
HAL Id: hal-04420651
https://hal.science/hal-04420651v1

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realistic morphological models of weakly to strongly
branched pore networks for the computation of effective

properties
Léo Moutin, Joane Meynard, Marc Josien, Michel Bornert, Christelle Duguay,

Frédéric Adenot, Vincent Bouineau, Laurent Fayette, Renaud Masson

To cite this version:
Léo Moutin, Joane Meynard, Marc Josien, Michel Bornert, Christelle Duguay, et al.. Realistic morpho-
logical models of weakly to strongly branched pore networks for the computation of effective properties.
International Journal of Solids and Structures, 2023, 275, pp.112249. �10.1016/j.ijsolstr.2023.112249�.
�hal-04420651�

https://hal.science/hal-04420651v1
https://hal.archives-ouvertes.fr


International Journal of Solids and Structures 275 (2023) 112249

A
0

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Realistic morphological models of weakly to strongly branched pore
networks for the computation of effective properties
Léo Moutin a, Joane Meynard a, Marc Josien a, Michel Bornert b, Christelle Duguay a,
Frédéric Adenot a, Vincent Bouineau a, Laurent Fayette a, Renaud Masson a,∗

a CEA, DES, IRESNE, DEC, Cadarache, F-13018 Saint-Paul-lez-Durance, France
b Laboratoire Navier, Ecole des ponts, Univ. Gustave Eiffel, CNRS, 6-8 avenue Blaise Pascal, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex, France

A R T I C L E I N F O

Keywords:
Porous solids
Pore network
Inter-granules Porosity
Morphological descriptors
Virtual microstructures generation
Thermal conductivity
Homogenization
Representative volume element
FFT computation
UO2 ceramics

A B S T R A C T

We provide a detailed expository report of a new methodology aiming at building a numerical model of
the complex pore distribution of porous UO2 ceramics, tunable to real materials, in view of computing their
effective thermal behavior. First, based on 2D optical microscopy images, we characterize the material of
interest, dedicating a special attention to the porous network because of its major influence on the thermal
behavior. Following Meynard et al. (2022), we then propose a simple morphological model combining a
Voronoi tessellation and a boolean model, involving a limited number of parameters, from which 3D virtual
microstructures (and so 2D cross-sections) can be generated. These parameters are tuned in order to select
within our class of models the microstructures that are the most representative of the real ones ; in practice,
this optimization process minimizes a cost function based on morphological descriptors computed from the
2D cross-sections. Last, we perform 2D full-field thermal simulations on cross-sections through Representative
Volume Elements of both the numerical and the experimental microstructures. We validate our approach by
qualitative and quantitative comparisons relative to both global properties and local field statistics.
1. Introduction

Knowledge of the physical behavior of solids is essential to pre-
dict the phenomena involved during their life of use. This behavior
strongly depends on their microstructural characteristics. In particular,
for porous solids, the pore geometry should be precisely characterized
because it determines their physical properties and in particular their
thermal and mechanical behaviors (Torquato and Haslach, 2002). The
materials studied here are uranium dioxide (UO2) ceramics obtained
by sintering a powder of multi-crystalline granules. They differ from
the standard UO2 ceramics used in nuclear power plants as they could
show a strongly extended porous network. The effect of porosity on the
physical properties has already been studied extensively for standard
UO2 ceramics, but remains relatively unknown for the ceramics of
interest. Initial work has been conducted to characterize this porosity.
More precisely, it was shown in Meynard (2019) that pores observed
in these ceramics are not randomly distributed all over the material
since many of them are located at the interfaces between granules.
For this reason, this latter part of the porous space is referred to as
inter-granules porosity. By modeling this porosity by cracks, it was
also shown that this particular spatial distribution of pores has an
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important influence on the thermal behavior of the considered porous
solids (see Sevostianov and Kachanov, 2019; Meynard et al., 2022).

To characterize a material microstructure, it is necessary to observe
it on a scale representative of the features constituting it. Many imaging
methods allowing different perspectives can be used. One may distin-
guish methods giving access to cross-sectional images (2D imaging)
such as the optical microscopy (Remy et al., 2014) and methods giving
access to volumetric images (3D imaging) such as the Focus Ion Beam
Scanning Electron Microscopy (FIB-SEM, Dowek et al., 2021) or the
X-ray computed tomography (Salvo et al., 2003). We study here 2D
sections of the ceramics of interest obtained by optical microscopy as
it gives access to large domains which provide a statistically repre-
sentative description of the microstructure. It would not be the case
for FIB-SEM acquisitions which are limited in size neither for X-ray
tomography acquisitions that remains also limited in volume for very
dense materials like UO2 (10.96 g/cm3) because X-ray transmission is
very low.

Mathematical morphology is a discipline of image processing initi-
ated by Matheron (1967) and Serra (1982) which is based on the use
of structuring elements to define morphological properties of objects.
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In Coster and Chermant (1989), a method is introduced to reduce
objects to their skeletons (i.e. a one pixel wide representation of each
object which preserves its extent, orientation, and connectivity). This
method is valuable in our case as it allows to associate the porous
network to a crack network, thus highlighting its first order impact
on the thermal behavior of ceramics and simplifying its description.
Different tools can then be used to characterize such crack network.
The length of the intercepts (Abrams, 1971) is used to assess the
density and the orientation of the network while Matheron’s granulom-
etry (Matheron, 1967) provides a methodology to characterize the size
distribution of inter-porous spaces. By extracting relevant information,
a geometrical description of the microstructure of the studied ceramics
can be obtained.

In some cases it is impossible to obtain data, especially in 3D, on a
real material either because the experimental techniques do not allow
it or because the material is too expensive to handle or to manufacture.
It may then be interesting to use a virtual material. In this case, it is
necessary to develop a virtual microstructure model that is as represen-
tative as possible of the real material. A major principle in the study
of heterogeneous materials is the reduction of the study volume to a
representative volume element (RVE) which is the smallest volume that
is statistically representative of the material properties. Thus, a way of
studying heterogeneous materials is to reproduce numerically, as accu-
rately as possible, a RVE (Kanit et al., 2003) of their microstructure.
These virtual RVE are then used to calculate effective properties such
as the thermal conductivity or elastic moduli by full-field simulations.

An overview of possible methodologies to generate virtual mi-
crostructures is presented in Bargmann et al. (2018). The first of the
three main families of microstructure generation methods identified by
these authors is based on direct reconstruction of the microstructure
from experimental images. The second one is based on the simulation
of the manufacturing process of the material. The third and last method,
which is the one adopted in this work, is based on the use of probabilis-
tic approaches to generate random microstructures like a dispersion of
particles (stochastic point processes), granular structures (random tes-
sellations of space), etc. The development of these generation methods
was notably led by Jeulin (2000). These methods are still motivating
new works as for example Neumann et al. (2020) who tested the
response of random virtual microstructures generated using the graph-
based models of random structures introduced in Gaiselmann et al.
(2014) or Gasnier et al. (2018b) who simulated the effective elastic
behavior of virtual microstructures obtained by cracking some grain
facets of a Johnson–Mehl tessellation. Using the same probabilistic
methodology, a first model of the thermal barriers affecting the UO2
eramics under consideration was derived in Meynard et al. (2022)
y superimposing a Voronoi tessellation modeling the inter-granules
etwork with a random dispersion of overlapping spheres. Various
andom microstructures with porosities located at the interfaces be-
ween granules were generated in this way and rather wide ranges of
ffective thermal properties were computed for similar overall porosity
evels, showing the strong influence of the pore morphology for such
aterials. The challenge is now to specify how the parameters used

o generate such microstructures need to be chosen to obtain realistic
irtual microstructures and, more precisely, to quantify how represen-
ative of the real ceramics of interest these virtual microstructures can
e, in order to optimize this choice of parameters.

Altendorf et al. (2014) addressed this question of generating virtual
icrostructures that are as representative as possible of real ones by
etermining key material properties (fiber curvature, orientation and
istribution) from 3D tomography images. These key material proper-
ies were then used as input parameters of the virtual reconstruction.
n Hsu et al. (2021), a learning algorithm is developed to generate
andom microstructures that are topologically close to microstructures
rom a database made up of 3D Xe Plasma FIB-SEM images. Here, we
ake use of a more direct approach based on an automatic optimization
2

f the parameters of the generation method introduced in Meynard
et al. (2022). This optimization relies on the characterization of 2D
cross-sections of the ceramics of interest obtained by optical microscopy
to extract some characteristics of the porous network (orientation,
density, size distribution of inter-porous space) and generates virtual
microstructures that mimic these characteristics.

The objective of this work is to model 3D microstructures from 2D
cross-sectional images in order to simulate their effective 3D properties,
especially their effective conductivity. The paper is organized as fol-
lows. In Section 2, we present the studied UO2 ceramics as well as the
image acquisition and processing methods developed to characterize
their microstructures. In particular, we introduce a laboratory-made
code developed to evaluate the length of skeletonized objects (Abrams,
1971), named Crackcut. We then recall, in Section 3, the main lines
of the method of generation of microstructures proposed by Meynard
et al. (2022) and introduce the new optimization process. Finally,
in Section 4, we propose an original way to evaluate the ability of
the generated virtual microstructures to reproduce faithfully effective
thermal properties by simulating the thermal behavior of cross-sections
of these microstructures, on the one hand, and the processed optical
microscopy images of the cross-sections of the real studied materials
on the other hand, and by comparing the results in detail. The Fast
Fourier Transform (FFT) method initially proposed by Moulinec and
Suquet (1998) and widely used to simulate the thermal and mechanical
behavior of various materials (Altendorf et al., 2014; Bluthé et al.,
2021) is adopted to perform these simulations.

