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Abstract
1. The concept  of  ecological  interaction networks  has  been widely  used in  fundamental  ecology  in  the  last  two 

decades, and has progressively infused in a diverse array of applied studies. Classical studies represented species 
interactions  as  static  interaction  webs  to  identify  generalities  in  the  structure  of  ecological  networks  and 
understand the propagation of indirect effects of species on each other and the environment.

2. More recent research demonstrates that ecological networks are emerging features of community and interaction  
processes. Understanding the determinants of interaction variability in space and time and its consequences for  
biodiversity  dynamics  and  ecosystem  functioning  constitute  current  frontiers  in  ecological  network  science. 
Although  these  frontiers  meet  a  variety  of  applied  ecological  questions,  many  network  models  have  been 
developed without clear applied perspectives.

3. We detail how we could build on them to advance three main topics. First, the spatial dimension of ecological 
networks has direct implications for the design of sustainable landscapes and fisheries, for agroecology and for lake 
management. Second, the temporal dimension of ecological networks provides important insights for projecting  
biodiversity  changes  and  adapting  human  actions.  Third,  the  interactions  between  the  abiotic  and  biotic  
components of ecosystems constitute key drivers of biogeochemical cycles, thereby providing important levers for 
sustainable management.

4. Synthesis  and  applications: Collaborative  work  between  empirical  and  theoretical  network  ecologists  could 
accelerate the delivery of realistic models to inform applied practices across disciplines.
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Introduction

Applied questions in ecology have usually been addressed 
by  simple  population models,  which  consider  one or  two 
species at a time. Ecological systems are more complex and 
their functioning emerges from the multitude of direct and 
indirect  interactions  linking  dozens  of  species.  Memmott 
(2009)  highlighted  the  value  of  network  approaches  to 
describe  positive  or  negative  interactions  among  species. 
This approach for instance enables us to identify keystone 
species and to reveal the underlying mechanics of apparent 
competition,  apparent  mutualism  or  trophic  cascades 
(Lopezaraiza-Mikel  et  al.  2007,  Carvalheiro  et  al.  2008). 
These  early  applications  considered  “static”  ecological 
networks without any spatio-temporal variation in species 
interactions.

Since then, evidence has accumulated about the dynamics 
of ecological interactions, both in time (Sauve & Barraquand 
2020, Glaum et al. 2021) and space (Carstensen et al. 2016, 
Arantes  et  al.  2019).  These  findings  invite  approaching 
interaction  networks  as  emerging  features  of  dynamic 
community  processes  (Tylianakis  &  Morris  2017).  This 
modifies the way ecological networks might be mobilised for 
applications  from  purely  network-based  approaches 
(Memmott 2009), toward process-based modelling. We will 
here focus on three recent and ongoing developments of 
network  studies,  namely  1)  the  study  of  the  spatial 
dimension  of  ecological  interactions,  2)  the  study  of  the 
temporal  dimension of  ecological  interactions,  and 3)  the 
coupling of food webs with biogeochemical cycles. For each 
of  these  developments,  we  will highlight  the  linked 
perspectives for ecological applications.

Considering the spatial dimension of 
ecological interactions
Ecological interactions are spatially variable and influenced 
by multiple drivers.  Dispersal  limitation and differences in 
species’  environmental  niches  constrain  the  local 
assemblage  of  co-occurring  species,  leading  to  species 
spatial turnover and consequently to interaction turnover. 
Additionally,  foraging  choices  within  the  local  pool  of  co-
occurring species can also be variable across environmental 
gradients  (Tylianakis  &  Morris  2017)  or  due  to  historical 
contingency (Waser 1986),  leading to interaction turnover 
per  se  (sensu Poisot  et  al.  2012).  The other  way around, 
ecological  interactions  influence  species’  spatial 
distributions by affecting their local fitness and subsequently 
community assembly (Jabot & Bascompte 2012, Wisz et al. 
2013).  This  feedback  between  ecological  interactions  and 
spatial  dynamics  has  been  the  focus  of  a  number  of 
theoretical studies that provide insightful predictions for the 
conservation  of  biodiversity  and  biological  control  in  the 
context  of  agroecology  (Tixier  et  al,  2013,  Vinatier  et  al. 
2012, Fig. 1).

For  instance,  Fortuna  et  al.  (2013)  demonstrated  that 
habitat loss could lead to the sudden disassembly of animal-
plant mutualistic networks after a critical threshold of lost 
habitat.  This  new  body  of  knowledge  may  advance 
conservation  actions  by  helping  develop  early-warning 
indicators  of  catastrophic  shifts  taking  into  account 
ecological  interactions  (Dakos  &  Bascompte  2014).  More 
generally, the dependence of network structure to area and 
connectivity  is  increasingly  documented  and  understood 
(Galiana et al. 2018) and reveals that ecological complexity 
is  likely  to  increase  in  larger  and  well-connected  habitat 
patches  with  potential  beneficial  effects  for  ecosystem 
functionality (Li et al. 2022).

