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Abstract 10 

Located at the southern tip of the Intra-Carpathian Volcanic Range in Romania, and 11 

composed of a dozen dacitic lava domes, the Ciomadul (Csomád) volcanic complex is the 12 

youngest eruptive centre of the Carpatho-Pannonian Region. Whereas, in the last decade, 13 

the explosive history of Ciomadul since 50 ka has been well constrained by numerous 14 

studies, the chronology of the dome sequence still lacks robust chronological constraints and 15 

an extended analysis of all available data. Here, we apply a detailed K-Ar dating approach to 16 

refine the chronology of the lava dome eruptions, using the unspiked K-Ar Cassignol-Gillot 17 

technique. Our dating focused on the most voluminous central part of the lava dome 18 

complex. New eruption ages were determined following a strict separation (of 10 g) of 19 

groundmass from about 3 kg of unaltered sample rocks, thereby isolating material whose 20 
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cooling was contemporaneous with the eruption. The newly applied methodology, mainly 21 

consisting of a double full preparation, first at larger grain size (~ 0.4 mm) and then at < 100 22 

µm, provides an appropriate procedure to separate suitable material to obtain the K-Ar age 23 

of the eruption, i.e. the sample’s groundmass, in which there is no risk of the presence of 24 

older, inherited crystals. Our new geochronological data set gives an improved insight into 25 

the temporal construction of the Ciomadul volcanic complex, where (due to the method 26 

applied here) all ages are younger than those from previous studies that used whole-rock K-27 

Ar ages. Our new results show that Ciomadul’s volcanic activity began with the construction 28 

of the southeastern, peripheral domes from ca. 850 ka to 440 ka. After a ca. 250 ky long 29 

repose period, the activity resumed in the northern part at around 200 ka, with subsequent 30 

domes emplaced between 200 and 130 ka, aligned roughly north-south in the western-31 

central part of the complex. Following a 30 ky long quiescence period, the eastern-central 32 

domes formed between 100 and 60 ka.  In addition to the chronological history of lava dome 33 

volcanism, we also investigated the sequence of crystallisation of mineral phases present in 34 

the lavas with respect to the modification of eruption ages. Ages obtained on pure minerals 35 

(plagioclase, amphibole and biotite) are systematically older than those obtained on 36 

groundmass, showing that most of them formed up to 1.85 Myr before eruption in a long-37 

lived, pre-Ciomadul magmatic system. Crystal size distributions (CSD) data support the age 38 

contrasts between juvenile groundmass and older inherited minerals. After injection of new 39 

magma and convective mixing with crystal clots, ascent of the resulting led to eruptions of 40 

material representing contrasting ages. 41 
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1 Introduction 45 

Accurate, high-temporal resolution data on eruption ages are crucial to better constrain 46 

the geochemical and petrological evolution of volcanic systems (e.g. Kersting and Arculus, 47 

1994; Hildenbrand, 2004; Cadoux et al., 2005), as well as to infer hazard parameters such as 48 

recurrence rates and repose periods (Marzocchi and Zaccarelli 2006; Damaschke et al. 2018; 49 

Reyes-Guzman et al. 2018). The more accurately the volcanic activity is known, the better its 50 

recurrence can be documented and its potential risk constrained (Turner et al. 2009). Such 51 

ages also allow estimates of magma extrusion rates (Crisp 1984; Singer et al. 1997) and 52 

detailed variations of eruption rates through time and space (Hora et al. 2007; Lahitte et al. 53 

2012; Germa et al. 2015). Moreover, eruption ages help identify vent migration patterns 54 

(Tanaka et al. 1986; Connor and Hill 1995; Condit and Connor 1996; Heizler et al. 1999) in 55 

dispersed, monogenetic volcanic fields (Nemeth and Kereszturi 2015), and volcanic 56 

processes, such as magma crystallisation, vesiculation and fragmentation, that are crucial for 57 

eruption forecasting in both monogenetic (Kereszturi et al. 2017) and polygenetic volcanic 58 

systems (Turner et al. 2011; Damaschke et al. 2018). 59 

During its long-term evolution, the Miocene to Pleistocene volcanic activity of the Inner 60 