2. Studied material description and characterization

We consider in this study uranium dioxide ceramics whose porous
network varies noticeably according to the manufacturing conditions.
This porous network is made up of inter-granules pores as stated in the
introduction but also of intra-granules pores which can be highlighted
at a much smaller scale. We focus here on the inter-granules pore
network as it plays at the first order on the degradation of the thermal
conductivity. Even though the proposed characterization method is ap-
plied here to a particular material, it is however general and applicable
to many other situations and materials in which a porous network of
the type considered here is found, for example an inter-granular porous
network in metals.

2.1. Material

Uranium dioxide is the usual fuel used in nuclear pressurized-water
reactors. This ceramic material is manufactured using a standard pow-
der metallurgy dry-route process (Delafosse and Lestiboudois, 1976;
Bailly et al., 1996) which involves different steps including:

– A pre-compaction operation (at a pressure 𝑃𝑝𝑟𝑒𝑐) followed by a
granulation stage that are performed to increase the flowability
of the UO2 powder.

– A shaping step performed by uniaxial die pressing (at a pressure
𝑃𝑝𝑟𝑒𝑠𝑠).

– A sintering stage that allows to consolidate the obtained materials
and reach the required density.

In this protocol, the pre-compaction pressure is lower than the
ressing pressure (𝑃𝑝𝑟𝑒𝑐 < 𝑃𝑝𝑟𝑒𝑠𝑠). In the prospect of investigating the
nfluence of the porous network on the thermal behavior of UO2 ce-

ramics, an alternative process is considered in this article in which the
pre-compaction pressure is higher than the pressing pressure (𝑃𝑝𝑟𝑒𝑐 >
𝑃𝑝𝑟𝑒𝑠𝑠) (François and Gremeret, 1968). This alternative process favors
the formation of an extended inter-granules porous network in the
obtained UO2 ceramics (Meynard, 2019).

Several ceramics were manufactured with this alternative process
in order to characterize this inter-granules porosity and to evaluate its
influence on the thermal behavior of the ceramics. The manufacturing

conditions were tuned to obtain samples over a wide range of porosity.
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Table 1
Volume fraction of open porosity (𝑐𝑜) related to the
studied ceramics.
Ceramics 𝐶1 𝐶2 𝐶3 𝐶3∗

c𝑜 (%) 0.9 1.1 3.45 3.45

Among these samples, four were selected to cover the considered
porosity range. These samples are called ‘‘reference ceramics’’ hereafter
by opposition to the virtual ones considered later.

The open porosity of each reference ceramic was experimentally
measured by immersion in a wetting liquid (Pinot, 2015); here the
bromobenzene liquid was used. Due to their slender shape, interconnec-
tions of inter-granules pores in the volume are expected and therefore,
the open porosity is roughly well correlated with the inter-granules
porosity. The reference ceramics are denoted 𝐶𝑘 with 𝑘 ∈ {1; 2; 3; 3∗}
in the following and are ordered from the lowest to the highest open
porosity volume fraction ( Table 1). Ceramics 𝐶3 and 𝐶3∗ have the same
open porosity volume fraction but their inter-granules porosities and
thermal behaviors differ as explained in next sections.

To evaluate the characteristics of the inter-granules porous network,
optical microscopy images were acquired on these ceramics. Details
on the image acquisition and processing method are given in the next
section.

2.2. Image acquisition and processing methods

Images of cross-sections of the studied ceramics were captured by
optical microscopy. This technique provides 2D images from which a
quantitative characterization of the porous network of ceramics can
be performed. One of its main advantages is the relative simplicity
to capture images (as opposed to other methods of image acquisition,
particularly in 3D) which makes it possible to study a large number
of microstructures. However, the 2D nature of the obtained images
induces the loss of the 3D features of the porous network.

The preparation of the samples consists of a cutting step with a
wire saw and a polishing of the surface. The cuts are made through
a plane parallel to the pressing direction. In the following sections,
the horizontal axis of the obtained images is referred to as the 𝑥
axis and the vertical axis, which is parallel to the direction of the
uniaxial die pressing, as the 𝑦 one. The protocol was optimized to
limit as much as possible the UO2 grains pulling out during the sample
preparation (which could bias the characterization performed after-
wards) in particular by resin-impregnating with an Epoxy resin the
ceramics prior to cutting. The acquisition of images was carried out
with an Olympus DSX500 opto-numerical microscope equipped with
a CCD color camera with an image definition of 1688 × 1248 pix2.
Large regions of interest (ROIs) of the materials can be imaged by
means of the automatic stitching of several images produced by the
digital camera: more precisely 8 images along the 𝑥 direction have been
combined to produce one large image.

We used the same acquisition and lighting conditions for all images
to ensure reliable comparisons between samples. The optical magnifi-
cation was about 3x with a numerical aperture of the objective lens,
reference MPLFLN5XBDP, of 0.15, resulting in physical pixel size of
1.52 µm/pixel. Illustrative views of local areas of the investigated ROIs
are presented in Fig. 1 for the four considered materials.

It clearly appears that when the volume fraction of the open porosity
increases, the amount of inter-granules pores observed on the optical
images increases as well. More precisely, the inter-granules pores seem
to be more extended and branched. Also, even if 𝐶3 and 𝐶3∗ present
the same open porosity volume fraction, the observed inter-granules
pores show clearly different features. Indeed, compared to 𝐶3, the
porous network of 𝐶3∗ seems to show a more pronounced preferred
orientation along the horizontal axis (in the optical microscopy images)
3

which would result from the pressing step carried out during the
manufacturing process.

Once the image acquisition is done on a given microstructure,
several processing steps are necessary to clearly isolate the objects
of interest that are, in our case, the inter-granules pores. Our image
processing protocol consists of four main operations, to go from a raw
image obtained by optical microscopy to a skeletonized image. The
skeletonization allows a simple description of the porous network as
a network of ‘‘cracks’’, i.e. objects with no thickness, described by
one-pixel-wide lines in binary images. It also allows us, by neglecting
the porosity thickness, to limit the impact of the potential pullouts
produced during the preparation of the samples. The four steps of our
protocol, illustrated in Fig. 2, are the following:

– A thresholding of the 8-bit grayscale images (on which 0 corre-
sponds to black and 255 to white) to binarize the images (Burger
and Burge, 2008). The threshold value is set to 𝑆 = 𝐻𝑚𝑒𝑎𝑛 − 27
where 𝐻𝑚𝑒𝑎𝑛 represents the average grayscale intensity over the
whole image and S is such as the pixels below this value are
labeled black and the ones above are labeled white. This thresh-
old value was chosen as it provides an appropriate separation
between the matrix and the inter-granules porosity based on their
intensities on the gray-scale histogram.1 After this step, the black
objects in the image depict the inter-granules porosity. Note that,
since the acquisition conditions are identical for all the images
and the pore volume fractions are low (< 5 %), we have very
low gray level fluctuations from one image to another. Using a
threshold depending on the considered image (through H𝑚𝑒𝑎𝑛)
rather than a fixed threshold allows nevertheless to get rid of
possible small variations in images brightness.

– An elimination of objects which are not inter-granules pores, such
as surface defects related to the polishing process, image artifacts
or elements on the ceramic microstructure present at a scale
lower than the one of the inter-granules porosity, including in
particular smaller intra-granules pores. To do so, we remove from
the images the connected components that have a circularity2

higher than 𝑅𝑐𝑖𝑟𝑐 = 0.4 as they do not present the slender
shape characteristic of the inter-granules porosity. This value was
found to offer the best compromise between the elimination of
unwanted objects and the preservation of inter-granules pores.
This step allows us to keep only the crack-like type objects which
are associated with the inter-granules porosity.

– A morphological closing of the remaining slender enough objects
in the resulting binary image with a disk of radius 𝑟 = 5 pixels act-
ing as the structuring element.3 This pre-processing is necessary to
smooth out the roughness of elements on the binarized image and
thus guarantees a skeletonization giving a representative image of
the inter-granules porosity. The morphological closing is obtained
by a dilation followed by an erosion with the same structuring
element. The radius of the disk was chosen after a study of the in-
fluence of this parameter on the ultimately obtained skeletonized
image, 𝑟 = 5 having proven to provide the best result in terms of
keeping the porosity shape and connectivity. Beyond this practical
point of view, it should be emphasized that the choice of this
size of structuring elements introduces a length scale into the
proposed image processing. This length is the one at which the
inter-granules pores act as local thermal barriers at the granules
scales. Smaller details relative to the structure of inter-granules

1 Alternative methods as the one proposed by Otsu (1979) have been tried
ut remain poorly adapted to the slender objects considered here.

2 Ratio of the area of an object to that of a circle of equivalent diameter.
e evaluate the circularity with the Analyze Particles function of ImageJ. The

ormula to calculate the circularity is 𝑅𝑐𝑖𝑟𝑐 = 4𝜋 𝑎𝑟𝑒𝑎
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

which gives 𝑅𝑐𝑖𝑟𝑐 = 1
when applied to a perfect circular object.

3 The morpholibJ plug-in is used for this operation (Legland et al., 2016)
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Fig. 1. Enlarged views (2048 × 1100 pix2, i.e areas of about 3.1x1.7 mm2)) on the raw optical microscopy images obtained on the reference ceramics: 𝐶1 (top left), 𝐶2 (top right),
𝐶3 (bottom left) and 𝐶3∗ (bottom right).
Fig. 2. Illustrations of the four processing operations used to transform a raw image of the reference ceramics obtained by optical microscopy into a skeletonized image of their
inter-granules porosity. From left to right: initial image, thresholding, elimination of unwanted objects based on the circularity of connected components in the binary image,
smoothing of the edges of the pores by a morphological closing of appropriate size and skeletonization of the resulting objects.
pores are unnecessary to describe their effects at granule scale,
while smoothing over a larger scale might have hidden some local
phenomena within grains.