Fig.  1: Spatial dimension of ecological  interactions in an agroecological  context.  Predators control  pest populations 
thriving on crops (e.g. parasitoid wasps and aphids) and find refuge in the natural vegetation surrounding the field.
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Spatially-explicit ecological network models have proposed 
several  mechanisms  linked  to  spatial  heterogeneity  to 
explain  these  patterns.  For  instance,  connectivity  in 
environmentally  heterogeneous  landscapes  may  benefit 
biodiversity  thanks  to  two  complementary  mechanisms: 
rescue  effects  in  less  productive  habitats  and  drainage 
effects in productive ones (Ryser et al. 2021). Such spatial 
food web models have potential implications for landscape 
planning with the development of software tools to design 
sustainable  agricultural  systems  maximising  ecological 
functions  such  as  biological  control  or  pollination  (e.g., 
Malard et al. 2020). Focusing on the spatial flow of nutrients 
rather than organisms, Kramer et al. (2023) demonstrated 
interesting feedback between local food web processes and 
landscape-scale nutrient flows between connected lakes.

Spatial  heterogeneity  can  be  extended  to  the  spatial 
coupling  of  ecosystems  through  widespread  cross-
ecosystem  subsidies  between  habitats,  e.g. litterfall  from 
forest  to  stream ecosystems or  the emergence of  insects 
from  aquatic  to  terrestrial  ecosystems  (Gounand  et  al. 
2018).  Investigating  how  the  effect  of  these  subsidies 
propagate in food webs and may alter associated ecosystem 
services  such  as  pest  control,  pollination  or  nutrient 
regulation  constitute  important  applied  perspectives 
(McCann et al., 2020, Osakpolor et al. 2021).

Considering the temporal dimension of 
ecological interactions

Interaction networks  experience  temporal  changes,  which 
can be random due to stochastic events, or directed due to 

environmental or anthropogenic forcing. We focus on the 
latter category, a good example being the study of seasonal 
interaction rewiring in plant-pollinator networks (CaraDonna 
et  al.  2017).  Generalisation  of  such  studies,  however, 
requires understanding of the drivers of temporal changes 
in interaction networks, notably related to global changes. 
This  will  require  developing  mechanistic  models  to 
understand how temporal  environmental  variation and/or 
perturbations 1) affect each species and in turn propagate 
through the network, and 2) affect interspecific interactions 
(Tylianakis  et  al.  2008,  Schleuning  et  al.  2020).  Such 
advances are important for developing reliable projections 
of  biodiversity  changes  (Wisz  et  al.  2013)  and  adapting 
human actions accordingly.

Theoretical  works  have  investigated  how  perturbations 
propagate in ecological networks (e.g. Quévreux and Loreau 
2022).  They  have  shown  that  the  effect  of  perturbations 
depends on the biomass distribution among species and the 
trophic position of interacting species. One major dimension 
of global change is temperature alteration, whose effect on 
ecological  networks  is  particularly  challenging  since  it 
simultaneously  affects  various  components  of  food  web 
dynamics.  This  includes  the  demographic  rates  of 
individuals,  their  behaviour,  phenology,  but  also  their 
interaction rates and temporal mismatches (Bideault et al. 
2021).  These  effects  eventually  translate  into  altered 
network  structure  and  dynamical  parameters,  which  can 
propagate to changes in ecosystem functioning (Raatz et al. 
2019). For instance, Wollrab et al. (2021) demonstrated that 
gradual  changes  in  seasonal  forcing  can  lead  to  abrupt 
transitions between food web dynamical regimes. Ecological 
interaction  networks  thus  constitute  important 
improvement  pathways  for  projecting  changes  in 

Fig.  2: Temporal  dimension of  ecological  interactions in the context  of  fisheries.  Global  warming shifts the relative  
abundance of phytoplankton species, which alters resource availability for zooplankton and fish, and ultimately alters 
yields. Models enable us to project the future abundance of harvested species and improve the sustainable management 
of fisheries.
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biodiversity and ecosystem functioning in response to global 
change,  with  the  difficulty  to  keep  model  complexity 
tractable (Mouquet et al. 2015). In this regard, trait-based 
models of species interactions constitute interesting trade-
offs  by  offering  the  possibility  to  summarise  complicated 
interspecific  interactions with a  limited set  of  parameters 
(Schleuning et al. 2020, Bauer et al. 2021) and indications 
for possible adaptations (Klauschies et  al.  2016, Ehrlich & 
Gaedke 2020).