Carpathian volcanic chain in the Carpathian-Pannonian Region (CPR; Fig. 1) shifted south-61 

eastward (Szabo et al. 1992; Lexa et al. 2010). This migration defined the Călimani-Gurghiu-62 

Harghita (CGH; Kelemen – Görgényi - Hargita) 1 range, East Carpathians, Romania (Pécskay et 63 

                                                      
1 Official Romanian names, when mentioned at first, are followed by locally used Hungarian names (in 

brackets), which is helpful for the reader in finding the names on local maps 



al. 1995, 2006). The youngest centre of the CPR, Ciomadul (Csomád) volcano, is located at 64 

the south-easternmost tip of the CGH range. It is a dacitic lava domes complex truncated by 65 

the well-preserved twin craters of St. Ana (Szent Anna) and Mohoş (Szakács and Seghedi 66 

1995; Karátson et al. 2013). Ciomadul experienced a long-term eruptive history, producing a 67 

dozen lava domes emplaced during the last ca. 1 Myr over an area of 70 km² (Pécskay et al., 68 

1995; Szakács et al., 2015). Its latest, mainly explosive, activity has been dated by 69 

radiocarbon and luminescence (OSL and post-IR IRSL) methods (Moriya et al. 1996; Vinkler 70 

et al. 2007; Harangi et al. 2010, 2015b; Karátson et al. 2013, 2016) around 32 ka. This has 71 

great significance for the regional, Late Quaternary tephrostratigraphy considering the areal 72 

distribution of these tephra which extend up to 350 km eastward (Karátson et al., 2016; Wulf 73 

et al., 2016). However, Ciomadul’s whole volcanic history lacks a sufficiently constrained and 74 

reliable geochronological framework. Particularly, the recurrence time of the long-lasting 75 

dome-forming activity that preceded the explosive events is still poorly constrained. 76 

Previously obtained ages based on conventional K-Ar dating of the Ciomadul lava domes 77 

suffer from a lack of analytical accuracy (Pécskay et al. 1995; Szakács et al. 2015). An 78 

alternative approach, U-Th/He dating of zircon (Molnár et al. 2018), focused mostly on the 79 

onset of Ciomadul volcanism (around 1 Ma), without targeting the main area of the central 80 

dome complex.  81 

Even Ciomadul have experienced a long dormant period to present , with no eruption in 82 

the past 10,000 years, it is susceptible to erupt again (Szakács et al. 2015). Indeed, magneto-83 

telluric surveys suggest the presence of conductivity variations at various levels beneath 84 

Ciomadul that have been attributed to the presence of a partially molten magma body 85 

below the volcano (Harangi et al. 2015b). These authors interpreted these anomalies as a 86 

result of the presence of crystal-mush bodies containing about 5–15% melt fraction at 87 



depths of 5-25 km and 30-40 km. These depths coincide with a low velocity seismic zone 88 

located by crustal tomography (Popa et al. 2012). 89 

This paper aims to constrain the main history of extrusive activity of Ciomadul, focusing 90 

on the central dome complex and its peripheral lava domes. Due to the very young eruption 91 

ages (in the 100 ka range), apart from the 40Ar/39Ar method, the unspiked Cassignol-Gillot 92 

technique (Cassignol and Gillot, 1982; Gillot et al., 2006), which uses the K-Ar radioactive 93 

chronometer, is arguably the most precise radiometric argon dating technique that can be 94 

applied to Ca-rich volcanic rocks. . The advantage of this technique is that avoids recoil issues 95 

of 39Ar, 37Ar, and 36Ar in the reactor that may affect the 40Ar/39Ar technique. The method has 96 

proven to be well-suited for dating recent up to Holocene lavas (Samper et al. 2009; Germa 97 

et al. 2011b; Gertisser et al. 2012). In part 1 of this work, we use this method to obtain 98 

precise eruption ages and constrain the geochemical evolution of the system. In part 2 we 99 

use the results to also assess the geomorphological evolution and magma output rates that 100 

characterized the evolution of Ciomadul’s dome complex (Karátson et al., this volume). In 101 

this way we build on previous work using high-precision Cassignol-Gillot K-Ar geochronology 102 

at, for example, Basse-Terre (Samper et al. 2009), Martinique (Germa et al. 2011b, 2015) or 103 