– And finally, the skeletonization of the image can be processed,
that is to say the reduction of the thickness of the objects to 1
pixel (Coster and Chermant, 1989). In the following, the skele-
tonized inter-granules pores will be referred to as ‘‘cracks’’.

The obtained skeletons provide a concise description of the inter-
granules pores observed on the raw optical images in terms of extent,
orientation and connectivity (Fig. 2). Thus, the use of the skeletonized
images is of interest in this study since the topological ‘‘skeleton’’
encodes the main geometrical features of the porous network. From
these images, it is possible to extract different quantities that are
significant of the state of the inter-granules porous network. The left
column of Fig. 3 shows the skeletonized images obtained from the
different reference ceramics. For the sake of readability of the images,
the skeletons have been dilated with a diamond-shaped structuring
element of 2 pixels. The skeletonized images confirm that the inter-
granules pores become more extended and branched as the volume
fraction of the open porosity increases.

2.3. Microstructural characterization

We seek here to statistically describe the microstructure of the ref-
erence ceramics. Five descriptors were selected to quantify the density
of the network, the spatial distribution of cracks and their lengths.
4

2.3.1. Pore network density, anisotropy and interpore size distribution
We are primarily looking to characterize the density of the crack

network of the ceramics by evaluating how extended it is. For this pur-
pose, the first selected descriptor is the length of the intercepts (Abrams,
1971; Thompson, 1972). It quantifies the spacing between two cracks in
a given direction based on the number of cracks intersected by a line of
specified length and orientation. For an isotropic microstructure, any
direction can be chosen for the line. Hence, we quantify the density
of the crack network by calculating the statistical distribution of the
intercept lengths along 𝑥.

We can note that, since this quantity depends on the orientation
of the drawn lines, by choosing well this orientation it allows us to
account for the possible anisotropy of the studied microstructures.
Although this dependency should ideally be fully explored by testing
all orientations, in our case the approach can be simplified by simply
comparing the results along 𝑥 and 𝑦 since the manufacturing process
is symmetrical with respect to these two directions (notably because
𝑃𝑝𝑟𝑒𝑐 and 𝑃𝑝𝑟𝑒𝑠𝑠 are imposed along 𝑦). Thus, we evaluate the anisotropy
of 𝐶3∗ by studying the statistical distribution of the ratio of the intercept
lengths along 𝑥 and 𝑦. The precise quantity considered to quantify this
anisotropy will be defined later. In the case of an isotropic ceramic
(random orientation of cracks) the intercept lengths along 𝑥 and along
𝑦 are equal and the ratio then tends towards 1.

Another feature which provides interesting information on the state
of the crack network is the size distribution of inter-porous spaces.
To assess the latter, we use a quantity that is based on the principles
of Matheron’s granulometry (Matheron, 1967). G. Matheron laid the
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Fig. 3. Enlarged views (2048x1100 pix2) on the skeletonized images of the reference microstructures (left column) and of the tuned microstructures (right column, see part 3.2.3).
From top to bottom: 𝐶1, 𝐶2, 𝐶3 and 𝐶3∗ . The pixel size is 1.52 µm/pixel.
foundations of mathematical morphology and in particular introduced
the concept of size using openings4 by convex structuring elements to
evaluate the size distribution of objects present in a binarized image.
In our case, the structuring element considered is the simplest possible,
i.e. the circle, since it does not introduce any anisotropy. Thus, we
characterize the spatial distribution of cracks by evaluating the size
distribution of the radius of the largest circles that can be inserted
between the cracks.

2.3.2. Crack length
The crack length is also an important characteristic as it gives an

idea of the extent of the thermal barriers present in the material.
However, as it can be seen in Fig. 3, pores are interconnected and thus
the definition of their length (based on their skeletons) is not straight-
forward. Therefore, we chose to evaluate the length of the porous
network by estimating two quantities that are more easily accessible,
namely the lengths of the branches (𝑙𝑏𝑟𝑎) and of the primary branches
(𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚) of the skeletons. By convention, we call ‘‘branches’’ the objects
obtained after having eliminated the nodes where the branches of the
skeleton meet (referred as connection points) and ‘‘primary branches’’

4 Opening = an erosion followed by a dilation
5

the objects obtained by holding the geodesic diameter of the cracks. The
geodesic diameter is by definition the length of the longest geodesic
path that it is possible to travel within a particle (Lantuejoul and
Maisonneuve, 1984; Makai, 1973; Morard et al., 2011). The length of
the primary branches allows us to account for the first-order impact
of cracks on the thermal conductivity of the microstructure since the
primary branches represent the main barriers for the heat flux. The
length of the branches has a lesser impact on the thermal properties, but
the ratio between length of primary branches and branches provides a
measurement of the branching of cracks. Indeed, for a very ramified
microstructure, the length of the primary branches will be significantly
larger than that of the branches. An imageJ plugin, called Crackcut, has
been developed in Meynard (2019) to extract key parameters from a
skeletonized image and in particular to assess the length of branches
and primary branches. This calculation code allows to obtain, from
a skeletonized image, the branches (by eliminating the connection
points) and the primary branches (by evaluating the geodesic diame-
ters) and then to calculate the length of the rectilinear objects present
on the processed image (see Appendix A).

A bias can be introduced by the objects (branches and primary
branches) that intersect the edges of the image and that are therefore
cut off. It was then verified, for the different studied microstructures,
that there was no significant evolution of the cumulative distribution
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on the size of the branches and primary branches in the case when the
objects on the edges are counted and when they are not considered
(lower than 5 %). The boundary effects are low particularly because
the considered images are large enough in comparison to the size of
the objects of interest.

In what follows, for the different selected quantities, we will system-
atically study the cumulative distributions.5 Cumulative distributions
re defined by the variable 𝐻𝑄 with 𝑄 representing the different quan-
ities presented above. Our magnitudes of interest are then 𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑥∕𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑦, 𝐻𝑀𝑎𝑡ℎ𝑒𝑟𝑜𝑛, 𝐻𝑏𝑟𝑎𝑛𝑐ℎ and 𝐻𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐵𝑟𝑎𝑛𝑐ℎ. The quan-

ity used to evaluate the anisotropy of a microstructure corresponds
recisely to the ratio of the cumulative distribution functions of inter-
ept lengths along 𝑥 and 𝑦 at the same distance (𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑥∕
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑦). For the sake of simplicity, it will be called hereafter ‘‘ratio

f the intercepts’’.
All the different quantities presented above are used in Section 2.3.4

o characterize the microstructures of the reference ceramics.

.3.3. Ergodicity of experimental images
To ensure that the size of the images from which the characteri-

ation is performed is sufficient so that the measured quantities are
epresentative, we relied on the asymptotic behavior method (Bruchon
t al., 2013). We randomly drew 𝑁𝑤 = 100 windows of fixed size (𝐿2𝐷)
n our images and we measured for each window the average length
f the primary branches while gradually increasing 𝐿2𝐷. Fig. 4 shows
he evolution of the relative standard deviation on the mean length of

he primary branches (
√

𝑉 𝑎𝑟(⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 )

⟨⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 ⟩𝑁𝑤
) where ⟨.⟩ and 𝑉 𝑎𝑟 correspond

respectively to the average and variance operator) as a function of 𝐿2𝐷.
Since the size of the complete images is not infinite, it is not possible
to ensure a random draw of independent elements as 𝐿2𝐷 may become
close to this size of the complete images. We have thus limited 𝐿2𝐷
to 500 pixels, which is much smaller than the size of our images, to
preserve the independence of the draws as well as possible. We chose
to study the length of the primary branches because it is the least stable
of the 5 variables as it is used to characterized large scattered objects.

We can see that the different ceramics have a rather close be-
havior. The relative standard deviation decreases linearly with 𝐿2𝐷
in a log–log scale which means that the evolution trend is of the

type
√

𝑉 𝑎𝑟(⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 )

⟨⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 ⟩𝑁𝑤
= 𝐴 𝐿−𝑏

2𝐷. To have a global evolution for all
he ceramics we have averaged the different parameters (𝐴 and 𝑏)

obtained for each ceramic. We can thus estimate the standard deviation
for a window size of about 3000x3000 pix2 (which is close to the
size of the complete images from which we measure the character-
istic quantities). We obtain with this method, for 𝐿2𝐷 = 3000 pix,
√

𝑉 𝑎𝑟(⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 )

⟨⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 ⟩𝑁𝑤
= 0.015. Therefore, little variability is observed for the

agnitude studied at this image size ensuring thus the representativity
f the measured quantities on the studied images for the characterized
eference ceramics.

.3.4. Results
To compare the characteristics of the microstructures of the refer-

nce ceramics, the cumulative distributions obtained with the different
haracterization quantities are plotted in Fig. 5. The slope of the
umulative distributions of the intercept lengths (𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠) increases

with the concentration of cracks in the ceramics which is consistent
since the average distance between two cracks naturally decreases
when the linear density of cracks increases. This translates into a
higher proportion of small intercept values and therefore a higher
slope for the cumulative distribution. Furthermore, as we find largest
intercepts when the concentration of cracks decreases, the width of the

5 Note that the cumulative distribution is more convenient than the
istribution function to future optimization as it is more regular.
6

Fig. 4. Evolution of the relative standard deviation of the average length of the primary

branches (
√

𝑉 𝑎𝑟(⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 )

⟨⟨𝑙𝑏𝑟𝑎𝑃 𝑟𝑖𝑚⟩𝐿2𝐷 ⟩𝑁𝑤
) as a function of the size of the observed image. The pixel

size is 1.52 µm/pixel.

distribution increases at the same time. Similar comments can be made
for the radius of 2D circles Matheron’s granulometry. One could notice
that the radius of Matheron’s 2D granulometry are much lower than
the length of the intercepts (10×) as they reflect the size of circular
objects, not linear, which are more constrained by the presence of
cracks around.

