.636 1.78 7.096 7.112 0.22 2.534 2.505 1.14 13,13,13,11 1.30 sec

0.02 2 -3.814 -3.797 0.45 6.387 6.377 0.16 1.603 1.599 0.25 15,16 0.82 sec

0.04 1 -0.718 -0.718 0.00 3.123 3.123 0.00 0.649 0.649 0.00 11 0.32 sec

0.08 1 -0.071 -0.071 0.00 0.956 0.956 0.00 0.192 0.192 0.00 6 0.20 sec
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Table 3: Results in node P = (10.0, 0.1, 1.0) obtained using 16× 1× 1 Hex27NL elements, A

= Analytical, N = Numerical, LS = Number of load steps, ε = error

lb LS
u1 u2 φ3

niter
CPU

A N ε [%] A N ε [%] A N ε [%] time

0.01 4 -7.774 -7.520 3.27 7.096 7.128 0.45 2.534 2.472 2.45 13,13,11,11 33 sec

0.02 2 -3.814 -3.772 1.10 6.387 6.364 0.36 1.603 1.592 0.67 13,15 18 sec

0.04 1 -0.718 -0.717 0.14 3.123 3.122 0.03 0.649 0.649 0.00 11 8 sec

0.08 1 -0.071 -0.071 0.00 0.956 0.956 0.00 0.192 0.192 0.00 6 5 sec

4.1.2. High curvature deformation of the cantilever beam

Next we want to test the performance of the numerical solution for high

curvature deformation states for various length-to-height ratio of the cantilever295

beam. The length and width of the beam are kept fixed, i.e. L = 10 m and

b = 1 m and the height of the beam is varied as h ∈ {0.1, 1, 2, 4} m. If not stated

differently, the material parameters are taken as: E = 1200 N/m
2
and n = 0.0

which give the Lamé constants µ = 600 N/m2 and λ = 0 N/m2. The parameter

ν is chosen to be equal to ν = 200 N/m2, corresponding to N = 0.5 and the300

polar ratio is chosen as ψ = 1, giving α = 0 N. The characteristic bending and

torsion length are chosen in proportion to the height of the beam as lb = 0.3h

and lt = 0.1h. The resultant bending moment is chosen so as to produce for each

h the deformed shape of a nearly closed circular ring. Furthermore, in order to

better understand the difference between the approximate analytical solution305

[18] and the exact analytical solution [26], for each case analysed, the analytical

deformation state, together with the analytical displacements and microrotation

is given. Also, the external bending moment Mz, is applied as a combination of

a linearly varying surface loading of a magnitude p0 at the edges of the cross-

section and a constant moment surface loading of magnitude m0. According310

to the approximate solution their values are obtained as: p0 = 1
1+δ

Mz

Wz
and

m0 = δ
1+δ

Mz

A with A = bh, Wz = bh2

6 and δ = 24(lb/h)
2. Regarding the exact

analytical solution, their values are expressed in terms of hyperbolic functions
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and can be found in [26], equations (16) and (17). For more details see [26].

The obtained values are outlined with respect to the chosen analytical solution315

for each case analysed.

CASE 1: h = 0.1 m

In case 1 we analyse a cantilever beam with a length-to-height ratio L
h = 100.

The resultant bending moment is chosen to be equal toMz = 0.1902Nm, which,

according to both analytical solutions produces the radius of curvature of the320

unstrained longitudinal fibres ρ = 1.66m. From Table 4 and Figure 3 we can see

that the approximate solution coincides with the exact analytical solution for

the number of significant digits shown. The problem is solved with a mesh of 64

finite elements propagating in the longitudinal direction (Hex8NL, Hex8NLIM,

Hex27NL elements). The obtained results are presented in Table 5 and Figure325

4. It can be observed that Hex8NLIM and Hex27NL reproduce the analytical

solution, but with more than 62 times lower computational time needed for the

enhanced element. Hex8NL, however, is very far from the analytical solution

for the chosen mesh and finite element aspect ratio, due to the presence of a

shear locking effect. By refining the finite element mesh, the shear locking effect330

vanishes and the analytical solution is approached in all fields. Since the mesh

of 64 finite elements was dense enough to reproduce the analytical solution in 2

significant digits for the Hex8NLIM and Hex27NL elements, we keep this mesh

for the next cases analysed.

Table 4: CASE 1: Comparison of the analytical solutions for L = 10 m, h = 0.1 m,

E = 1200 N/m2, n = 0.0, lb = 0.03 m, for a high curvature deformation state. Results are

obtained at node P = (L, h, b)

Exact solution [26] Approximate solution [18]

Mz [Nm] m0 p0 ρ [m] φz u1 [m] u2 [m] m0 p0 ρ [m] φz u1 [m] u2 [m]

0.1902 1.30 36.10 1.66 6.02 -10.42 0.06 1.30 36.10 1.66 6.02 -10.42 0.06
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(a) Exact solution [26] (b) Approximate solution [18]

Figure 3: Pure bending of a thin cantilever beam (case 1)

Table 5: Case 1: Numerical results in node P = (L, h, b), LS - Number of load steps, ε - error

El Nel LS u1 ε [%] u2 ε [%] φ3 ε [%] CPU time

Hex8NL 64 10 -11.82 13.43 4.13 6783.33 3.97 34.05 8 sec

Hex8NLIM 64 10 -10.42 0.00 0.06 0.00 6.02 0.00 11 sec

Hex27NL 64 10 -10.42 0.00 0.06 0.00 6.02 0.00 8 min 19 sec

(a) Hex8NL (b) Hex8NLIM (c) Hex27NL

Figure 4: Numerical solution for case 1 using 64 elements

CASE 2: h = 1.0 m335

In case 2 we analyse the cantilever beam with a length-to-height ratio L
h =

10. The resultant bending moment is chosen to be equal to Mz = 186.05 Nm,

which, according to both analytical solutions produces a radius of curvature
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of the unstrained longitudinal fibres ρ = 1.66 m. From Table 6 and Figure340

5 we can see that in this case the approximate solution starts to differ from

the exact analytical solution, predicting a stiffer response of the beam. How-

ever, the difference is still not significant. The problem is solved with a mesh

of 64 finite elements propagating in the longitudinal direction with Hex8NL,

Hex8NLIM, Hex27NL elements. The obtained results are presented in Table 7.345

Again, Hex8NLIM and Hex27NL give numerical results which are very close to

the analytical solution, with a 54 times lower cost of the Hex8NLIM element.