Merapi (Gertisser et al. 2012), in illustrating how a detailed geochronological framework can 104 

support studies that also constrain magmatic evolution and time-space eruptive dynamism. 105 

2 Geological background 106 

As volcanic activity migrated south-eastward along the CGH range during the Miocene 107 

to Pleistocene (Pécskay et al., 1995, 2006), magma compositions evolved from normal calc-108 

alkaline to high-K calc-alkaline and shoshonitic (Szakács et al. 1993). This evolution was in 109 

tandem with a decrease in magmatic output rates (Szakács and Seghedi 1995; Karátson and 110 



Timár 2005). As decrease in the output rate is expressed by the progressive transition from 111 

large stratovolcanoes, occasionally with calderas, to smaller, mostly effusive cones and lava 112 

domes (Szakács and Seghedi, 1995; Karátson and Timár, 2005; Karátson et al., this volume).  113 

Ciomadul volcano (Fig. 1) represents the best-preserved lava dome complex at the 114 

southernmost end of the CGH volcanic range. Its geological setting is presented in Szakács et 115 

al. (1993; 2015), Karátson et al. (2013; this volume), Harangi et al. (2015a) and Molnár et al. 116 

(2018). A dome complex is a special type of compound polygenetic volcano where an 117 

assemblage of nested lava domes, coulees (Blake 1990) and related pyroclastic and epiclastic 118 

volcanic rocks are spaced so closely in space and time that they are considered a polygenetic 119 

volcano rather than a group of monogenetic volcanoes (Lexa et al. 2010). Mostly high-K 120 

dacitic in composition, Ciomadul consists of domes resulting from extrusion of viscous 121 

magma and comprises the spatially and volumetrically most significant central dome in this 122 

system (Karátson et al., this volume). The system also includes the more isolated 123 

southeastern andesitic domes of Dealul Mare (Hegyes-tető) and the Puturosu (Büdös) Hills 124 

(Fig. 1), but these are not studied here. To the south, there are two other domes, which have 125 

andesitic to shoshonitic composition (Szakács et al., 2015). These latter domes, as well as the 126 

adjacent, western Pilişca (Piliske) stratovolcano in the South Harghita range are older than 127 

Ciomadul (Szakács et al., 2015; Molnár et al., 2018).  128 

As already described elsewhere, such as at the Okataina Center in New Zeland's Taupo 129 

Volcanic Zone (Smith et al. 2004, 2005; Shane et al. 2007; Rubin et al. 2016), the magma 130 

batches of Ciomadul’s dacites were probably produced as the result of reheating by 131 

intrusion(s) of hot mafic magma into a silicic reservoir (Kiss et al. 2014). In particular, 132 

crystallisation of amphibole has been related to the storage of a near-solidus silicic crystal 133 

mush body at 8 – 12 km depth (Kiss et al. 2014). The remobilization of silicic crystal mush can 134 



provide a large amount of xenocrysts, which constitutes up to one third of the volume of the 135 

erupted silicic magma of some lava domes as observed, for instance, on Santorini or 136 

Montserrat (Zellmer et al. 2000, 2003). At Ciomadul, the role of these xenocrysts has yet to 137 

be shown and analysed. The xenocrysts, isolated or as part aggregates of crystals called 138 

glomerocrysts (or crystal clots), may have reached the surface with a part of the radiogenic 139 

argon (40Ar*) they had accumulated since their formation, making K-Ar dating of the dacitic 140 

domes challenging. Indeed, these xenocrysts are carriers of extraneous argon, which are 141 

prone to bias K-Ar ages (Dalrymple and Moore 1968; Stipp et al. 1969; Ozawa et al. 2006). 142 

3 Petrology of the Ciomadul lava domes 143 

Detailed petrology of the Ciomadul lava domes was already well established by 144 

previous studies ((Kiss et al. 2014; Harangi et al. 2015b; Szakács et al. 2015)). We here only 145 

highlight their main characteristics. Ciomadul lava dome rocks are mainly high-K calc-146 

alkaline, poorly vesicular dacites. Mainly porphyritic, these rocks contain 20-35 vol% coarse 147 

crystals (most of them being xenocrystic, see below) commonly set in a fine-grained, light-148 

grey groundmass. In order of relative abundance, these include plagioclase (An85–30, 10-25 149 

vol%), amphibole (5-13 vol%), biotite (1-4 vol%), orthopyroxene (1-2 vol%), and Fe-Ti oxides 150 