An opposite behavior is observed for the length of the primary
branches. Indeed, the geodesic diameter increases with the linear den-
sity of cracks since the interconnections between cracks become more
frequent. A similar evolution, although much less marked, is observed
regarding the lengths of the branches, which are much more similar in
the various considered materials. Actually this quantity is more related
to the grain size, which is expected to be similar because materials
result from the same powder. It can be noticed that the ceramics 𝐶3
and 𝐶3∗ have very similar characteristics and that these ceramics can
be clearly discriminated only by taking into account the orientations
of the cracks by means of the ratio of the intercepts. Considering the
intercepts ratios in the two directions (𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑥∕𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑦) in Fig. 5,
it can also be noticed that the ceramics 𝐶1, 𝐶2, and to a lesser extent 𝐶3,
deviate from isotropy for small intercept lengths (𝑙𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠 < 250 pix).
The choice to consider these ceramics as isotropic is justified by the
fact that this anisotropy, which is restricted to small values of intercept
lengths, has no effect on their thermal behavior, as it has been verified
in Section 4.2.

Now that the reference ceramics as well as the tools used to char-
acterize their microstructures have been introduced, we present in
Section 3 the method of generating representative virtual microstruc-
tures (referred to as tuned microstructures in the following). We will
also make use of the same above presented tools to characterize these
virtual microstructures and to compare them to the reference ones.

3. Numerical generation of representative virtual microstructures

We aim at generating tuned microstructures that emulate the porous
network of reference ceramics. As explained in the introduction, a
model has been proposed in Meynard et al. (2022) to generate virtual
microstructures with a crack network distributed at the interfaces
between granules. As this method allows us to generate very different
microstructures by varying the input parameters, we propose here a
method to tune these parameters in order to simulate a given ceramic.
This method relies on an automated optimization procedure that aims
at producing a tuned microstructure, of which the quantities defined in
Section 2.3 are as close as possible to their counterparts for the given

ceramic.
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Fig. 5. Cumulative distributions associated with each characterization parameter obtained on the reference ceramics and on the tuned microstructures (see part 3.2.3). The pixel
size is 1.52 µm/pixel.
𝑅

3.1. Generation of virtual microstructures with a crack network located at
the inter-granules boundaries

3.1.1. General method
The generation of virtual microstructures with a crack network

located at the inter-granules boundaries (IGB) is achieved by combining
two random sets (see Fig. 7 in this document and figure 3 in Meynard
et al., 2022). The first set corresponds to the IGB and is obtained by
generating a Voronoi tessellation with seeds that are distributed quasi-
homogeneously using a RSA algorithm (Feder, 1980; Torquato et al.,
006; Ebeida et al., 2012). The input parameters for the drawing of
eeds are the number of cells 𝑁𝑐 and the dimension 𝐿 of the periodic
VE. Using these two parameters and assuming that the seeds are
erfectly homogeneously distributed in the RVE, we can approximate
he radius of the non-intersecting spheres drawn from the seeds (which
7

we assimilate to the average radius of the granules, denoted 𝑅𝑔):

3
𝑔 = 𝐿3

4
3𝜋 𝑁𝑐∕0.384

(1)

where the 0.384 value represents the maximum coverage rate that can
be achieved using a 3-D RSA algorithm (see Table II in Zhang and
Torquato, 2013).

Once the seeds are drawn, the Voronoi tessellation can be generated.
The Voronoi criterion that defines the tessellation is 𝑥 ∈ 𝐺𝑖 ⇔
‖𝑥 − 𝑐𝑖‖ ≤ ‖𝑥 − 𝑐𝑛‖ ∀𝑛 ∈ {1,… , 𝑁𝑐} (with ‖ · ‖ the Euclidean norm
on the periodic cube) where 𝑥 defines any point of the RVE and 𝐺𝑖
defines the cell 𝑖 of center 𝑐𝑖 for 𝑖 ∈ [1, 𝑁𝑐 ]. A quantity which allows to
define the density of the IGB has been introduced in Meynard et al.
(2022). This quantity, denoted 𝐴𝐼𝐺𝐵

𝑉 , is its area per unit of volume

and depends directly on 𝑅𝑔 . Indeed, it is shown in Meynard et al.
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Fig. 6. 2D illustration of the steps in the 3D generation of a virtual microstructure with inter-granules porosity. From left to right: inter-granules porous network covering the
whole inter-granules boundary, superimposed with a dispersion of delimiting spheres (middle figure) and the final cracked microstructure obtained by elimination of the intersection
between the delimiting spheres and the porous network.
(2022) that, in the case of a Voronoi tessellation generated with a
RSA process, 𝐴𝐼𝐺𝐵

𝑉 ≈ 1.26∕𝑅𝑔 . Using a Voronoi tessellation with quasi-
homogeneously distributed seeds limits the number of input parameters
needed for generating the IGB which is suitable for the following
optimization that is described in Section 3.2. Of course, alternative
methods exist for the tessellation and the consequences of the choices
made on the obtained virtual microstructures will be discussed below,
at the end of Section 3.2.

The second random set is obtained by generating a number 𝑁𝑙
of spheres (called delimiting spheres), of radius 𝑅𝑙, randomly in the
domain using a standard Poisson process, providing a Boolean model
of spheres (Matheron, 1967).

The virtual microstructure with inter-granules porosity is finally
obtained by eliminating the intersection between the first random set
(IGB) and the second one (delimiting spheres). We underline that the
generated RVE is periodic: if a crack or a sphere intersects a boundary
of the RVE, it is duplicated on the opposite face. Periodicity is imposed
for practical reasons, and in particular to be in agreement with the
boundary conditions imposed in the thermal computations. Also, it
must be specified that the model is first simulated in the Euclidean
space and then intersected by the grid of points to generate images.

The Fig. 6 illustrates the different steps of the method of generation.
The dispersion that can be observed in the size of the disks and granules
is due to the fact that we observe a 2D section of a 3D generated
microstructure.

This method has three input parameters which are 𝑅𝑔 , 𝑅𝑙 and 𝑑𝑙
(the density of delimiting spheres, 𝑑𝑙 = (4∕3)𝜋 𝑁𝑙 (𝑅𝑙∕𝐿)3). By varying
these three parameters, it is possible to obtain significantly different
microstructures. As an example, it has been shown that it is possible in
an extreme case (𝑅𝑔 ≫ 𝑅𝑙) to obtain microstructures with cracks of the
same size homogeneously distributed at the IGB and, in another one
(𝑅𝑔 ≪ 𝑅𝑙), microstructures with cracks located in preferential areas
(clusters) (figure 6 in Meynard et al., 2022). This last point underlines
the particularity of the developed model and it is what differentiates
it from the approach followed in Gasnier et al. (2018b) in which the
cracks are obtained by cracking some randomly chosen grain facets of
a Johnson–Mehl tessellation.

3.1.2. Generation of oriented virtual microstructures
Various methods exist to generate objects with a preferred orienta-

tion (Falco et al., 2014; Mortazavi et al., 2015; Pérez et al., 2019). The
idea that we retained here is to play directly on the shape of the gran-
ules by imposing an aspect ratio on them. This is virtually equivalent
to proceeding with a mechanical compression of an isotropic structure
in a given direction. Note that this solution seems to be the closest to
the physical reality as it is likely that the preferential orientation of the
porous network that is observed on some microstructures is due to the
high pressure imposed during the manufacture of ceramics.
8

We impose a preferential orientation to the IGB by applying an
affine transformation to an isotropic tessellation. The following trans-
formations are performed:

𝒎 → 𝒎̂ with 𝑚𝑘 = 1
𝑎𝑘

𝑚𝑘 and 𝑘 = 1 (𝑥), 2 (𝑦), 3 (𝑧) (2)

where 𝒎 is the position vector of a point on the RVE and 𝑎𝑘 is the
renormalized aspect ratio (we impose ∏3

𝑙=1 𝑎𝑙 = 1).
The criterion of the tessellation is thus modified. Indeed, in the case

of a Voronoi tessellation, the distance formulation used in the criterion
that allows to evaluate if a point 𝒎̂ belongs to the granule of center 𝒄̂
becomes:

‖𝒎̂ − 𝒄̂‖2 =
3
∑

𝑙=1

(𝑚𝑙 − 𝑐𝑙)2

𝑎2𝑙
(3)

3.2. Optimization of microstructure generation parameters

3.2.1. Optimization algorithm
In Section 3.1.1, the method developed to generate virtual mi-

crostructures with inter-granules porosity was presented. As explained
above, the three degrees of freedom of this method are 𝑅𝑔 , 𝑅𝑙 and
𝑑𝑙. Moreover, if we consider an oriented microstructure, a degree of
freedom corresponding to the aspect ratio (𝐴𝑠𝑝𝑅) and directly linked
to the renormalized aspect ratio (𝑎𝑘) introduced previously is added.
In practice, the coefficients [𝑎1, 𝑎2, 𝑎3] are equal to [(AspR)

4
3 , (AspR)−

2
3 ,

(AspR)−
2
3 ] which ensures ∏3

𝑙=1 𝑎𝑙 = 1 . These parameters constitute the
arguments of the function we seek to minimize.