Hex8NL shows much better performance than in case 1.

Table 6: Case 2: Comparison of the analytical solutions for L = 10 m, h = 1 m,

E = 1200 N/m2, n = 0.0, lb = 0.3 m, for a high curvature deformation. Results are obtained

at node P = (L, h, b)

Exact solution [26] Approximate solution [18]

Mz [Nm] m0 [Nm] p0 ρ [m] φz u1 [m] u2 [m] m0 p0 ρ [m] φz u1 [m] u2 [m]

186.05 130.0 350.592 1.66 6.02 -10.31 0.03 127.18 353.27 1.66 5.90 -10.46 0.09

(a) Exact solution [26] (b) Approximate solution [18]

Figure 5: Pure bending of a cantilever beam (case 2)
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Table 7: Case 2: Numerical results at node P = (L, h, b), LS - Number of load steps, ε - error

El Nel LS u1 ε [%] u2 ε [%] φ3 ε [%] CPU time

Hex8NL 64 150 -10.63 3.10 0.09 200.00 5.99 0.50 1 min 8 sec

Hex8NLIM 64 150 -10.56 2.42 0.07 133.33 6.02 0.00 1 min 20 sec

Hex27NL 64 150 -10.56 2.42 0.07 133.33 6.02 0.00 54 min 10 sec

CASE 3: h = 2.0 m

350

In case 3 we further decrease the cantilever beam length-to-height ratio

to L
h = 5. The resultant bending moment is chosen to be equal to Mz =

1419.31 Nm, which, according to the analytical solution produces a radius of

curvature of the longitudinally unstrained fibre ρ = 1.65 m. From Table 8

and Figure 6 we can see that the approximate solution now differs more from355

the exact analytical solution, predicting an 8% higher radius of curvature. The

problem is again solved with a mesh of 64 finite elements propagating in the lon-

gitudinal direction with Hex8NL, Hex8NLIM, Hex27NL elements. The obtained

results are presented in Table 9. In case 3, all the elements give a numerical

solution which is in good agreement with the exact analytical solution, with a360

high efficiency of the Hex8NL and Hex8NLIM elements. However, as already

observed, Hex27NL is shown to be computationally very expensive.

Table 8: Case 3: Comparison of the analytical solutions for L = 10 m, h = 2 m,

E = 1200 N/m2, n = 0.0, lb = 0.6 m for a high curvature deformation. Results are obtained

at node P = (L, h, b)

Exact solution [26] Approximate solution [18]

Mz [Nm] m0 p0 ρ [m] φz u1 [m] u2 [m] m0 p0 ρ [m] φz u1 [m] u2 [m]

1419.31 525.0 650.96 1.65 6.08 -10.16 -0.09 485.08 673.72 1.78 5.61 -10.48 0.17
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(a) Exact solution [26] (b) Approximate solution [18]

Figure 6: Pure bending of a cantilever beam (case 3)

Table 9: Case 3: Numerical results at node P = (L, h, b), LS - Number of load steps, ε - error

El Nel LS u1 ε [%] u2 ε [%] φ3 ε [%] CPU time

Hex8NL 64 150 -10.53 3.64 0.06 166.67 6.07 0.17 1 min 7 sec

Hex8NLIM 64 150 -10.51 3.44 0.05 155.56 6.08 0.00 1 min 23 sec

Hex27NL 64 150 -10.51 3.44 0.05 155.56 6.08 0.00 58 min 48 sec

CASE 4: h = 4.0 m

Finally, in case 4 we further increase the beam height to obtain a length-to-365

height ratio L
h = 2.5. The resultant bending moment is chosen to be equal to

Mz = 9581.59 Nm, which, according to the exact analytical solution produces

a radius of curvature of the longitudinally unstrained fiber ρ = 1.73 m. From

Table 10 and Figure 7 we can see that here the approximate solution differs

significanlty from the exact analytical solution. In this thick-cantilever beam370

example, we can clearly see from Figure 10 that through-the-thickness strains

develop even for a zero Poisson’s ratio material, leading to a shrinkage in the

beam height. Furthermore, due to the lack of the non-linear softening effect

[26] in the approximate solution, a stiffer response is predicted, producing a

deformation state with 22% higher radius of curvature. These two effects come375

to the fore for thick beams. The problem is solved with a mesh of 64 finite
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elements propagating in the longitudinal direction with Hex8NL, Hex8NLIM,

Hex27NL elements, first for the value of the coupling number N = 0.5. It

is observed that none of the finite elements converge to a numerical solution

in the Newton-Raphson process for the chosen values of material parameters380

for different mesh densities and load increments. Thus, a test has been made

to check weather the values of certain material parameters which do not exist

in the analytical solution affect the convergence of the numerical solution. It

is observed that by increasing the value of the coupling number N = 0.9 a

numerical convergence is achieved. The obtained results are presented in Table385

11 from where we can see that a good agreement between the analytical and

numerical solution is obtained. This observation motivated us to perform an

extensive parameter identification analysis presented in the next section.

Table 10: Case 4: Comparison of the analytical solutions for L = 10 m, h = 4 m,

E = 1200 N/m2, n = 0.0, lb = 1.2 m for a high curvature deformation. Results are obtained

at node P = (L, h, b)

Exact solution [26] Approximate solution [18]

Mz [Nm] m0 p0 ρ [m] φz u1 [m] u2 [m] m0 p0 ρ [m] φz u1 [m] u2 [m]

9581.59 2000.0 984.23 1.73 5.79 -10.15 -0.55 1637.36 1137.06 2.11 4.74 -10.11 0.11

(a) Exact solution [26] (b) Approximate solution [18]

Figure 7: Pure bending of a thick cantilever beam (case 4)
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Table 11: Case 4: Numerical results at node P = (L, h, b), LS - Number of load steps, ε -

error

El Nel LS u1 ε [%] u2 ε [%] φ3 ε [%] CPU time

Hex8NL 64 220 -11.41 2.56 0.34 161.82 5.80 0.17 1 min 28 sec

Hex8NLIM 64 220 -11.38 2.26 0.32 158.18 5.81 0.34 1 min 45 sec

Hex27NL 64 220 -11.38 2.26 0.33 160.00 5.82 0.51 70 min 37 sec

4.1.3. Parameter sensitivity analysis

In order to check the numerical solution sensitivity to the choice of microp-390

olar material parameters which are not present in the analytical solution, a new

setup is analysed with the following geometry: L = 10 m, h = 1 m, b = 1 m,

and the following material parameters are kept fixed E = 1200 N/m
2
, n = 0.0,

lb = 0.15 m, lt = 0.04 m giving the analytical solution from Table 12 and Figure

8.395

Table 12: Analytical solution for L = 10 m, h = 1 m, E = 1200 N/m2, n = 0.0, lb = 0.15

