Investigation of fully integrated power stage for piezoelectric DC-DC converters

Baptiste Gonon-Mathieu, Lucas de Araujo Pereira, Adrien Morel, Théo
Lamorelle, G. Despesse, Gaël Pillonnet

- To cite this version:

Baptiste Gonon-Mathieu, Lucas de Araujo Pereira, Adrien Morel, Théo Lamorelle, G. Despesse, et al.. Investigation of fully integrated power stage for piezoelectric DC-DC converters. PwrSoC 2023 - The Eighth International Workshop on Power Supply on Chip, Sep 2023, Hannovre, Germany. . hal-04421039

HAL Id: hal-04421039

https://hal.science/hal-04421039

Submitted on 27 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Investigation of Fully Integrated Power Stage for Piezoelectric DC-DC Converters

Baptiste Gonon-Mathieu ${ }^{1,2}$, Lucas de Araujo Pereira ${ }^{1}$, Adrien Morel ${ }^{3}$, Theo Lamorelle ${ }^{1}$, Ghislain Despesse ${ }^{1}$, Gaël Pillonnet ${ }^{1}$

${ }^{1}$ Univ. Grenoble Alpes, CEA, LETI, Grenoble, France,
${ }^{2}$ École polytechnique, Palaiseau, France
${ }^{3}$ SYMME, University of Savoy Mont Blanc, Annecy, France
Abstract - This work explores the potential of piezoelectric DC-DC converters as a viable alternative to inductive-based converters. Their exceptional frequency-scale property and planar shape make them highly promising. However, for seamless integration, it is crucial to incorporate the power stage into a single chip. By utilizing the most favorable piezoelectric material, namely LNO in thickness vibration mode, this study examines the achievable performance metrics such as efficiency, power density, and silicon surface area using a fully integrated power stage within a classical BCD technology.

PIEZOELECTRIC DC-DC CONVERTERS

Pro: scaling properties compared to magnetics, planar, soft-switching Cons: switches carry reactive power and block high-voltages Discrete demonstrations but no PMIC yet

Piezoelectric Resonator (PR)
Vibration mode : Thickness
Thickness sets the frequency range
Power is limited by the surface area $\left(\pi r^{2}\right)$

What if the power stage is integrated?
1 EFFICIENCY CHART FOR A GIVEN SI TECHNO

Sizing Methodology with example (denormalization)

$\begin{gathered} \text { Constraints } \\ I_{\text {out }}=1 \mathrm{~A} \\ \eta_{\text {min }}=90 \% \end{gathered}$	Find the optimal point 1 jout $=0.1 \mathrm{~A} / \mathrm{cm}^{2}$ $\mathrm{t}=1.5 \mathrm{~mm}$	Get PR radius $r=17.8 \mathrm{~mm}$	$\begin{gathered} \text { Get MOS } \\ \text { widths } \end{gathered} \mathrm{K}_{\text {out }} \frac{\mathrm{K}_{\text {in }}}{\mathrm{K}_{\text {sc }}}$
	ency chart $W_{i, o p t i}=$ Chart	$\begin{aligned} & I_{\text {out }}-1 \\ & \left(j_{\text {out }}, t, F o M\right) \\ & \text { t shown } \end{aligned}$	$\begin{aligned} & \text { MOS area } \\ & 1.36 \mathrm{~mm}^{2} \\ & <3 \% \text { S piezo }^{2} \end{aligned}$

FRAMEWORK

Loss mechanism and normalized optimization approach
 for a given input voltage, Silicon technology and piezo material \rightarrow optimize $\left\{\mathrm{t}, \mathrm{W}_{\mathrm{i}}\right\}$

2 Find the switch requirement to reach an efficiency target for a given VCR
\rightarrow Find the maximal $\left(\lambda_{R} \times \lambda_{Q} \times V_{G}\right)^{-1}$ switch FoM

Assumptions

Switch Parameters

Switching frequency: $\mathbf{F} \propto \mathrm{t}^{-1}$
Max PR current density scaling law: $\mathbf{j}_{\mathrm{L}, \max } \propto \mathrm{f}^{0.7}$ BVD model scaling law [3] with LNO: $\mathrm{R}_{\mathrm{m}} \propto \mathrm{t}^{2}$
λ_{R} On-state res. per width
λ_{Q} Gate charge per width
$W_{i} \quad$ Channel width
V_{G} Gate voltage

2 SWITCH REQUIREMENT FOR GIVEN EFFICIENCY

Highest switch
requirement

Reading example

(1) To achieve 90% efficiency at j_{o} max, $\mathrm{FoM}_{\mathrm{SW}}>3 \times 10^{10} \mathrm{~V}^{-2} . \mathrm{s}^{-1}$
(2) GaN reduces the losses by factor of 2, compared to BCD

Current Si technology limits the achievable efficiency (<90\%) GaN is preferred to fully exploit the piezo DC-DC potential

CONCLUSION

1) Even if the converter has soft-switching operations and the piezo has high quality factor, the driving loss and conduction loss are still presented. 2) As other resonant converter type, the conduction loss is magnified due to reactive current ($l_{\mathrm{L}}>\mathrm{l}_{0}$).
2) Piezo DC-DC requires high-quality switches (low specific resistance and low gate charge) not to be the limited factor.
Perspectives:
3) Open-source code available soon
4) PMIC allows easier phases control in VHF, one of the main challenge