Alterations of food web dynamics due to global change may 
further  inform  decisions  by  modifying  the  exploitation 
potential of these multi-trophic communities (Fig.2). Using a 
fish food web model coupled to a biogeochemical model, 
Travers-Trolet et al.  (2020) evidenced that climate change 
projections  were  likely  to  induce  a  modification  of  the 
maximum  sustainable  yield  of  various  commercial  fish 
species.  This  work  therefore  enlightens  ways  to  adapt 
human  actions  in  response  to  climate  change,  and  to 
document  how  these  altered  human  actions  feedback  to 
ecosystem  dynamics.  Another  example  in  a  terrestrial 
system is  the work of  Barychka et  al.  (2021)  that  used a 
general  ecosystem  model  to  assess  bushmeat  harvesting 
sustainability in the Congo Basin together with its broader 
ecosystem impacts. The use of such ecosystem models for 
decision  support,  however,  faces  several  obstacles, 
including credibility issues, associated uncertainties, and the 
difficulty to communicate model results to decision-makers 
(Lehuta et al. 2016). The rapid ongoing advances to monitor 
entire  ecosystems  with  DNA-based  and  remote  sensing 
technologies  (e.g.  satellite  imagery)  should  enable  us  to 
build  credibility  and  decrease  uncertainties  of  ecological 
forecasts,  thereby  favouring  their  wider  use  for  decision 
support (Dietze et al. 2018).

Food webs and biogeochemical cycles
Animals  represent  a  very  tiny  proportion  of  the  Earth’s 
biomass (less than 0.5% according to Bar-On et al. 2018), so 
most  carbon  cycle  models  neglect  their  contribution 
(Schmitz  et  al.  2018).  However,  despite this  low biomass, 
they can importantly  alter  ecosystem functioning through 
their controlling role in energetic and nutrient fluxes (Barnes 
et al. 2018, Bianchi et al. 2021) and in the spatial coupling of 
ecosystems (Gounand et al. 2018, Fig.3). For instance, the 
consumer-driven recycling theory demonstrates how animal 
consumers  may  alter  the  nutrient  limitation  of  primary 
producers  (Daufresne  2021),  while  experimental  studies 
estimated  that  animal  consumers  account  for  dozens  of 
percent  of  litter  and  deadwood  decomposition  globally 
(Seibold  et  al.  2021;  García-Palacios  et  al.  2013). 
Understanding  how  ecological  interactions  in  food  webs 
impact  biogeochemical  cycles  is  therefore  of  potentially 
great importance for a number of sustainability issues. For 
instance, de Ruiter et al., (1994) estimated the contribution 
of soil organisms to nitrogen mineralisation by using a food 
web model taking field biomasses as inputs.

To  advance  on  these  applications,  a  new  generation  of 
ecosystem  models  is  required  to  couple  food  web  and 
nutrient  dynamics (Grimm et  al.  2017;  Filser  et  al.  2016). 
These  models  will  benefit  from  recent  advances  on  a 
number of complementary issues. Scaling theories based on 
body-mass and other functional traits provide ways to scale 
up  nutrient  fluxes  from  organisms  to  ecosystem  levels 
(Schramski et al. 2015, Barnes et al. 2018). Recent findings 
on the general  architecture of  soil  food webs are further 
advancing  our  understanding  of  the  multiple  channels  of 
energy  flows  in  the  soil  (Potapov  2022).  Besides,  the 
aboveground  food  web,  notably  large  herbivores,  has  a 

Fig.  3: Coupling  between  food  webs  dynamics  and  biogeochemical  cycles  in  an  agroecological  context.  Trophic 
interactions govern nutrient  mineralisation and soil  organic  matter decomposition,  which reduces fertiliser  use and 
promotes carbon storage in soil.
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likely  strong  impact  on  biogeochemical  fluxes  due  to 
consumer-driven  recycling  (Daufresne  2021).  From  a 
methodological  standpoint,  novel  databases  emerge  to 
document  food  web  interaction  potential  and  organism 
stoichiometry (e.g., Andrieux et al. 2021, Bloor et al. 2021), 
as well as tools to ease the computation of fluxes (Gauzens 
et  al.  2019).  Taken together,  these  advances  should  feed 
applications of innovative ecosystem models for carbon and 
nutrient management.

Conclusion
While theoretical works have prevailed for long in ecological 
network  research  due  to  data  scarcity,  next  generation 
monitoring tools are progressively changing the picture. We 
have  identified  the  spatial  and  temporal  dynamics  of 
networks  and  their  links  with  biogeochemical  cycles  as 
important  frontiers  for  contemporary  ecological  network 
research. Here, special attention can be paid to food webs in 
landscape  mosaics,  above-belowground  interactions,  and 
the inclusion of abiotic components to mechanistically link 
organismic interaction networks to biogeochemistry. These 
frontiers are central to many applied challenges for reaching 
sustainability and we believe that our perspective paper will 
inspire  more  communication  among  theoretical  and 
empirical ecologists to push this field of research forward.
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