Exact solution [26]

Mz m0 p0 ρ φz u1 u2

90.85 33.43 360.0 1.61 6.19 -10.11 0.01

Figure 8: Exact solution [26] for pure bending of a cantilever beam
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First we test the problem by keeping the polar ratio fixed and equal to

ψ = 1, and we vary the value of the coupling number N ∈ {0.1, 0.5, 0.9}. From

Table 13 it can be observed that the value of the coupling number affects the

solution in both precision and robustness. For N = 0.1 none of the elements

converge to a numerical solution. Element Hex8NL converges to a numerical400

solution for N = 0.5 and N = 0.9. However, it can be observed that for a higher

value of the coupling number the obtained numerical solution is farther from the

analytical solution than that obtained with lower value of the coupling number.

The second order element Hex27NL fails to converge to a numerical solution for

all chosen values of the coupling number. The enhanced Hex8NLIM element405

converges to a numerical solution for N = 0.5 and N = 0.9 and the obtained

solution is in good agreement with the analytical solution for the horizontal

displacement and microrotation for both chosen values (Table 13). Regarding

the vertical displacement, a further refinement of the finite element mesh in the

transversal direction would be needed in order to obtain more accurate values.410
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Table 13: Variation of the coupling number N ∈ {0.1, 0.5, 0.9} for E = 1200 N/m2, n = 0.0,

lb = 0.15 m, lt = 0.04 m, ψ = 1.0: Results at node P = (L, h, b), A = Analytical, N =

Numerical, LS = Number of load steps, NC = No convergence

El Nel LS N ν
A [26] N A [26] N A [26] N CPU

u1 u1 u2 u2 φ3 φ3 time

Hex8NL 16 150 0.5 200.0 -10.11 -12.10 0.01 1.22 6.19 5.22 18 sec

Hex8NLIM 16 150 0.5 200.0 -10.11 -10.23 0.01 -0.07 6.19 6.17 25 sec

Hex27NL 16 150 0.5 200.0 -10.11 x 0.01 x 6.19 x NC

Hex8NL 32 150 0.5 200.0 -10.11 -10.80 0.01 0.16 6.19 5.91 35 sec

Hex8NLIM 32 150 0.5 200.0 -10.11 x 0.01 x 6.19 x NC

Hex27NL 32 150 0.5 200.0 -10.11 x 0.01 x 6.19 x NC

Hex8NL 16 150 0.9 2557.89 -10.11 -11.56 0.01 6.17 6.19 3.60 16 sec

Hex8NLIM 16 150 0.9 2557.89 -10.11 -10.67 0.01 -0.36 6.19 5.99 18 sec

Hex27NL 16 150 0.9 2557.89 -10.11 x 0.01 x 6.19 x NC

Hex8NL 32 150 0.9 2557.89 -10.11 -12.16 0.01 1.20 6.19 5.21 32 sec

Hex8NLIM 32 150 0.9 2557.89 -10.11 -10.30 0.01 -0.20 6.19 6.13 41 sec

Hex27NL 32 150 0.9 2557.89 -10.11 x 0.01 x 6.19 x NC

Next we want to check if the polar ratio ψ affects the solution. The polar

ratio is chosen as ψ ∈ {0.1, 0.7, 1.4} and the problem is solved first for N = 0.5

(Table 14) and then for N = 0.9 (Table 15). From the obtained results it can

be concluded that parameter ψ does not affect the numerical solution.
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Table 14: Variation of the polar ratio ψ ∈ {0.1, 0.7, 1.4} for E = 1200 N/m2, n = 0.0,

lb = 0.15 m, lt = 0.04 m, N = 0.5: Results at node P = (L, h, b), A = Analytical, N =

Numerical, LS = Number of load steps, NC = No convergence

El Nel LS ψ α
A [26] N A [26] N A [26] N CPU

u1 u1 u2 u2 φ3 φ3 time

Hex8NL 32 150 0.1 17.28 -10.11 -10.78 0.01 0.16 6.19 5.91 35 sec

Hex8NLIM 32 150 0.1 17.28 -10.11 x 0.01 x 6.19 x NC

Hex27NL 32 150 0.1 17.28 -10.11 x 0.01 x 6.19 x NC

Hex8NL 32 150 0.7 0.823 -10.11 -10.78 0.01 0.16 6.19 5.91 35 sec

Hex8NLIM 32 150 0.7 0.823 -10.11 x 0.01 x 6.19 x NC

Hex27NL 32 150 0.7 0.823 -10.11 x 0.01 x 6.19 x NC

Hex8NL 32 150 1.4 -0.549 -10.11 -10.78 0.01 0.16 6.19 5.91 35 sec

Hex8NLIM 32 150 1.4 -0.549 -10.11 x 0.01 x 6.19 x NC

Hex27NL 32 150 1.4 -0.549 -10.11 x 0.01 x 6.19 x NC
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Table 15: Variation of the polar ratio ψ ∈ {0.1, 0.7, 1.4} for E = 1200 N/m2, n = 0.0,

lb = 0.15 m, lt = 0.04 m, N = 0.9: Results at node P = (L, h, b), A = Analytical, N =