(1-2 vol%). Plagioclase occurs as euhedral laths up to 10 mm in size and often exhibits 151 

inclusions of green-brown biotite, euhedral amphibole, and sparse equant Fe-Ti oxide 152 

crystals. Euhedral crystals include mainly plagioclase, some exhibiting oscillatory zoning and 153 

sieve textures, and amphibole. Subhedral biotite is present as red-brown, pleochroic tabular 154 

laths up to 5 mm in length (Szakács et al. 2015). Red-brown hornblende (low-Al amphibole 155 

with thick breakdown rims) and pargasite (high-Al amphibole with thin reaction rims) are 156 

present as rounded, subhedral to anhedral crystals up to 10 mm in size (Kiss et al., 2014; 157 



Harangi et al., 2015b), containing abundant inclusions of Fe-Ti oxides, plagioclase or biotite. 158 

From thermobarometrical modelling, formation of amphiboles has been interpreted as 159 

bimodal (Kiss et al., 2014); hornblende having formed at lower temperature (< 800°C) and 160 

pargasite having formed at higher temperature (950°C). 161 

The dome rocks contain abundant glomerocrysts or crystal clots, which are aggregates 162 

of crystals. Importantly for dating, these glomerocrysts consist of remobilised crystals (> 1 163 

mm and up to 15 mm in diameter, Fig. 2) with microdiorite textures, containing mainly 164 

rounded and slightly altered plagioclase and amphibole, in addition to Fe-Ti oxides, apatite, 165 

biotite and zircon. Such remobilised crystals are here referred to as xenocrysts, whereas the 166 

term glomerocryst is used for an aggregate of xenocrysts remobilised from crystal mush. The 167 

groundmass of the dome lavas contains plagioclase, hornblende, biotite with occasional 168 

orthopyroxene, Fe-Ti oxide and glass. 169 

4 Methods 170 

4.1 Applying the unspiked Cassignol–Gillot K-Ar technique 171 

The unspiked Cassignol-Gillot technique allows the accurate detection of low 172 

percentages of radiogenic 40Ar (Quidelleur et al., 2001). It has been applied to the dating of 173 

young (< 100 ka) volcanic events and successfully compared with other dating methods such 174 

as 14C, 36Cl exposure and thermo-luminescence (Lahitte et al. 2001; Gillot et al. 2006; Germa 175 

et al. 2010; Schimmelpfennig et al. 2011). The technique was also favourably compared with 176 

the 40Ar/39Ar method and gave similar results when applied to groundmass samples (Coulie 177 

et al. 2003; Calvert et al. 2006; Hildenbrand et al. 2014). 178 

4.1.1 The unspiked Cassignol–Gillot technique 179 

Independent K and Ar measurements were performed in the Laboratoire GEOPS 180 

(GEOsciences Paris-Sud, Orsay, France). Following dissolution using a mixture of HF, nitric 181 



and perchloric acids to destroy the silicate network, potassium (K) was measured by flame 182 

emission spectroscopy. Ar isotopic measurements were performed using a 180°-sector mass 183 

spectrometer (Cassignol and Gillot 1982; Gillot et al. 2006). This technique has a limit of 184 

detection for the radiogenic Ar content (40Ar*) of only 0.1% of the total extracted argon 185 

(Quidelleur et al. 2001). Details of the Ar isotopic approach are given elsewhere (Cassignol 186 

and Gillot 1982; Gillot and Cornette 1986; Gillot et al. 2006) and are summarized in the 187 

