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According to embodied cognition theories, mathematical knowledge is grounded in actions with 

artefacts. Educational designers are seeking to identify what actions with mathematical artefacts 

could support the learning of this knowledge. Through logical-historical reconstruction, we answer 

the question: What actions and artefacts have historically constituted the logic of mathematical 

concepts’ development, and how might these support students’ development of 

mathematical knowledge? We use an example of data and distribution in histograms and 

trigonometry to illustrate this reconstruction. An answer to our question is that this analysis revealed 

that we might need to unpack several automatically generated artefacts including dotplots and pre-

given intervals (for histograms), and the (unit) circle and radians (for trigonometry). 

Keywords: Secondary school mathematics, statistics education, embodied cognition and design, 

histograms, trigonometry. 

Introduction 

The idea of embodiment, namely the involvement of bodily processes in cognitive processes, grounds 

a wide family of diverse approaches in cognitive and educational science, including mathematics 

education. Despite the diversity of historical sources and ontological and epistemological 

presumptions of those approaches, many point to actions as the source of knowledge, including 

mathematical concepts. From an enactivist perspective, cognition emerges from sensory-motor 

patterns to serve action (Reid, 2014). According to the objectification theory (Radford, 2021) the 

source of any human development is a practice that is unfolded in society through collaborative 

actions. From the perspective of ecological dynamics, learning can be captured as moving in an 

environment in new ways and perceiving new action possibilities (Abrahamson & Sánchez-García, 

2016). Even relatively conservative theories of grounded cognition, recently acknowledge the pivotal 

role of action (Walkington et al., 2022). The attention to actions as constitutive for knowing 

mathematics raises a fundamental question for educational designers of which actions are relevant 

for learners to grasp specific mathematical concepts. 

Theoretical framework: mathematics concepts as systems of reified actions 

In a platonic view of mathematical concepts as idealised timeless immovable forms, both actions and 

gestures might be expected to convey idealised forms or abstractions that are congruent to the 

concepts (Walkington et al., 2022). However, embodied and material approaches call for 

reconsidering the nature of mathematical concepts and drawing attention to the material-historical 

process in mathematical concepts formation (de Freitas et al., 2017). As scholars within socio-cultural 

approaches elaborate, cultural artefacts crystallise in history and reify specific actions (Radford, 2021; 

Shvarts & Alberto, 2021). For example, a spoon reifies an action of scooping: the spoon takes the 
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form most appropriate to facilitate such action. The idea of artefacts as reifying actions and 

crystallised from them, might be applied to formulas, visuals, and other mathematical inscriptions. 

This theoretical position suggests that educators need to focus on the relation between actions-to-be-

elicited and mathematical artefacts. However, visualisations and formulas in books and most of the 

objects in technological learning environments are given as static entities, ready for students’ 

inspection.  When these artefacts are presented as ready-made, students tend to incorporate them into 

their actions without questioning their functionality and historically embedded practices with them 

(Alberto et al., 2019).  

We hypothesise that, as educational designers, we need to question the static materiality of artefacts. 

This implies creating environments that promote such students’ actions and provide them with 

opportunities to reinvent mathematical artefacts. We call this part of the design process melting 

artefacts back into actions. This approach resonates with the ideas of quasi-investigation (Davydov, 

1988) and mathematics reinvention (Freudenthal, 1973) that prompt students to constitute 

mathematics that is meaningful to them through the process of discovery. 

To conduct the melting, one needs to distinguish which artefacts are critical for understanding a target 

concept and which actions those artefacts have reified. Assuming mathematics to be a historically 

formed practice, we turn to the concepts' historical formation (Davydov, 1988) and conduct a logical-

historical analysis. We suppose that such a “study of the historical development of a concept in 

relation to the phenomena that led to the genesis of that concept” (Bakker, 2004, p. 7) will support us 

in distinguishing which actions need to be elicited in students and inform the artefacts’ melting in the 

design process.  

We focus on specific mathematical concepts that have been the focus of two PhD studies of the first 

and second authors: (1) statistical data and distribution and (2) trigonometric functions. In both of 

these cases, melting artefacts was an important design heuristic (Shvarts & Alberto, 2021). We 

question: What actions and artefacts have historically constituted the logic of mathematical concepts’ 

development, and how might these support students’ development of mathematical knowledge?  