Numerical, LS = Number of load steps, NC = No convergence

El Nel LS ψ α
A [26] N A [26] N A [26] N CPU

u1 u1 u2 u2 φ3 φ3 time

Hex8NL 32 150 0.1 17.28 -10.11 -12.16 0.01 1.12 6.19 5.21 32 sec

Hex8NLIM 32 150 0.1 17.28 -10.11 -10.30 0.01 -0.20 6.19 6.13 42 sec

Hex8NL 32 150 0.7 0.823 -10.11 -12.16 0.01 1.12 6.19 5.21 32 sec

Hex8NLIM 32 150 0.7 0.823 -10.11 -10.30 0.01 -0.20 6.19 6.13 42 sec

Hex8NL 32 150 1.4 -0.549 -10.11 -12.16 0.01 1.12 6.19 5.21 32 sec

Hex8NLIM 32 150 1.4 -0.549 -10.11 -10.30 0.01 -0.20 6.19 6.13 42 sec

Finally, we vary the value of the characteristic torsion length lt ∈ {0.1, 0.5, 0.9}415

and keep the values of the coupling number and polar ratio fixed and equal to

N = 0.9 and ψ = 1.0. Again, from Table 16 it can be seen that the value of

the characteristic torsion length does not affect the numerical solution (and the

deformed configuration).
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Table 16: Variation of the characteristic torsion length lt ∈ [0.1, 0.5, 0.9] for E = 1200 N/m2,

n = 0.0, lb = 0.15 m, ψ = 1.0, N = 0.9: Results at node P = (L, h, b), A = Analytical, N =

Numerical, LS = Number of load steps, NC = No convergence

El Nel LS lt β γ
A [26] N A [26] N A [26] N CPU

u1 u1 u2 u2 φ3 φ3 time

Hex8NL 32 150 0.1 6.0 48.0 -10.11 -12.16 0.01 1.20 6.19 5.21 32 sec

Hex8NLIM 32 150 0.1 6.0 48.0 -10.11 -10.30 0.01 -0.20 6.19 6.13 42 sec

Hex8NL 32 150 0.5 150.0 -96.0 -10.11 -12.16 0.01 1.20 6.19 5.21 32 sec

Hex8NLIM 32 150 0.5 150.0 -96.0 -10.11 -10.30 0.01 -0.20 6.19 6.13 41 sec

Hex8NL 32 150 0.9 486.0 -432.0 -10.11 -12.16 0.01 1.20 6.19 5.21 32 sec

Hex8NLIM 32 150 0.9 486.0 -432.0 -10.11 -10.30 0.01 -0.20 6.19 6.13 41 sec

4.2. 45◦ degree curved cantilever bend420

A genuine three-dimensional problem will be analysed next in order to test

the element ability to model large three-dimensional rotations. A curved can-

tilever beam with out-of-plane loading first presented in [28] is modeled using

the geometrically nonlinear Lagrange elements presented in [18] and the newly

presented enhanced Hex8NLIM element.425

The beam of constant curvature with a radius R = 100 forming a 45◦ arc

lies in a horizontal plane, as shown in Figure 9. The cantilever is loaded nor-

mally to that plane at the free end by a constant distributed surface loading

p3 = 600 along the square-shaped cross-section of the side a = 1. The dis-

tributed surface loading is applied through corresponding concentrated nodal430

forces in a number of load increments. The cantilever is clamped at the left-

hand side end, i.e. all the displacements and microrotations are restrained

(u1(0, x2, x3) = u2(0, x2, x3) = u3(0, x2, x3) = φ1(0, x2, x3) = φ2(0, x2, x3) = φ3(0, x2, x3) =

0, for x2 ∈ [R− 0.5a,R+ 0.5a], and x3 ∈ [0, a]).
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Figure 9: Top view of the curved cantilever beam

The obtained numerical results are compared against a reference numerical435

solution of the classical theory [20].

Lamé constants are taken as in [20], i.e. µ = 5 · 106, λ = 0. The remain-

ing material parameters are chosen as ν = 50 505.1, α = 0, β = 12 500 and

γ = 37 500, which correspond to the following engineering material parameters:

E = 107, n = 0.0, N = 0.1, lb = 0.05, lt = 0.05, ψ = 1. Thus, the engineering440

material parameters describing the contribution of the microstructure are taken

as small, so that the obtained results could be compared to the solution available

in the framework of the classical elasticity. The problem is solved by using a fi-

nite element mesh of 16 elements propagating in the longitudinal direction. The

obtained results at nodes P1 = (70.357, 70.357, 0.0), P2 = (71.064, 71.064, 0.0),445

P3 = (70.357, 70.357, 1.0) and P4 = (71.064, 71.064, 1.0) are then averaged and

given in Table 17.

It can be observed that the first-order element performs poorly for such

a coarse mesh, while the results obtained using Hex8NLIM and Hex27NL are

very close to the reference solution, but slightly stiffer due to the existence of450

micropolar effects in the model. However, the computational time needed to

obtain the result using Hex8NLIM is 30 times lower than that needed for the

Hex27NL element.
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Table 17: Obtained numerical results for the curved cantilever bend problem

(a) 16 × 1 × 1 Hex8NL elements

El Nel LS Node u1 u2 u3 φ1 · 10−1 φ2 · 10−2 φ3 · 10−2

Hex8NL 16 1 P1 -1.28 1.91 16.06 -5.08 -6.06 -3.56

P2 -1.24 1.80 15.76 -5.08 -6.06 -3.57

P3 -1.32 2.40 15.93 -5.08 -6.06 -3.57

P4 -1.28 2.29 15.63 -5.08 -6.06 -3.57

Averaged results -1.28 2.10 15.85 -5.08 -6.06 -3.57

Hex8NLIM 16 7 P1 -22.03 12.92 52.67 -5.67 -9.85 -5.85

P2 -22.20 13.02 52.89 -5.67 -9.85 -5.85

P3 -22.83 13.33 52.08 -5.67 -9.85 -5.86

P4 -23.01 13.44 52.31 -5.67 -9.85 -5.85

Averaged results -22.52 13.18 52.49 -5.67 -9.85 -5.85

Hex27NL 16 7 P1 -22.05 12.85 52.70 -5.65 -9.87 -5.56

P2 -22.20 13.02 52.89 -5.65 -9.87 -5.58

P3 -22.83 13.33 52.08 -5.65 -9.87 -5.58

P4 -23.01 13.44 52.31 -5.65 -9.87 -5.57

Averaged results -22.54 13.11 52.52 -5.67 -9.87 -5.57

Ref. solution [20] -23.30 13.64 53.21 - - -

5. Conclusion

In the scope of this work a new three-dimensional geometrically non-linear455

enhanced micropolar finite element has been derived. The element is based on

Biot-like stress and strain tensors with a linear elastic isotropic constitutive law.
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The numerical implementation of the finite element is performed within the Fi-

nite Element Analysis Program (FEAP) [25]. The finite-element performance

has been tested on several numerical examples in the geometrically non-linear460

regime consisting of a pure-bending problem and a full 3D deformation problem.