In Section 2.3, we have introduced the five different quantities
that are used to characterize the microstructures, namely 𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,
𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑥∕𝐻𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠,𝑦, 𝐻𝑀𝑎𝑡ℎ𝑒𝑟𝑜𝑛, 𝐻𝑏𝑟𝑎𝑛𝑐ℎ and 𝐻𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐵𝑟𝑎𝑛𝑐ℎ. They are
used to evaluate the representativity of a virtual microstructure with
respect to a given reference ceramic. For each quantity 𝑄, the error
returned (referred as 𝜖𝑄) is obtained by evaluating the difference
between the cumulative distributions of the virtual microstructure and
of the reference ceramic:

𝜖𝑄 =

√

√

√

√

∑𝑁𝑐𝑙𝑎𝑠𝑠
𝑖=1 (𝐻𝑟𝑒𝑓

𝑄,𝑖 −𝐻𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑄,𝑖 )2

𝑁𝑐𝑙𝑎𝑠𝑠
(4)

where 𝑁𝑐𝑙𝑎𝑠𝑠 is the number of classes for the calculation of the cumula-
tive distribution (see Section 2.3.2), 𝐻𝑟𝑒𝑓

𝑄,𝑖 represents the 𝑖th value of the
cumulative distribution of the reference microstructure and 𝐻𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑄,𝑖 the
one of the virtual microstructure. The global error that is finally used is
the average of the errors obtained with each of the five quantities.6 We

6 According to the implicit function theorem, we cannot expect to reach
𝜖𝑔 = 0 since the number of input parameters is much smaller than the number
of quantities we are trying to minimize.
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Fig. 7. Relative error on 𝜖𝑔 as a function of the RVE size (𝐿) (on the left) and relative standard deviation on ⟨𝜖𝑔⟩𝑁𝑠
as a function of the number of samples 𝑁𝑠 for a RVE size

= 211 pixels and a number of tests 𝑁𝑡 = 50 (on the right). The pixel size is 1.52 µm/pixel.
ecided to give more weight to the error on the primary branches since
he extension of the inter-granules pores has a first order impact on the
hermal behavior of ceramics. We also gave more weight to the error
n the branches because this parameter is very stable (many objects
n the RVE and so little dependence on random effects) and it brings
tability to the global error. Taking into account these considerations,
he global error 𝜖𝑔 reads:

𝑔 = 1
7 + 𝑃 ∗ (𝜖𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠 + 𝜖𝑀𝑎𝑡ℎ𝑒𝑟𝑜𝑛 + 2 𝜖𝐵𝑟𝑎𝑛𝑐ℎ

+ 3 𝜖𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐵𝑟𝑎𝑛𝑐ℎ + 𝑃 ∗ 𝜖𝑅𝑎𝑡𝑖𝑜𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠) (5)

where 𝑃 ∗ = 0 for isotropic ceramics (𝐶1, 𝐶2, 𝐶3) and 𝑃 ∗ = 1 for
the anisotropic ceramic (𝐶3∗ ). The choice of the exact values of the
weights – here 1, 2 and 3 – remains of course arbitrary. The structure
of the implemented optimization process is detailed in Appendix B.
Since our optimization algorithm is performed on quantities extracted
from geometrical objects that rely on random processes, we could have
considered to employ minimization functions made especially for that.
However, we preferred to use a more classical (deterministic) method
and, to support this choice, we present in the next section a study of
the variance of the error returned by our algorithm.

3.2.2. Study of the numerical and random errors
To ensure that the size of the RVE is sufficient so that the magni-

tudes measured on the tuned microstructures are typical of the whole
mixture on average (Hill, 1963), we studied the evolution of the relative
error on 𝜖𝑔 with respect to the infinite RVE solution (see (6)) as a
function of the RVE size. This study was carried out for a given point
(𝑅𝑔 , 𝑅𝑙 and 𝑑𝑙 are fixed) representative of what is encountered during
the optimization process when we are looking to emulate the ceramic
𝐶3. To get rid of the random effects (we focus on this aspect below) we
average the results obtained over 50 generated microstructures. These
independent microstructures are obtained by modifying the seed of the
pseudo-random number generators used for the drawing of the cells and
of the delimiting spheres. The relative error is given by the following
equation:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
|

|

|

|

|

⟨𝜖𝑔⟩
𝜖𝑔

− 1
|

|

|

|

|

, (6)

here 𝜖𝑔 is the solution obtained when 𝐿 → ∞. As the computational
equirements quickly become important when 𝐿 increases, we used for
̄𝑔 the value obtained when 𝐿 = 213 pixels. Results are presented in
ig. 7. The relative error seems to decrease in 𝑂(𝐿−2), a trend for which

we do not have a sound theoretical justification. To minimize this error
9

while maintaining a reasonable RVE size, we set 𝐿 = 211 pixels for the
rest of the study.

As previously mentioned (see Section 3.2.1), since the used mi-
crostructure generation algorithm is based on random processes, a
rather large dispersion is expected on the measured quantities. One
way to damper the random effects is to generate a certain number
of samples (𝑁𝑠), that are independent microstructures, for each point
studied in order to extract averaged quantities. With a fixed RVE size
of 𝐿 = 211 pixels and a fixed number of tests 𝑁𝑡 = 50, we studied
the evolution of the relative standard deviation on the average of 𝜖𝑔

over 𝑁𝑠 (
√

𝑉 𝑎𝑟(⟨𝜖𝑔⟩𝑁𝑠 )

⟨⟨𝜖𝑔⟩𝑁𝑠 ⟩𝑁𝑡
) as a function of the number of samples (Fig. 7).

As predicted by the Central Limit Theorem, the standard deviation
decreases in 𝑂(𝑁−1∕2

𝑠 ). The observed deviation is quite important when
the number of samples is low which leads to a high variability on the
calculated error, hence the need to average over a large number of
samples. We finally fixed 𝑁𝑠 to 20 for the optimization process which
provides a relative standard deviation lower than 5 %.

3.2.3. Tuned microstructures
We used the optimization process presented in Section 3.2.1 to find

the best generation parameters. As an example, Fig. 8 illustrates the
evolution of the error 𝜖𝑔 obtained by varying 𝑅𝑔 after optimizing 𝑅𝑙 and
𝑑𝑙 for the ceramic 𝐶3. A minimum appears quite clearly around 𝑅𝑔 =
30 with a linear evolution before and after this minimum. Thus, the
optimization process seems to have converged to the global minimum
of our function.

Table 2 presents the optimized generation parameters obtained with
the algorithm for each reference ceramic. We notice that the parameter
that mainly varies for the generation of the different tuned microstruc-
tures is the density of delimiting spheres. The main differences between
the microstructures are therefore due to the linear density of cracks.
We also notice that the size of the delimiting spheres is stable, so there
seems to be a characteristic size for the different studied ceramics which
could be associated with an average spacing between the cracks. This
average spacing could correspond to an effective size of the granules,
a size of the granules obtained once the IGB network cracked. Let us
specify that the parameter we introduced to define the radius of the
granules (𝑅𝑔 , see Section 3.1.1) corresponds to a theoretical granule
radius obtained when the IGB is fully cracked.

To illustrate the different obtained microstructures, an enlarged
view on the cross-section of each tuned microstructure is drawn in
Fig. 3. Also, a 3D view of the tuned microstructures is presented in
Fig. 9.
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Fig. 8. Evolution of 𝜖𝑔 obtained by varying 𝑅𝑔 (𝑅𝑙 and 𝑑𝑙 are optimized). The pixel
ize is 1.52 µm/pixel.

Table 2
Parameters obtained with the optimization process for the generation of
tuned microstructures associated with the reference ceramics.

𝐶1, 𝑡𝑢𝑛𝑒𝑑 𝐶2, 𝑡𝑢𝑛𝑒𝑑 𝐶3, 𝑡𝑢𝑛𝑒𝑑 𝐶3∗ , 𝑡𝑢𝑛𝑒𝑑

𝑅𝑔 (pix) 24.6 24.4 30 25
𝑅𝑙 (pix) 37.8 40.3 38.3 37.8
𝑑𝑙 (–) 2.2 1.89 1.1 1.06
𝐴𝑠𝑝𝑅 (–) / / / 1.46

The classification of the microstructures from weakly to strongly
ranched crack network is consistent with that observed on the ref-
rence ceramics. To study in more detail the evolution of the different
uantities obtained by characterization on the tuned microstructures,
he cumulative distributions that are used for the calculation of the
ifferent errors are plotted in Fig. 5. The consistency between the
umulative distributions of the tuned microstructures and those of
he reference ceramics is remarkable. The most difficult parameter to
ptimize is that of Matheron’s 2D granulometry. Indeed, the slopes
f the Matheron size distributions of the tuned microstructures are
ystematically steeper than those of the cumulative distributions of
he reference ceramics. It should be noted that this is in part due to
he fact that we have prioritized the optimization of the quantities
ssociated with the lengths of the branches and of the primary branches
y controlling the weighting of the different parts of 𝜖𝑔 . This is also due
o the particular scheme chosen for the generation of the IGB which
eads to flat and regular inter-granules boundaries (see Section 3.1.1).
hat could certainly be improved by modifying the point process for
he seeds of Voronoi grains, or by means of Laguerre polyhedra or even
ocally anisotropic tessellations (Gasnier et al., 2018b). We will see in
ection 4 that the relatively simple choices adopted here yield excellent
redictions of effective thermal properties. This is why we did not test
hese alternatives.

As a conclusion, the presented generation method coupled with the
eveloped optimization algorithm allows to generate tuned microstruc-
ures which, based on the quantities retained for the characterization,
eproduce well the microstructures of the reference ceramics. We pro-
ose in Section 4 an original approach to evaluate the representativity
f the generated microstructures which is based on a comparison
f their 2D thermal behavior with that of the reference ceramics
ross-sections.