In this conceptual paper, we summarise our previous design attempts and reveal similar problems that 

students encounter across both topics. We further conduct logical-historical analyses for each topic 

and suggest design improvements based on this systematic reconstruction of historical development. 

Finally, we reflect on how logical-historical analysis might inform the practice of educational 

designers and support the melting of mathematical artefacts to foster their meaningful reinvention. 

Histograms 

Data and their distribution can be represented in graphs, including histograms. Given the persistence 

of histograms misinterpretations (e.g., Boels et al., 2019), it is worthwhile to reconstruct the logical 

history of these concepts embedded in the histogram artefact from a didactical viewpoint (Figure 1). 

Histograms are graphs of univariate data (e.g., students’ body height) in which each bar presents data 

from multiple cases (students) within a (body height) interval. In a histogram, the area of each bar 

presents the number of data points in each bar. When bins are equal, the height of each bar presents 

the number of cases. Paying attention in our design to the actions that could have constituted the 



 

 

concepts of data and distribution in histograms, led to a successful reinvention of the histogram 

artefact by students (Boels, 2023). In most statistics education software, horizontal scales and bars’ 

heights (vertical scale) in histograms are pregiven, hence, never questioned by the students. 

We now present a summary of our logical-historical reconstruction of histograms. In the 17th and 

18th centuries graphs were rare and “overshadowed by statistical tables” (Beniger & Robyn, 1978, 

p. 2). Bar graphs appeared long before histograms. Although William Playfair is often credited for 

introducing value bar graphs (time plots) in 1786 (Ioannidis, 2003), the oldest known bar graph is 

from Oresme (around 1350; e.g., Friendly, 2008). Histograms1 emerged in 1833 when Guerry 

created graphs of male suicides (Friendly 2008). Nowadays, histograms are used to present large 

amounts of data (Ioannidis, 2003). 

 

On the left: Logical-historical reconstruction of histogram as a component of data and distribution concept.                  

On the right:  Logical-historical reconstruction of unit circle and sine graph as components of the trigonometric function 

concept. The direction from bottom to top (blue arrows) represents the logic of historical development: crystallised 

artefacts and actions that have constituted the artifacts. The direction from top to bottom (red curved arrows) represents 

the educational designers’ work as they design environments that foster actions needed for a reinvention of the artefacts.  

Figure 1: Logical-historical reconstruction of the target mathematical concepts  

 

1  In this and the next section, all actions are bold and artefacts are in italics to facilitate the connection with Figure 1. 



 

 

Dotplots can be considered as intermediate artefacts in the evolution from tables to histograms.  

Dotplots were already in use in 1884 (Wilkinson, 1999), when data points were raised above the 

horizontal scale to visually present their amount, similar to value bar graphs. Pearson described 

graphs with dots as stigmograms. Binning data into classes (or: bins, buckets, intervals) is necessary 

for both constructing histograms and stacked dotplots (also called: (number)line plots, Bakker, 2004). 

Stacked dotplots and histograms share that data are binned into classes that correspond to intervals 

on a numerical scale. First histograms, like the one from Guerry, seem to have had equal intervals.  

Trying to understand the logical history of the dotplot artefact further, we come to the artefact 

horizontal scale or number line that allow presenting measured values using equidistant points for 

numbers. Although the concept of the number line emerged in the 20th century (Sinkevich, 2015), the 

idea of a coordinate system is much older and an equidistant (Cartesian) coordinate system was 

reintroduced in mathematics in 1637 by Descartes (e.g., Friendly, 2008). Moreover, equidistant 

number lines were in use already in 1644 by Langren. 