Regarding the pure-bending problem, it is observed that the newly developed

finite element reproduces the analytical solution [26] for a coarse mesh. Further-

more, it is observed that it is significantly more accurate than the first-order

Lagrangian element, and more robust and remarkably more efficient than the465

second-order Lagrangian finite element developed in [18], especially so for thin

beams. The element is able to describe high curvature deformation in a rea-

sonable computational time, which is not the case for the Lagrangian elements

developed in [18].

Also, a micropolar parameter sensitivity analysis has been performed within470

this example, where the values of parameters not existing in the analytical

solution of the pure bending problem (the coupling number, polar ratio and

characteristic torsion length) have been varied. It is observed that the coupling

number affects both the precision and robustness of the numerical solution.

However, the values of the polar ratio and the characteristic bending length do475

not affect the solution in either way.

A genuine 3D problem consisting of a curved cantilever beam subject to out-

of-plane loading is modelled. It is observed that the solution obtained with the

newly presented element requires significantly lower computational time than

the second-order element (around 30 times lower), with the same precision. It is480

concluded that the hexahedral geometrically-nonlinear micropolar finite element

with incompatible-mode enhancement in the displacement field is an efficient

and robust micropolar finite element, highly suitable for modeling behavior of

micropolar materials in the three-dimensional geometrically non-linear regime.
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Appendix A. Derivation of terms needed in the incompatible modes

residual

Appendix A.1. Term λQ (Ma∇X) tr(E)

λQ (Ma∇X) tr(E) (A.1)

= λQ (Ma∇X) tr
(
QTF− I

)
= λQ (Ma∇X) tr

(
QTF

)
− λQ (Ma∇X) tr (I)

= λQ (Ma∇X) tr
(
QT (GRADu+ I)

)
− 3λQ (Ma∇X)

= λQ (Ma∇X) tr
(
QTu∇T

X

)
+ λQ (Ma∇X) tr

(
QT
)
− 3λQ (Ma∇X)

= λQ (Ma∇X)∇X ·QTu+ λQ (Ma∇X) tr
(
QT
)
− 3λQ (Ma∇X)

= λQ (Ma∇X)∇T
XQTu+ λQ (Ma∇X) tr

(
QT
)
− 3λQ (Ma∇X)

= λQ (Ma∇X)∇T
XQT

(
8∑

i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b

)
+ λQ (Ma∇X) tr

(
QT
)
− 3λQ (Ma∇X) ,

(A.2)

where ∇T
X from the first term operates on Ni and Mb.
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Appendix A.2. Term (µ+ ν)QE (Ma∇X)495

(µ+ ν)QE(Ma∇X) (A.3)

= (µ+ ν)Q
(
QTF− I

)
(Ma∇X)

= (µ+ ν)QQTF(Ma∇X)− (µ+ ν)Q(Ma∇X)

= (µ+ ν) (GRADu+ I) (Ma∇X)− (µ+ ν)Q(Ma∇X)

= (µ+ ν) (u⊗∇X) (Ma∇X) + (µ+ ν)I(Ma∇X)− (µ+ ν)Q(Ma∇X)

= (µ+ ν)

u∇T
XMa∇X︸ ︷︷ ︸
scalar

+ (µ+ ν)I(Ma∇X)− (µ+ ν)Q(Ma∇X)

= (µ+ ν)
(
∇T

XMa∇X

)
u+ (µ+ ν)I(Ma∇X)− (µ+ ν)Q(Ma∇X)

= (µ+ ν)
(
∇T

XMa∇X

)( 8∑
i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b

)
+ (µ+ ν)I(Ma∇X)− (µ+ ν)Q(Ma∇X)

(A.4)

where ∇T
X in (A.4) operates on Ni and Mb.

Appendix A.3. Term (µ− ν)QET (Ma∇X)

(µ− ν)QET(Ma∇X) (A.5)

= (µ− ν)Q
(
FTQ− I

)
(Ma∇X)

= (µ− ν)Q (GRADu+ I)
T
Q(Ma∇X)− (µ− ν)Q(Ma∇X)

= (µ− ν)Q
(
u∇T

X

)T
Q(Ma∇X) + (µ− ν)QQ(Ma∇X)− (µ− ν)Q(Ma∇X)

= (µ− ν)Q∇XuTQ(Ma∇X) + (µ− ν)QQ(Ma∇X)− (µ− ν)Q(Ma∇X)

= (µ− ν)Q∇X(Ma∇T
X)QTu+ (µ− ν)QQ(Ma∇X)− (µ− ν)Q(Ma∇X)

= (µ− ν)Q∇X(Ma∇T
X)QT

(
8∑

i=1

Ni(ξ, η, ζ)u
e
i +

3∑
b=1

Mb(ξ, η, ζ)α
e
b

)
+ (µ− ν)QQ(Ma∇X)− (µ− ν)Q(Ma∇X)

(A.6)

where ∇X from the first term operates on Ni and Mb.
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Appendix B. Derivation of terms needed in the linearized residuals

Appendix B.1. Matrix Ke
500

In the nonlinear analysis Ke consists of two parts:

Ke = KM
e +KG

e. (B.1)

The matrix KM
e is referred to as the element material stiffness matrix and

KG
e is referred to as the element geometric stiffness matrix. The part KM

e

depends on material properties, while the part KG
e depends on stresses and is

a characteristic of large displacement/rotation problems and consequently does505

not exist in the linear analysis.

The linearization of each term in the element residual is derived and pre-

sented in detail in [21] in Appendix G. By introducing the linearized terms

derived there and substituting ℓ = ax(skew(FQT)) we obtain the element in-

cremental residual510

∆ge =



∆ge
1

∆ge
2

...

∆ge
nnode


. (B.2)

The element incremental nodal residual ∆ge
i is thus

∆ge
i =

� ∆ge1
i

∆ge2
i

 dV, (B.3)

where vectors ∆ge1
i and ∆ge2

i are equal to

∆ge1
i =

(
∆̂φQB+Q (T : ∆E)

)
(Ni∇X),

∆ge2
i =

(
∆̂φQG+Q (D : ∆K)

)
(Ni∇X)

−Niϵ :
(
GRAD∆uBTQT + F(T : ∆E)TQT + FBTQT∆̂φ

T
)
.