. 2D thermal behavior computations to assess the realism of the
irtual microstructures

In the work reported here, we seek to simulate the thermal re-
ponse of 2D cross-sections extracted from 3D microstructures. This
10

t

work presents a strong interest as the thermal answers obtained on
2D sections of tuned microstructures can directly be compared to those
obtained on cuts of the reference ceramics (𝐶1,… , 𝐶3∗ ).

4.1. Full-field simulations

To evaluate the 2D thermal behavior of the reference ceramics and
of the tuned microstructures, full-field simulations are performed on
the processed images obtained from their cross-sections (Figs. 3) using
the FFT method. This method was originally proposed by Moulinec
and Suquet (Moulinec and Suquet, 1998) and is highly interesting as
it does not require meshing. However, this method presents difficulties
to converge and especially when studying crack-like objects. The con-
vergence can be ensured by using filters as presented in Willot et al.
(2014) and, following Gasnier et al. (2018a), by giving a minimum
thickness to the cracks (higher than

√

2 pixels in 2D, Meynard et al.,
2022). Consequently, we have fixed the thickness of the cracks to five
pixels in this study to avoid any convergence problem. Let us specify
that the thickness of the cracks does not really affect the comparison of
the thermal behavior since it is identical for the real microstructures
(processed microstructures of the reference ceramics) and the tuned
ones. To obtain a thickness of 5 pixels, a dilation step with diamond-like
structuring elements of a 2-pixel size is performed on the skeletonized
images, either real or tuned.

In this study, the cracks are considered insulating (𝜆 = 10−6 W
−1 K−1) and the thermal conductivity of the solid matrix is fixed at

9.3 W m−1 K1 which is a value consistent with the thermal conductivity
of UO2 at 50 ◦C. The temperature gradient imposed in these FFT
simulations is arbitrarily fixed since it does not affect the normalized
quantities in linear thermics. Moreover, the Knudsen or radiative effects
are not investigated since our objective is to give a first estimate of the
thermal behavior of microstructures by maximizing the insulating role
of porosity.

We are particularly interested in two quantities obtained with FFT
simulations. The first one is the effective thermal conductivity de-
noted by 𝜆̃ and which is obtained from the heat flux density (𝐪) and
temperature gradient (𝛁T) fields:

𝜆̃ = −
⟨𝐪⟩RVE
⟨𝛁T⟩RVE

(7)

Where the operator ⟨.⟩RVE represents the spatial average over the RVE.
The second studied quantity is the normalized flux which corresponds
to the flux divided by its spatial average over the RVE in a given
direction (here the direction 𝑥):

𝛷𝑛𝑜𝑟𝑚,𝑥 =
𝛷𝑥

⟨𝛷𝑥⟩RVE
(8)

The FFT simulations are performed on real and tuned microstruc-
ures (processed images with dilated skeletons as mentioned above)
nd periodic conditions are imposed at the edges of the RVE. These
oundary conditions are consistent for tuned microstructures which
re by nature periodic (see Section 3), but not for real microstructures
hich are not. To overcome this problem, an oversampling method is
sed (Gloria, 2011). What is done is that, for real microstructures, the
imulations are performed on the whole window but the homogenized
uantities are calculated on a subwindow. That allows to damper the
oundary effects by neglecting the values of quantities of interest near
he edges of the images. The way we resize the images is illustrated
ig. 10.

To evaluate the effect of this oversampling method, we calculated
he 2D effective thermal conductivity of the ceramic 𝐶3∗ obtained by
mposing a temperature gradient along 𝑥 when varying the rescale size
sed. Equivalent results were obtained when imposing a temperature
radient along 𝑦. The effect of oversampling (along 𝑥 and 𝑦) on the
imulated effective conductivity is reported in Table 3.

The effects of oversampling are quite important on this microstruc-

ure as an overestimation of the thermal conductivity of about 8 % is
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Fig. 9. 3D enlarged views (400x400x400 pix3) on the tuned virtual microstructures associated with the ceramics 𝐶1, 𝐶2, 𝐶3 and 𝐶∗
3 respectively.
Fig. 10. Diagram illustrating the resizing of the window when applying the oversampling method according to 𝑥 (on the left), to 𝑦 (on the center) and to 𝑥 and 𝑦 (on the right).
Table 3
Effect of windowing on the effective conductivity (W m−1 K−1) obtained by imposing a
temperature gradient along 𝑥 (𝜆̃𝑥) and evaluated by simulation on 𝐶3∗ . The pixel size
is 1.52 μm/pixel.
𝐻 (𝑝𝑖𝑥) 0 50 100 200 250

𝜆̃𝑥 (𝑊𝑥 = 𝐻, 𝑊𝑦 = 0) 5.85 5.82 5.82 5.82 5.81
𝜆̃𝑥 (𝑊𝑥 = 0, 𝑊𝑦 = 𝐻) 5.85 5.64 5.48 5.45 5.47
𝜆̃𝑥 (𝑊𝑥 = 𝑊𝑦 = 𝐻) 5.85 5.59 5.45 5.40 5.39

observed. These effects are much more marked when the windowing
is applied according to 𝑦 than according to 𝑥 which is consistent since
the processed images of the reference microstructures are much larger
along 𝑥 than along 𝑦 (see Section 2.2). It should also be noted that these
effects are particularly important for ceramics with a highly extended
porous network and that they are negligible for those with a poorly
extended porous network. Indeed, an equivalent study carried out on
11
𝐶1 revealed a variation of the effective conductivity of about only 1 %.
Since windowing is necessary for highly porous ceramics (significant
variation in effective conductivity up to 𝑊 = 200 pixel, see Table 3),
in the following, the scale value for the windowing is set to 200 pixels
along 𝑥 and 𝑦 (𝑊𝑥 = 𝑊𝑦 = 200).

Now that we have presented the method as well as the conditions
used for the simulations, we discuss in the next section the thermal
behavior of the reference ceramics and in particular their thermal
conductivity.

4.2. Thermal behavior of 2D microstructures

It can be noted that, for the study of the thermal behavior of
ceramics 𝐶1, 𝐶2 and 𝐶3, the temperature gradient is imposed along
the 𝑦 direction but this is not really important since the crack network
of these ceramics does not present a strong preferential orientation.
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Fig. 11. Relative standard deviation on 𝜆̃ as a function of the number of samples 𝑁𝑠
btained for a RVE size of 𝐿 = 211 pixels and a number of tests 𝑁𝑡 = 50 (the pixel size
s 1.52 µm/pixel).

ndeed, for these ceramics, the ratio between the effective conductiv-
ty obtained when the temperature gradient is imposed along the 𝑥
irection and along the 𝑦 direction (𝜆̃𝑥∕𝜆̃𝑦) equals to one within 3 %.

However, for the ceramic 𝐶3∗ which presents a preferential orienta-
ion, the direction according to which the gradient is imposed is crucial.

e then study the thermal behavior of this ceramic by imposing a
emperature gradient both along 𝑥 and along 𝑦.

.2.1. Effective thermal conductivity
Before proceeding to the study of the thermal behavior, we veri-

ied that the relative standard deviation associated with the effective
onductivity was at least comparable to those previously evaluated on
ections 2.3.3 and 3.2.2. The size of the RVE is fixed to 𝐿 = 211 pixels as
iscussed in Section 3.2.2. For 𝑁𝑠 = 30, the relative standard deviation
n the effective conductivity is about 1 % (Fig. 11). The behavior of
he effective conductivity is then much more stable than that of the
reviously studied quantities.

The simulated 2D effective thermal conductivities of the real and
uned microstructures are reported in Table 4. As expected, the porous
etwork plays an important role in the degradation of the thermal
onductivity of ceramics so that the simulated conductivities decrease
hen the open porosity increases (as a reminder, see Table 1 to find

he open porosity of reference ceramics). In addition, the effective
onductivities calculated on the tuned microstructures are in good
greement with those calculated on the real microstructures. Indeed,
he maximum deviation is lower than 2 % (except for the effective
hermal conductivity along 𝑦 for 𝐶3∗ where it is about 4 %). It is in-
eresting to note that ceramics 𝐶3 and 𝐶3∗ have very different effective

conductivities in spite of a similar concentration of cracks. This demon-
strates the importance of considering the orientation of the cracks in the
thermal simulations. For the ceramic 𝐶3∗ which presents a preferential
orientation along 𝑥, the ratio between the effective conductivity along
𝑥 and that along 𝑦 simulated on the real microstructure is 𝜆̃𝑥∕𝜆̃𝑦 =
1.37. This represents a significant difference in the thermal behavior
along these two directions and that is consistent with the anisotropy
measured on this ceramic thanks to the ratio of the intercepts (Fig. 5).
The tuned microstructure reproduces well this behavior, even if the
effect of the orientation of the crack network is slightly less important
(𝜆̃𝑥∕𝜆̃𝑦 = 1.3 for this tuned microstructure).

4.2.2. Heat flux map and histograms
To get further in the comparison of the 2D thermal behavior of

the reference ceramics to that of the tuned ones, we now compare
the simulated heat flux fields. These fields are reported in Fig. 12. As
12
Table 4
2D effective thermal conductivity (W m−1 K−1) of the real and tuned
microstructures. The pixel size is 1.52 μm/pixel.