Given our logical-historical analysis, when designing for teaching histograms, we need to start with 

cases (our data) and scales and have students reinvent histograms from these. First, we asked students 

to place measured values (of cases) on a horizontal scale (measuring values). The software 

automatically generates a dotplot by raising the cases when values are close to each other (we 

programmed the tasks in Numworx, see https://embodieddesign.sites.uu.nl/). In the next task, 

students were asked to overlay a dotplot with a histogram by raising the bars’ heights’ (marking the 

number of cases for each interval, the intervals were pregiven). Our logical-historical 

reconstruction led us to have students question these artefacts. In addition, it made us realise that our 

design did not make students question the equal intervals artefact (binning cases) nor raise the cases 

when these are too close, as these actions were outsourced to the software. It is likely that students 

also need to reinvent the equal intervals to allow them to understand the idea of presenting data when 

intervals are unequal in density histograms. 

Unit circle and sine graphs 

In the natural sciences, surveying, abstract mathematics and other areas, the sine (and other 

trigonometric) functions and models play(ed) a significant role that influences human life. 

Trigonometric functions are modelled in various forms such as in the unit circle, triangles or the sine 

graph which essentially represent the ability to switch between measurement of angle and segment 

lengths (e.g., Van Brummelen, 2009).  Given the widespread use of these functions, it is important 

that students understand them well. 

Previous research on trigonometric functions however shows that despite educators' and publishers' 

best efforts, students seem to have trouble understanding and remembering these trigonometric 

concepts.  Students may ask, “If the sine of this [90°] angle here is 1, how can a bigger angle be less?” 

(Presmeg, 2006, p. 27). Our studies on the link between the unit circle and sine graph revealed several 

challenges when the (measured) models were supplied in ready-made form (e.g., Alberto et al., 2019). 

That is, while students were familiar with the contour of the sine graph (the wavy pattern), they were 

not always aware of how this graph came to be - a result of equivalency with the unit circle point's 

angle and segment height. Students also struggled with the radian-based measurement system used 
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in the sine function: they seemed to lack conceptual understanding of how to use the radius as a unit 

of measurement for both angle and segment height and instead used number matching to solve 

trigonometric equations. These and other student insights inspired us to reconstruct the logical history 

of the sine function and its model artefacts.  

Trigonometric functions (unlike linear functions) do not have an explicit formula for computing the 

output values for given input parameters, hence a variety of visual artefacts have been created, acted 

upon and transformed throughout history. As depicted in Figure 1, Hipparchus and his associates 

were the first to take a step toward trigonometric conversion in the second century BC to explain 

astronomical phenomena. They used so-called chord functions (e.g., Van Brummelen, 2009) which 

employed angles (formed by intersecting two lines) and chords (formed by connecting two points 

on a circle's circumference). The Greeks borrowed from the Babylonians the measurement system of 

degrees, cutting the circle's circumference into 360 equal sections and thus measuring the angles in 

degrees. They also used the diameter cut into 120 sections to measure the associated chords. The 

angle-to-chord conversions were calculated through various inscribed polygons by relating the 

angles measured in degrees and chords measured in pieces of diameter and stored in chord tables 

(e.g., Van Brummelen, 2009). 

The tables of chord function artefact was transformed by Indian astronomers in the 3rd to 5th century 

AC (e.g., Van Brummelen, 2009). They started to favour half-chords in which the angles and chords 

were cut in half (see Figure 1). This resembles our modern sine measurements.  A next key insight 

was that—since the (half)chord function connects two measurements (an angle and a chord)—it 

would be preferable to measure them both in the same unit. In their first attempt, they measured both 

in degrees, meaning that the measurement of half-chords (but not angles) was changed 

(Ramasubramanian, 2019). However, degrees (or minutes) cannot be utilized as a measurement in 

other contexts.  

Therefore, the radius was introduced to measure the angles instead of a degree measure (radian 

measure of an angle). Although often credited to Roger Cotes in his paper Logometria, it was already 

in use by, for example, Euler. Through relating radians and half-chords, the tables of sine could be 

built. The use of radians for angular measures advanced calculus for example by easing derivative 

calculations. Thomas Muir and/or James Thompson coined the term “radian” (radial angle; ca. 1870). 