(B.4)
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Here, we introduce the equalities derived in [21] in Appendix G, as follows:(
∆̂φQB+Q (T : ∆E)

)
(Ni∇X)

=
(
λQ(Ni∇X)∇T

XQT + (µ+ ν)∇T
X(Ni∇X)I+ (µ− ν)Q∇X(Ni∇X)TQT

)
∆u

+
(
−QB(Ni∇X)
∧

+ λQ(Ni∇X)2
[
ax(skew(FQT))

]T
+ (µ+ ν)F(Ni∇X)
∧

−(µ− ν)QFTQ(Ni∇X)
∧)

∆φ, (B.5)

where free ∇X in the factor multiplying ∆u operates exclusively on ∆u,(
∆̂φQG+Q (D : ∆K)

)
(Ni∇X) (B.6)

=
(
−QG(Ni∇X)
∧

+ αQ(Ni∇X)∇T
XQT + (β + γ)∇T

X(Ni∇X) + (β − γ)Q∇X(Ni∇X)TQT
)
∆φ,

where free ∇X in the factor multiplying ∆φ operates exclusively on ∆φ and515

−Niϵ :
(
GRAD∆uBTQT + F(T : ∆E)TQT + FBTQT∆̂φ

T
)

= NiQB∇X

∧
∆u+ 4λNi ax(skew(FQ

T))
[
ax(skew(FQT))

]T
∆φ

+ 2λNi ax(skew(FQ
T))∇T

XQT∆u− (µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆φ

− (µ+ ν)NiF∇X

∧
∆u

+ (µ− ν)Ni [m1 m2 m3] ∆φ

+ (µ− ν)NiQ∇X

∧
FQT∆u+Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]
∆φ, (B.7)

where mi = ax(2skew(FQTϵiFQ
T)) and ϵi is a submatrix of the Levi-Civita

tensor. In (B.7) all ∇X operate on ∆u.
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Finally, we obtain the vectors ∆ge1
i and ∆ge2

i as

∆ge1
i =−QB(Ni∇X)
∧

∆φ+ λQ(Ni∇X)2ℓT∆φ+ λQ(Ni∇X)∇T
XQT∆u

+ (µ+ ν)F(Ni∇X)
∧

∆φ+ (µ+ ν)∇T
X(Ni∇X)∆u

− (µ− ν)QFTQ(Ni∇X)
∧

∆φ+ (µ− ν)Q∇X(Ni∇T
X)QT∆u, (B.8)

∆ge2
i =−QG(Ni∇X)
∧

∆φ+ αQ(Ni∇X)∇T
XQT∆φ+ (β + γ)∇T

X(Ni∇X)∆φ

+ (β − γ)Q∇X(Ni∇T
X)QT∆φ+NiQB∇X

∧
∆u+ 4λNi ℓℓ

T∆φ

+ 2λNi ℓ∇T
XQT∆u− (µ+ ν)Ni

(
FFT − tr(FFT)I

)
∆φ− (µ+ ν)NiF∇X

∧

∆u

+ (µ− ν)Ni [m1 m2 m3] ∆φ+ (µ− ν)NiQ∇X

∧
FQT∆u

+Ni

[(
FBTQT

)T − tr
(
FBTQT

)
I
]
∆φ. (B.9)

Next, we split the element incremental nodal residual ∆ge
i into its geometric

and material part as:520

∆ge
i = ∆ge

Gi
+∆ge

Mi
. (B.10)

In order to obtain the geometric element stiffness matrix, we observe the part

of the element incremental residual ge
Gi

which depends on stresses B and/or G

which is equal to:

∆ge
Gi

=

�
V

∆ge1
Gi

∆ge2
Gi

 dV, (B.11)

where vectors ∆ge1
Gi

and ∆ge2
Gi

are equal to

∆ge1
Gi

=
(
−QB(Ni∇X)
∧

+ 2λQ(Ni∇X)ℓT
)
∆φ, (B.12)

∆ge2
Gi

=
(
−QG(Ni∇X)
∧

+ 4λNiℓℓ
T +Ni

[
(FBTQT)T − tr(FBTQT)I

])
∆φ

+
(
NiQB∇X

∧
+ 2λNiℓ∇T

XQT
)
∆u. (B.13)

It is important to note that terms λQ(Ni∇X)ℓT∆φ , 4λNiℓℓ
T and 2λNiℓ∇T

XQT∆u525

contain the material parameter λ and as such is more intuitive to be classified

as terms belonging to the material part. However, in the linear analysis of the
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present formulation these three terms vanish, which is the reason why we clas-

sified them as a part of the geometric stiffness. By extracting the vector of

incremental displacements and microrotations we obtain530

∆ge
Gi

=

�
V

 0 −QB(Ni∇X)
∧

+ 2λQ(Ni∇X)ℓT

NiQB∇X

∧
+ 2λNiℓ∇T

XQT −QG(Ni∇X)
∧

+ 4λNiℓℓ
T +Ni

[
(FBTQT)T − tr(FBTQT)I

]
∆u

∆φ

dV,
(B.14)

where 0 is a 3× 3 zero matrix. Now we introduce into (B.14) the interpolation

of the kinematic field increments defined earlier as

∆uh =

nnode∑
j=1

Nj(ξ, η, ζ)∆uj , ∆φh =

nnode∑
j=1

Nj(ξ, η, ζ)∆φj , (B.15)

and by extracting the interpolated vector of incremental nodal degrees of free-

dom ∆de
j =

∆u

∆φ

 we obtain

∆ge
Gi

=

nnode∑
j=1

KG
e
ij∆de

j , (B.16)

where the 6× 6 element block geometric stiffness matrix KG
e
ij follows as535

KG
e
ij =

�
V

 0 KG
e1
ij

KG
e2
ij KG

e3
ij

 dV, (B.17)

where the submatrices are

KG
e1
ij = −QB(Ni∇X)
∧

Nj + 2λQ(Ni∇X)ℓTNj , (B.18)

KG
e2
ij = NiQB(Nj∇X)
∧

+ 2λNiℓ(Nj∇X)TQT, (B.19)

KG
e3
ij = −QG(Ni∇X)
∧

Nj + 4λNiNjℓℓ
T +NiNj

[
(FBTQT)T − tr(FBTQT)I

]
.