𝐶1 𝐶2 𝐶3 𝐶3∗

𝜆̃𝑦 𝜆̃𝑦 𝜆̃𝑦 𝜆̃𝑦 𝜆̃𝑥
𝑅𝑒𝑎𝑙 8.12 7.30 5.27 3.94 5.40
𝑇 𝑢𝑛𝑒𝑑 8.15 7.43 5.28 4.10 5.32

explained above, the temperature gradient is prescribed along the 𝑦
direction (𝜙𝑛𝑜𝑟𝑚 denotes 𝜙𝑛𝑜𝑟𝑚,𝑦) but similar heat flux map are obtained
when the temperature gradient is prescribed along the 𝑥 direction.

Fig. 12 shows good agreement between the real and tuned heat
flux fields. For a more quantitative approach, heat flux distribution
histograms are studied (Fig. 13). The differences between the normal-
ized heat flux distribution histograms of the reference ceramics are an
interesting testimony of the differences between their crack networks.
The more extended the crack network is, the flatter the histogram will
be. That is because the heat flux distribution is less homogeneous.
Conversely, when the crack network is not very extended, some heat
flux values are over-represented because there is little variation in the
flux and the histogram will present a peak as it clearly appears on the
histogram of ceramic 𝐶1. We can notice that the tuned microstructures
reproduce in a suitable way the thermal behavior of the reference
microstructures.

Quite similar results are obtained in the case of an oriented mi-
crostructure (𝐶3∗ ). It is interesting to note that the heat flux distribution
histogram obtained when the gradient is imposed along 𝑥 (in the
direction perpendicular to the orientation of the cracks) is significantly
flatter than the one obtained when the gradient is imposed along 𝑦
(Fig. 14). The effect of the orientation of the crack network on the
thermal behavior of the ceramics is thus well marked. The tuned
microstructure reproduces well the thermal behavior of the 𝐶3∗ ceramic
and its anisotropic character.

The study of the 2D thermal behavior of reference ceramics also
allows to highlight the non-homogeneous spatial distribution of cracks.
Indeed, crack clusters may explain the presence of large blue areas in
which the normalized flux is nearly zero. This is particularly marked
for the microstructures with a highly extended crack network (𝐶3 on
Fig. 12 and 𝐶3∗ on Fig. 14). These zones are called ‘‘dead zones’’ in
the rest of the study since they constitute important barriers for the
heat flux. These dead zones can be seen on the histograms of the
normalized flux distribution by the presence of a peak for zero flux
values (Figs. 13 and 14). The effect of the presence of clusters of cracks
on the homogeneous thermal properties of the microstructures is not
obvious because on the one hand the presence of regions in which the
heat flux does not circulate can degrade the thermal conductivity but
at the same time, the fact of concentrating the cracks in certain regions
allows the appearance of paths privileged by the heat flux.

In the next section we study more precisely the dead zones by
looking at their spatial distribution.

4.2.3. Study of ‘‘dead zones’’ using the covariogram
The covariance is a tool that allows to characterize objects and

particularly to study their shape, their spatial distribution or their
orientation (Jeulin, 2000; Torquato and Haslach, 2002; Kanit et al.,
2003; Drach et al., 2016). In practice, the covariance is a comparison
between an image and its translate according to a vector 𝒉. More
precisely, the covariance 𝐶𝑖𝑗 (𝒉) or phase 𝑖/phase 𝑗 gives the probability
that two points 𝒎 and 𝒎 + 𝒉 belong respectively to phase 𝑖 and 𝑗.
The covariance is independent of the choice of 𝒎 (stationarity) but it
depends strongly on the vector 𝒉, defined by a distance ℎ and an angle
𝜃. The covariance has two remarkable properties:

• By construction, 𝐶𝑖,𝑖(0) is equal to the volume fraction of the phase
𝑖.
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Fig. 12. Heat flux fields obtained on the real (top) and on the tuned (bottom) microstructures (From left to right: 𝐶1, 𝐶2 and 𝐶3). The temperature gradient is prescribed along
the vertical direction. The color scale goes from blue when 𝜙𝑛𝑜𝑟𝑚 = 0 to red when 𝜙𝑛𝑜𝑟𝑚 = 3.
Fig. 13. Heat flux histograms obtained on the real and tuned microstructures (𝐶1, 𝐶2 and 𝐶3).
Fig. 14. Heat flux map and histograms obtained by imposing a temperature gradient along 𝑥 (bottom) and along 𝑦 (top) on the real (left images) and tuned (right images)
microstructures associated with the reference ceramic 𝐶3∗ .
• If the domain for the study is sufficiently large and if there are
not long-range correlations (which is our underlying assumption),
then 𝐶𝑖,𝑗 (ℎ, 𝜃) → 𝐶𝑖,𝑖(0, 𝜃)𝐶𝑗,𝑗 (0, 𝜃) when ℎ → ∞.

In our case, the covariance is applied to two-phase images obtained
after binarizing the heat flux maps by applying a threshold on the
cumulative heat flux histograms. The threshold value to be applied
was chosen by studying the effect of thresholding on the shape of
the dead zones obtained after binarization. The objective was to find
the areas identified on the heat flux maps and to keep their localized
character. Using this method, the threshold value was arbitrarily set
13
at 𝜙𝑆 = 0.65. The binarized images obtained for the different real and
tuned microstructures are presented Fig. 15.

As expected, the density of the pore network of ceramics has a
remarkable influence on the properties of the dead zones since they
become wider when the linear density of cracks increases. The fact
that we imposed a temperature gradient along 𝑦 when simulating the
thermal behavior of these microstructures is clearly visible. Indeed, the
dead zones are more extended in this direction. The binarized images
show good agreement between real and tuned microstructures even if
the tuned microstructure associated with ceramic 𝐶3 seems to feature
larger dead zones than the real one.
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Fig. 15. Binarized heat flux map images obtained on the real (top) and on the tuned (bottom) microstructures (From left to right: 𝐶1, 𝐶2 and 𝐶3).
Fig. 16. Covariances in the 𝑥 (𝜃 = 0◦, on the left) and 𝑦 (𝜃 = 90◦, on the right) directions applied on the binarized heat flux images of the real and tuned microstructures. The
pixel size is 1.52 µm/pixel.
The covariances along 𝑥 (𝜃 = 0◦) and along 𝑦 (𝜃 = 90◦) obtained
on the binarized heat flux images are plotted Fig. 16. Let us specify
that, in order to highlight the area in which the covariance varies, the
figures presenting the covariances are limited to ℎ = 200 pix. We can
notice that we find back, by observing the values at the origin (𝐶𝑖,𝑖(0)),
that the evolution of the surface fraction of the dead zones is correlated
with the increase in the density of the porous network of the ceramics.
This surface fraction increases from 10% (𝐶1) to nearly 30% (𝐶3). We
can also underline, by looking at the slope of the covariances when h is
large enough (𝐶𝑖,𝑖(ℎ, 𝜃) when ℎ → ∞), that they converge well towards
𝐶𝑖,𝑖(0, 𝜃)2. This means that the size of the RVE is sufficient to study the
dead zones.

The covariances calculated on the tuned microstructures are very
close to those estimated on the reference ceramics. Let us recall that
the images presented here are, for reference ceramics, enlarged views of
significantly larger images (see Section 2.2) and, for tuned microstruc-
tures, sections taken from a large number of generated microstructures
(see Section 3.2.2). This justifies that, despite the differences that
can be observed between the binarized images of the real and tuned
microstructures, the averaged quantities (here the covariance) can be
close.

The same study was conducted for the 𝐶3∗ ceramic in order to
evaluate the effect of the crack network orientation on the dead zone
characteristics. The corresponding results are reported in Appendix C.
We find the same behavior as was identified on non-oriented ceramics,
i.e. that the densification of the pore network leads to an increase in
the size of the dead zones.
14
5. Conclusions

A methodology has been presented to optimize the generation of 3D
virtual microstructures in order to mimic the inter-granules porosity
of reference ceramics observed on 2D images. These ceramics have
a more or less extended and branched porous network which can be
assimilated to a network of cracks distributed at the joints between the
granules.

A thorough characterization of the porous network of the reference
ceramics was carried out. An image processing protocol was set up
to convert optical microscopy images into skeletonized binary images
from which it is possible to extract information about the porous
network. Five criteria were retained to describe this network: the length
of the intercepts which makes it possible to evaluate the concentration
in cracks, the ratio between the intercepts calculated in the crack
orientation direction (if the crack network of the considered ceramic
has a preferential orientation) and those calculated in the perpendicular
direction which is useful to characterize the anisotropy, the radius of
Matheron’s 2D granulometry by circles which allows to approach the
spatial distribution of the cracks, the length of the branches and the
length of the primary branches which are used to give information on
the dimensions of the cracks, regarding both the individual components
at grain interfaces and their branching with their neighbors.

The general principles of the method for generating 3D virtual mi-
crostructures with crack-like pores distributed along the inter-granules
boundaries, proposed by Meynard et al. (2022), has been recalled.
This method allows to generate a large variety of microstructures by
playing with only three input parameters. An optimization procedure
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has been developed to determine the generation parameters that allow
to obtain tuned microstructures as faithful as possible to the reference
ceramics. This procedure is based on a comparison of cross-sectional
images of the porous network of the generated microstructures with
that of the reference ceramics using the identified descriptor param-
eters. This procedure provided good results as the generated tuned
microstructures have properties close to those of the reference ceram-
ics (Fig. 5), except for the Matheron’s granulometry. The systematic
character of the developed optimization process has made it possible
to study different ceramics of interest without much effort. The results
of this optimization process are 3D morphological models of the porous
networks more or less extended into these different ceramics as illus-
trated by the 3D rendering in Fig. 9. Furthermore, it will be possible
to use this procedure in the future to study a wider set of materials,
exhibiting a continuous range of microstructural features between the
here considered extreme cases, in particular in the context of the study
of evolving materials.