Supplementary Material. To minimize the effect of mass-discrimination, the amount of 188 

radiogenic argon (%40Ar*) was calculated from a direct comparison between the 189 

instrumental 40Ar/36Ar sample ratio and the instrumental 40Ar/36Ar atmospheric ratio at 190 

identical pressure. Unlike the conventional K-Ar technique, this direct quantification does 191 

not add a 38Ar spike and is made possible by the very stable analytical conditions. Average 192 

relative uncertainties of the 40Ar/36Ar ratios and on the amount of radiogenic argon (%40Ar*) 193 

are 0.045% and 1.533%, respectively. The technique relies on the assumption that all the 194 

measured 40Ar* comes from the in-situ radioactive decay of 40K.  195 

4.1.2 Sample preparation  196 

Extraneous argon, i.e. argon not generated by in situ decay of potassium, originates 197 

from inherited argon and excess argon, and may bias K-Ar ages (Dalrymple and Moore 1968; 198 

Stipp et al. 1969; Ozawa et al. 2006). Inherited argon consists of the contamination by older 199 

minerals incorporated into the juvenile magma before eruption, whereas excess argon is 200 

introduced from outside the system, commonly from fluid circulations (Kelley, 2002). Our 201 

sample preparation procedure (from fieldwork sampling to the sample separation) aims at 202 

isolating the groundmass from such a source of extraneous argon. Given the incompatible 203 

nature of argon, mineral/fluid and mineral/melt partition coefficients range from 0.01 to as 204 

low as 7×10−6, and excess argon remains a relatively uncommon phenomenon (Kelley, 2002). 205 



On the other hand, extraneous argon may result from the contamination by older country 206 

rock (inherited argon in xenoliths), or by excess argon present either in inclusions of glass 207 

within phenocrysts (Dalrymple and Moore 1968) or in hydrous fluid in the grain boundary 208 

network (Kelley 2002). As K-Ar ages do not give spectra to check the presence of inherited 209 

argon, dates may be erroneously too old due to such contamination sources. However, 210 

accurate sampling, sample separation, and very strict selection of a narrow density range of 211 

pure groundmass greatly minimizes the risk of contamination due to the presence of 212 

extraneous argon. 213 

4.1.3 Sample selection 214 

During two field campaigns (in October 2015 and June 2016), 25 samples (about 3 kg-215 

weight each), were collected from Ciomadul’s lava domes. The sample locations are shown 216 

in Figure 1 with the UTM coordinates listed in Table 2. Some of the sampled domes were 217 

assumed to be coeval with the late-stage (<50 ka) pyroclastic (fall and flow) deposits 218 

(Harangi et al., 2010, 2015a, Karátson et al., 2013, 2016; Wulf et al., 2016). In the field, only 219 

samples without visible obvious traces of alteration (calcite, zeolite, or any secondary 220 

minerals) and fluid circulation were collected. An additional inspection of thin sections, and 221 

checking the freshness of the groundmass, reduced the number of samples to be dated to 222 

18, representing nine individual lava domes. The low loss-on-ignition (LOI) values (less than 223 

1.6 wt%, Table 3) indicate that secondary weathering processes have not significantly 224 

affected the selected samples. These criteria reduce the possible bias of K-Ar ages related to 225 

K loss or gain via alteration.  226 

4.1.4 Sample separation 227 

One of the main issues in determining the eruption age of the xenocryst-bearing 228 

lavas from the Ciomadul domes is to separate pure groundmass aliquots from numerous 229 



xenocrysts and phenocrysts, which are potential carriers of extraneous argon. The 230 

probability of extraneous argon increases with the range of the groundmass density. Indeed 231 

aliquots having a large range of density may contain significant amounts of xenocryst and 232 

phenocryst fragments together with the groundmass. In our work, we lowered the relative 233 

density range to less than 0.05 (dimensionless quantity). To separate the groundmass as 234 

much as possible from inherited minerals, we applied a two-step procedure. 235 

First, the whole-rock sample was crushed and sieved to the 250–500 µm size fraction 236 

and then ultrasonically washed in 10% nitric acid solution in order to remove any traces of 237 

alteration (clay, sulphur, carbonate, etc.) and hydrothermal products (zeolites, salt 238 

containing chlorine compounds, some of them being that isobar to argon isotopes). Finally, 239 

the sample was rinsed with water, ethanol and acetone, and ca. 200 g clean material was 240 

obtained. Neither HF nor HCl acid were used during sample cleaning in order to avoid 36 241 