(B.20)

Next we define the element nodal incremental material residual ∆ge
Mi

as

∆ge
Mi

=

�
V

∆ge1
Mi

∆ge2
Mi

 dV, (B.21)
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where vectors ∆ge1
Mi

and ∆ge2
Mi

are equal to

∆ge1
Mi

=
(
λQ(Ni∇X)∇T

XQT + (µ+ ν)∇T
X(Ni∇X)I+ (µ− ν)Q∇X(Ni∇X)TQT

)
∆u

+
(
(µ+ ν)F(Ni∇X)
∧

− (µ− ν)QFTQ(Ni∇X)
∧)

∆φ, (B.22)

∆ge2
Mi

=
(
−(µ+ ν)NiF∇X

∧

+ (µ− ν)NiQ∇X

∧

FQT
)
∆u

+
(
αQ(Ni∇X)∇T

XQT + (β + γ)∇T
X(Ni∇X)I+ (β − γ)Q∇X(Ni∇T

X)QT

−(µ+ ν)Ni

(
FFT − tr(FFT)I

)
+ (µ− ν)Ni [m1 m2 m3]

)
∆φ.

(B.23)

By extracting the vector of incremental displacements and microrotations

and introducing the interpolation of the kinematic field increments defined in540

equation (B.15) into (B.21) and extracting ∆de
j we obtain

∆ge
Mi

=

nnode∑
j=1

KM
e
ij∆de

j , (B.24)

where the 6× 6 element block material stiffness matrix KM
e
ij follows as

KM
e
ij =

�
V

KM
e1
ij KM

e2
ij

KM
e3
ij KM

e4
ij

 dV, (B.25)

where the submatrices are

KM
e1
ij = λQ(Ni∇X)(Nj∇X)TQT + (µ+ ν)(Nj∇X)T(Ni∇X)I

+ (µ− ν)Q(Nj∇X)(Ni∇X)TQT (B.26)

KM
e2
ij = (µ+ ν)F(Ni∇X)
∧

Nj − (µ− ν)QFTQ(Ni∇X)
∧

Nj , (B.27)

KM
e3
ij = −(µ+ ν)NiF(Nj∇X)
∧

+ (µ− ν)NiQ(Nj∇X)
∧

FQT, (B.28)

KM
e4
ij = αQ(Ni∇X)(Nj∇T

X)QT + (β + γ)(Nj∇T
X)(Ni∇X)I+ (β − γ)Q(Nj∇X)(Ni∇T

X)QT

− (µ+ ν)NiNj

(
FFT − tr(FFT)I

)
+ (µ− ν)NiNj [m1 m2 m3] .

(B.29)
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Finally, the element stiffness matrix is the sum of geometric and material stiff-

ness block matrices in the following form545

Ke =


[KM

e
11] + [KG

e
11] [KM

e
12] + [KG

e
12] · · · [KM

e
1n] + [KG

e
1n]

[KM
e
21] + [KG

e
21] [KM

e
22] + [KG

e
22] · · · [KM

e
2n] + [KG

e
2n]

...
...

. . .
...

[KM
e
n1] + [KG

e
n1] [KM

e
n2] + [KG

e
n2] · · · [KM

e
nn] + [KG

e
nn]

 ,
(B.30)

where n in (B.30) represents the number of nodes on the element.
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Appendix B.2. Matrix Fe

First we introduce the block matrix Faj which is [3× 6]:

Faj =
{
λQ(Ma∇X)(Nj∇X)TQT + (µ+ ν)(Nj∇X)T(Ma∇X)I+ (µ− ν)Q(Nj∇X)(Ma∇X)TQT, −QB(Ma∇X)

∧

Nj + 2λQ(Ma∇X)ℓTNj + (µ+ ν)F(Ma∇X)
∧

Nj − (µ− ν)QFTQ(Ma∇X)
∧

Nj ,
}

(B.31)

FT
aj =

 λQ(Ma∇X)(Nj∇X)TQT + (µ+ ν)(Nj∇X)T(Ma∇X)I+ (µ− ν)Q(Nj∇X)(Ma∇X)TQT

−QB(Ma∇X)
∧

Nj + 2λQ(Ma∇X)ℓTNj + (µ+ ν)F(Ma∇X)
∧

Nj − (µ− ν)QFTQ(Ma∇X)
∧

Nj ,

 [6× 3], (B.32)

where ℓ = ax(skew(FQT)), giving the element matrix:

Fe =

�
V


F11 F12 F13 F14 F15 F16 F17 F18

F21 F22 F23 F24 F25 F26 F27 F28

F31 F32 F33 F34 F35 F36 F37 F38

 dV, [9× 48] (B.33)
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Appendix C. Implemented algorithm550

In the 1st iteration (k = 1) we assume that the system is undeformed, i.e.

ue(1) = 0, Qe(1) = I, αe(1) = 0 ⇒ F = I, B = 0, G = 0, (C.1)

DO k = 1, 2, ..., niter:

� on the element level, given ue(k)

, Qe(k)

=
{
qe

(k)

0 ,qe(k)
}

compute αe(k)

using equation (32) as555

αe(k)

= He(k)−1 (
rα,e

(k)

+ qext,e,α(k)

− F̃e(k)

ue(k)
)
, (C.2)

� from the linearization of the element residual force vector and the incom-

patible modes residual, for ge,α (ue,Qe,αe) = 0 we obtain

Ke(k)

∆de(k)

+ Fe(k)T

∆αe(k)

= qext,e(k)

− qint,e(k)

, (C.3)

Fe(k)

∆de(k)

+He(k)

∆αe(k)

= 0, (C.4)

� next we perform the static condensation of the linearized form by express-

ing ∆αe(k)

from equation (C.4) as

∆αe(k)

= −He(k)−1

Fe(k)

∆de(k)

, (C.5)

and introduce it into the equation (C.3) to obtain560

(
Ke(k)

− Fe(k)T

He(k)−1

Fe(k)

)
∆de(k)

= qext,e(k)

− qint,e(k)

, (C.6)

where K̃e(k)

= Ke(k) − Fe(k)T

He(k)−1

Fe(k)

represents the condensed stiff-

ness matrix.
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� after static condesation of the incompatible-mode increment, we perform

the standard finite element assembly procedure and compute displacement

and rotation increments on the assembly level ∆d(k) =
〈
∆u(k) ∆φ(k)

〉T
,565

which is then used to provide the updated values of displacements, rota-

tions, strain tensor and curvature tensor

� update displacements:

u(k+1) := u(k) +∆u(k) (C.7)

� update orientation matrix:

In general, after obtaining the vector increment of the microrotation field570

∆φ(k) in the k-th iteration we form the corresponding quaternion incre-

ment as

q′(k)
∆φ =

{
q
(k)
∆φ, q

(k)
∆φ

}
=

cos

(
∆φ(k)

2

)
,

sin

(
∆φ(k)

2

)
∆φ(k)

∆φ(k)

 , (C.8)

where ∆φ(k) represents the norm of vector ∆φ(k), i.e. ∆φ(k) =
√
∆φ(k) ·∆φ(k).