As translated by Hairer and Wanner (2008), Euler explained: “We let the radius, or total sine, of a 

circle be equal to 1, then it is clear enough that the circumference of the circle cannot be expressed 

exactly as a rational number” (p. 101). For radius one, the circumference would be 2π and an arc 

length like 45° becomes π/4. After orienting a circle with radius 1 in a particular way, a unit circle 

appears to be a comfortable way to present trigonometric relations visually. The sine graph plots the 

sine function from the unit circle into a Cartesian plane. The graph plots the angle as a distance on 

the x-axis, and the half-chord length as the y-coordinate in the plane. The origin of the sine graph 

might be attributed to Dürer who projected a 3D spiral of stairs on a 2D plane (Dürer, 1525). This 

wavy graph does not use radians as the x-axis and does not use a unit circle idea; consequently, it 

needs scaling along both axes. The first use of a modern sine graph is unknown. 



 

 

The logical-historical reconstruction of the sine function models—and actions that created them—

highlights that our modern artefacts emerged from a protracted series of transformations. From a 

didactical viewpoint, this research may provide us with ideas for design alternatives for presenting 

the sine function in its finished, ready-made form. For instance, trigonometry lessons could include 

environments that foster (1) cutting angles on a circle and measuring them in degrees and radians, (2) 

enacting angle-to-length conversions in variously sized circles, (3) reinventing the advantages of a 

unit circle, namely a circle with radius 1 and special orientation, and (4) hands-on activities on 

discovering the (advantageous) practice of using radius as a unit of measurement.  

Conclusion and discussion 

We presented an attempt of a logical-historical reconstruction of mathematical concepts. We focused 

on the artefacts and reconstructed the actions that could have produced those artefacts (Figure 1) 

because we share the belief that mathematical concepts emerge in the historical evolution of material 

culture (de Freitas et al., 2017). We compared the historical analysis with actualized learning designs. 

Some of those actions were evident to us before systematic logical-historical analysis and supported 

the design of our embodied activities (Boels, 2023). In these activities, we did not present ready-made 

artefacts to the students; instead, we created technological environments (fields of promoted actions), 

where students’ actions were constrained or fostered by continuous feedback (Abrahamson & Trinic, 

2015). As students would discover new (for them) forms of actions, they would reinvent the target 

artefacts. Empirical analysis suggests, that when artefacts appear as an outcome of such promoted 

actions, students easily grasp them and their position within a broader structure of mathematical 

knowledge.  

At the same time, other actions we did not notice before conducting this logical-historical analysis. 

As a result, many aspects were still embedded into our technological environments as features of 

ready-made artefacts. Based on the conducted analysis we would now melt down more artefacts. For 

histograms this could mean unpacking automatically generated dotplots and pre-given intervals, and 

for trigonometry the (unit) circle and radians. 

In historical evolution, there are inevitably some branches—actions and artefacts—that are no longer 

in use or have been supplemented by more advanced forms and notations. It is an open question which 

of these are needed for students’ reinvention. For example, measuring both the angle and chord in 

degrees might not be needed, but perhaps students would benefit from inventing chord functions 

(easier to calculate!) before trigonometry functions.  

Another open question is to which degree melting is valuable when designing for the students at a 

particular point in the school curriculum. For example, for introducing a circle, it seems valuable to 

melt it down to drawing with a string or compass, but for trigonometry, it is most likely redundant. 

At the same time, students’ difficulties in understanding data in histograms reveal the need to come 

back to placing variables on a number line. Clear guidelines on when melting is sufficient is a future 

direction of research and is partly situated depending on teaching aims and students’ preferences.  

Reflecting on our design process, we note that for our first designs, reading historical literature served 

as inspiration. In combination with empirical evidence of students lacking understanding due to 



 

 

facing ready-made artefacts, it made us question each mathematical artefact that we previously had 

been taking for granted. Conducting a systematic logical-historical analysis highlighted which crucial 

actions and artefacts might still be lacking in our designs. A logical-historical analysis is not easy as 

it requires (hard-to-find) historical sources and quite some mathematical content knowledge. 

However, it has the advantage of providing specific solutions to students’ persistent difficulties and 

diminishing the number of design and try-out cycles that might alternatively be needed to uncover all 

those difficulties. To conclude, we hope that melting artefacts back to actions might be a useful 

metaphorical heuristic for transforming static mathematical environments into fields of promoted 

actions.  Logical-historical analysis might be an instrument in revealing which artefacts need to be 

melted and which can be fostered so that the students constitute meaningful mathematical knowledge. 
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