To further validate this optimization process before using it to simu-
late the thermal conductivity of these 3D microstructures, 2D full-field
numerical simulations (based on the FFT method) have been performed
on processed images of reference ceramics and on cross-sections ex-
tracted from the tuned 3D microstructures. These 2D simulations are
used as a further validation of the tuned model, involving not only
the partial set of 2D geometrical features used to fit the model, but
also the whole features involved in the thermal properties of a 2D
heterogeneous medium. Of course, it is not sufficient to validate the
performances of the model regarding full 3D thermal properties, but
provides an additional, not conventional, way to confirm the similarity
of the virtual 2D cross-section with the real ones. This validation is
performed on effective 2D properties, but also and more importantly,
on local field statistics both in terms of distribution function and spatial
correlations. With that respect, it is worth to remark that these 2D
computations are related to 3D microstructures with ribbon cracks
infinite in the direction perpendicular to the studied plane. Thus, the
effect of cracks on the thermal conductivity is here exacerbated since
ribbon cracks fully stop the thermal flux. The good agreement is thus
satisfactory in this rather challenging situation and provides some
confidence on the pertinence of the 3D simulations planned for the
future, even though, of course, it is not a proof of their efficiency.

Indeed, work is in progress to further validate the developed model
by comparing 3D simulations with experimental results. In this way,
new considerations must be made for the model, notably to take into
account the porous network at different scales (the one studied so far
enriched by a porosity at small scale which is associated with the
interfering objects and thus eliminated during the image processing
described in Section 2.2). In addition, thermal diffusivity measurements
are currently performed on real ceramics at different temperatures
and in different gas environments. The developed numerical model
will finally allow to understand the thermal behavior of ceramics in
temperature ranges which are currently out of reach of the experiment.

We study here conductive properties as we are interested in the
thermal behavior of the microstructures but it could be interesting to
continue the comparison between 2D sections of virtual microstructures
and processed images of the reference ceramics to study other effective
properties such as permeability or elasticity. In these future studies,
more complex pores geometrical supports may be tested by using a dif-
ferent grain generation process such as, for example, the Johnson and
Mehl (1939) tessellation, which leads to grains that are not necessarily
convex neither of polyhedral shape.
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Appendix A. Assessment of the lengths of branches and primary
branches

The principle for the calculation of lengths with Crackcut is to
iscretize the objects into segments as long as possible but with a length
maller than 𝑙𝑚𝑎𝑥. In practice they have all almost a length 𝑙𝑚𝑎𝑥 (it
s not exactly 𝑙𝑚𝑎𝑥 because of pixelization), except the last segment
hich is shorter to fit the actual end of the branche. Fig. A.17 shows
ow the Crackcut plugin works when applied to an isolated object (the
rinciple is the same when several objects are present on the image).
or reasons of readability of the image, the length 𝑙𝑚𝑎𝑥 was chosen to
e large enough for the segmentation to be visible. This explains why
he segmentation is coarse in the chosen example while processing the
llustrative primary branche.

The accuracy of this method relies on the choice of 𝑙𝑚𝑎𝑥. It must be
mall compared to the size of the objects considered (more precisely
heir radius of curvature) but large enough with respect to pixel size in
rder to get rid of the bias introduced by pixelization. To set the value
f 𝑙𝑚𝑎𝑥 to use in our study, we evaluated its influence on the cumulative
istribution of the length of the branches and primary branches. As
e can see in Fig. A.18, which provides an example for ceramic 𝐶3,
uite important discrepancies between the cumulative distributions are
bserved when 𝑙𝑚𝑎𝑥 = 1 pixel and 𝑙𝑚𝑎𝑥 > 50 pixels. This reveals a
hortening of the objects when 𝑙𝑚𝑎𝑥 is not small enough because of the
limination of geometric details (undulations) with a size below 𝑙𝑚𝑎𝑥.
or values of 𝑙𝑚𝑎𝑥 between 5 and 20 pixels, the cumulative distributions
re very close and a quick analysis of the obtained images shows that
hey still remained very close to the original skeletons. Similar results
ere observed on the other studied ceramics. Thus, 𝑙𝑚𝑎𝑥 is set at 10
ixels (15.2 µm). It is noticed that this size is equal to the diameter of
he disks used to perform the morphological closing of the segmented
racks. Indeed the proposed image processing and object quantification
outines are associated with this typical size of 15 µm. Details below
his length are smoothed out but larger ones are kept so as to preserve
he complexity of the pores geometry at grain scale. In addition, this
ize is sufficiently large with respect to pixel size, so that pixelization
oes not induce any significant bias.

ppendix B. Optimization algorithm structure

For isotropic ceramics (𝐶1, 𝐶2 and 𝐶3), we seek to minimize a
unction that takes three arguments as input (𝑅𝑔 , 𝑅𝑙 and 𝑑𝑙) and returns
s output an error (𝜖𝑔) that allows us to judge the quality of a virtual
icrostructure to reproduce certain parameters observed on a reference
icrostructure. To implement this optimization process, the optimize
ackage of the scipy library (Virtanen et al., 2008) which provides
everal functions for minimizing objective functions has been used.

he optimization is done under constraint as the input parameters
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Fig. A.17. Diagram explaining how the Crackcut plugin works. The red segments show the discretization of the skeletons. Here 𝑙𝑚𝑎𝑥 is deliberately chosen to be large enough for
the differences between the original image and the segmented one to be visible.
Fig. A.18. Influence of 𝑙𝑚𝑎𝑥 on the cumulative distributions of length of the primary branches and branches measured with Crackcut on 𝐶3. The pixel size is 1.52 µm/pixel.
are necessarily positive. The equation describing the structure of the
optimization algorithm is the following:

min
𝑅𝑔

[

min
𝑅𝐿

[

𝜖𝑔(𝑅𝑔 , 𝑅𝐿, 𝑑𝑙) + min
𝑑𝑙

[

𝜖𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠(𝑅𝑔 , 𝑅𝑙 , 𝑑𝑙)
]

]

]

, (B.1)

𝜖𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠 and 𝜖𝑔 being defined by relations (4) and (5) respectively
(𝑃 ∗ = 0 for ceramics 𝐶1, 𝐶2 and 𝐶3). Three optimization loops are
nested which allows for a sequential optimization and consequently the
optimization of functions with only one input argument. For each loop,
the Powell (1964) method implemented in the scipy.optimize.minimize
library is used. Two strong choices were made in the structure of the
algorithm. The first choice is to perform a sequential optimization on
the three degrees of freedom. This leads to a loss of performance since a
more direct path could be found but this choice was made to simplify
the solving process since no solution could be found when the three
input parameters were left free simultaneously. As we found that the
length of the intercepts is very little dependent on the other input
parameters (𝑅𝑔 and 𝑅𝑙), the second choice that was made is to optimize
the innermost loop (𝑑𝑙) only on the error on the intercepts.

For the anisotropic ceramic (𝐶3∗ ), we seek to minimize a function
that takes four arguments as input (𝑅 ,𝑅 , 𝑑 and 𝐴𝑠𝑝𝑅) and returns as
16

𝑔 𝑙 𝑙
output an error (𝜖𝑔) that takes into account the error on the ratio of the
intercepts (𝑃 ∗ = 1 in relation (5)). As the ratio of the intercepts is also
very little dependent on the other parameters (𝑅𝑔 and 𝑅𝑙), this quantity
is minimized with respect to the additional aspect ratio parameter only.
Then, the equation describing the structure of the algorithm becomes:

min
𝑅𝑔

[

min
𝑅𝐿

[

𝜖𝑔(𝑅𝑔 , 𝑅𝐿, 𝑑𝑙 , 𝐴𝑠𝑝𝑅) + min
𝑑𝑙

[

𝜖𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠(𝑅𝑔 , 𝑅𝑙 , 𝑑𝑙 , 𝐴𝑠𝑝𝑅)
]

(B.2)

+ min
𝐴𝑠𝑝𝑅

[

𝜖𝑅𝑎𝑡𝑖𝑜𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠(𝑅𝑔 , 𝑅𝑙 , 𝑑𝑙 , 𝐴𝑠𝑝𝑅)
]

]

]

Appendix C. Ceramic C𝟑∗: study of the ‘‘dead zone’’ ( covariance)

The binarized images obtained from the heat flux maps simulated on
the real and tuned microstructures as well as the covariances measured
on these binarized images are shown Figs. C.19 and C.20.

As for non-oriented ceramics, the densification of the pore network
leads to an increase in the size of the dead zones. We note that the effect
of the orientation of the crack network is clearly visible since the dead
zones are significantly wider when the temperature gradient is imposed
along 𝑦 (direction perpendicular to the preferential orientation of the
cracks). This confirms that, when the heat flux is perpendicular to the
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Fig. C.19. Binarized heat flux maps images obtained by imposing a temperature gradient along 𝑥 (bottom) and along 𝑦 (top) on the real (left images) and tuned (right images)
microstructures associated with the reference ceramic 𝐶3∗ .
Fig. C.20. Covariances in the 𝑥 (𝜃 = 0◦, on the left) and 𝑦 (𝜃 = 90◦, on the right) directions obtained on the binarized heat flux images of the ceramics 𝐶3∗ with a temperature
gradient imposed along 𝑥 (in red) and along 𝑦 (in black). The pixel size is 1.52 µm/pixel.
crack orientation, they constitute much more important barriers for the
flux. It is interesting to underline that, by looking at the covariances,
one could assume that the behaviors obtained by imposing a thermal
gradient along 𝑥 and along 𝑦 are those of two different microstructures
with significantly different pore network densities.
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