The quaternion update is defined through the quaternion multiplication,

i.e.575

q′(k+1)
= q′(k)

∆φ ◦ q′(k) =
{
q
(k+1)
0 , q(k+1)

}
, (C.9)

where q′(k) =
{
q
(k)
0 , q(k)

}
is the quaternion obtained in the previous

(k−th) iteration. The updated quaternion is obtained as [20]

q′(k+1)
=
{
q
(k)
∆φ · q(k)0 − q

(k)
∆φ · q(k), q

(k)
∆φ × q(k) + q

(k)
0 · q(k)

∆φ + q
(k)
∆φ · q(k)

}
.

(C.10)

Next, we form the updated orientation matrix Qnew as

Qnew = (2q
(k+1)2

0 − 1)I+ 2q
(k+1)
0 q(k+1)
∧

+ 2q(k+1) ⊗ q(k+1). (C.11)
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� update Biot-like strain tensor E:

In order to update the Biot-like strain and curvature tensors E and K580

we have to compute the values of the displacement field and orientation

matrix at the integration points. For the deformation gradient F, these

values are easily obtained by finding the derivative of the interpolated

values in the corresponding Gauss point l as follows:

F = I+GRAD

nnode∑
j=1

Ni(ξl, ηl, ζl)ui +

3∑
a=1

Ma(ξl, ηl, ζl)αa

 (C.12)

= I+

nnode∑
j=1


ui1

ui2

ui3

⊗


∂Ni(ξl,ηl,ζl)

∂X1

∂Ni(ξl,ηl,ζl)
∂X2

∂Ni(ξl,ηl,ζl)
∂X3

+

3∑
a=1


αa1

αa2

αa3

⊗


∂Ma(ξl,ηl,ζl)

∂X1

∂Ma(ξl,ηl,ζl)
∂X2

∂Ma(ξl,ηl,ζl)
∂X3

 ,

(C.13)

and the values of the orientation matrix are obtained asQ = exp(∆̂φ)Qold585

where Qold represents the orientation matrix in the previous iteration.

Then, the current strain tensor is evaluated by substituting the obtained

matrices F and Q into equation (4).

� update Biot-like curvature tensor K:

In order to update the curvature tensor, we start by extracting the curva-590

ture vector Ki from K = [K1 K2 K3]. The curvature vector Ki is defined

as

Ki = ax(K̂i) = ax

(
QT ∂Q

∂Xi

)
. (C.14)

Next, we substitute Q = exp(∆̂φ)Qold into K̂i = QT ∂Q

∂Xi
and obtain

K̂i = QT
oldexp(∆̂φ)T

∂
(
exp(∆̂φ)Qold

)
∂Xi

.

We further obtain

K̂i = QT
oldexp(∆̂φ)T

∂exp(∆̂φ)

∂Xi
Qold +QT

old exp(∆̂φ)Texp(∆̂φ)︸ ︷︷ ︸
I

∂Qold

∂Xi
.
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Here, we recognize that QT
old

∂Qold

∂Xi
= K̂iold and obtain595

K̂i = QT
oldexp(∆̂φ)T

∂exp(∆̂φ)

∂Xi
Qold + K̂iold.

Next, we rewrite Qold = exp(∆̂φ)TQ and obtain

K̂i = QT exp(∆̂φ)exp(∆̂φ)T︸ ︷︷ ︸
I

∂exp(∆̂φ)

∂Xi
exp(∆̂φ)TQ+ K̂iold

= QT ∂exp(∆̂φ)

∂Xi
exp(∆̂φ)TQ+ K̂iold.

After a lengthy, but otherwise straightforward algebraic manipulation of

the term
∂exp(∆̂φ)

∂Xi
exp(∆̂φ)T (presented in detail in [29]) we obtain

K̂i = QTH(∆φ)
∂∆φ

∂Xi

∧

Q+ K̂iold

= K̂iold +∆K̂i, (C.15)

where

H(∆φ) = I+
1− cos(∆φ)

(∆φ)2
∆̂φ+

∆φ− sin(∆φ)

(∆φ)3
∆̂φ

2
, (C.16)

and ∆φ represents the norm of the iterative change in the microrotation600

vector. Finally, by using the identity Q̂v = Qv̂QT ∀ v ∈ R3, Q ∈ SO(3),

we obtain the update of the material curvature vector as

Ki = QTH(∆φ)
∂∆φ

∂Xi
+Kiold. (C.17)

Finally, the update of the curvature tensor can be regarded as the update

of the three curvature vectors, i.e. K = [K1 K2 K3] where

K1 = QTH(∆φ)
∂∆φ

∂X1
+K1old, K2 = QTH(∆φ)

∂∆φ

∂X2
+K2old, K3 = QTH(∆φ)

∂∆φ

∂X3
+K3old,

(C.18)

which can be written as605

K = Kold +∆K

= Kold +QTH(∆φ)GRAD(∆φ). (C.19)
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� compute the residual for updated values and test convergence on the as-

sembly level:

IF ||g|| ≤ 10−16 ⇒ CONVERGED SOLUTION

ELSE ⇒ NEXT ITERATION
(C.20)

References

[1] R S Lakes. Size effects and micromechanics of a porous solid. Journal of

Materials Science, 18:2572–2580, 1983.610

[2] R Lakes. Experimental methods for study of Cosserat elastic solids and

other generalized elastic continua. Continuum Models for Materials with

Micro-structure, (1):1–22, 1996.

[3] R S Lakes. Physical Meaning of Elastic Constants in Cosserat, Void, and

Microstretch Elasticity. Mechanics of Materials and Structures, 11(3):1–13,615

2016.
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