mass isobaric contamination (by HCl) that could bias the 36Ar detection or induce dissolving 242 

and loss of K (HF and HCl) as was observed in the study of Balogh et al. (2010). Groundmass 243 

aliquots were separated by means of heavy liquids (bromoform progressively diluted in 244 

ethanol) and, if necessary, by magnetic separation (Gillot et al. 1992). This procedure was 245 

efficient in separating the mixed grains of biotite/groundmass or amphibole/groundmass 246 

from the pure groundmass, although, in some cases, it was not possible to eliminate the 247 

mixed plagioclase/groundmass grains.  248 

This first preparation step was followed by additional crushing to the 62.5-125 µm size 249 

fraction (Fig. 3b). After cleaning, a second density separation was performed to isolate the 250 

groundmass fraction (Fig. 3c) from the remaining plagioclase crystals (Fig. 3d). Following the 251 

density separation, magnetic separation and handpicking were performed to guarantee the 252 

absence of plagioclases in the aliquots to be dated.  253 



Pure phenocrysts and xenocryts (K-feldspar, plagioclase, biotite and amphibole) were 254 

separated from the 250-500 µm fraction in an attempt to estimate the contribution of 255 

inherited argon in whole-rock dating. We also separated plagioclase microphenocrysts from 256 

samples 16CIO01 and 16CIO04 as their groundmass was slightly altered. 257 

4.2 Crystal size distribution analysis 258 

In order to highlight the petrographical properties of the Ciomadul dacitic lavas and, and 259 

determine its impact on the ideal fraction for K-Ar dating, crystal size distribution (CSD) 260 

analyses were obtained on representative samples, following standard methods (Higgins 261 

1996). High-resolution photomicrographs were taken and digitally merged together to 262 

create single large thin-section images. These images (6400 × 4800 pixels) were imported 263 

into ImageJ software, where contrast and brightness were adjusted to highlight crystal 264 

boundaries. For each crystal population, including plagioclase (selected by white and/or 265 

bright zones) and mafic crystals (amphibole and biotite, orange to dark brown zones), colour 266 

histogram analyses and thresholding were applied to outline crystals. Small crystals (< 10 267 

pixels) were removed from these binary images. Best-fit ellipses were applied to determine 268 

long- and short-axis measurements. Mean crystal aspect ratios were calculated using the 269 

CSDSlice methodology (Morgan and Jerram 2006). For all grain categories, the number of 270 

measurements was at least 10 times higher than the minimum recommended (Mock and 271 

Jerram 2005; Morgan and Jerram 2006). Intersection lengths were converted to 3-D CSDs, 272 

using the CSDCorrections 1.6 software (Higgins 1996, 2002, 2006). Lmax is calculated by 273 

averaging the four largest crystals within each identified population. The lower limit of the 274 

CSD was 0.010 mm (which is not necessarily the smallest crystal in the rock). Samples were 275 

classified as massive and approximate crystal roundnesses of 0.3 for plagioclase and 0.6 for 276 



mafic crystals (on a scale of zero, angular, to one, spherical) were used. Logarithmic length 277 

intervals were used, with each bin 100.2 times the size of the previous bin. Bins with less than 278 

three crystals were removed from the CSD analysis. Where CSD slopes were curved or 279 

kinked, individual segments were interpreted using least squares regression.  280 

4.3 Petrographical and geochemical analyses  281 

To highlight the importance of the main mineral phases, a petrographical analysis was 282 

performed in order to estimate the relative proportion of the main phenocrysts (plagioclase, 283 

biotite, and amphibole), xenocrysts, glomerocrysts and groundmass. Major-element whole-284 

rock analyses were also performed on the newly dated lava rock samples by ICP-AES to 285 

assess the geochemical evolution through time. The samples were analysed at Bureau 286 

Veritas Minerals, Vancouver, Canada, following standard sample preparation and analytical 287 

techniques. 288 

5 Results 289 

5.1 Crystal size distribution analysis and justification of the groundmass separation process 290 

Crystal size distribution data based on the major axis of the fitting ellipsoid and 291 

results are presented in Table 1. Almost all samples (black curves in Fig. 4a) show CSD plots 292 

for both plagioclase and mafic mineral phases that exhibit kinked profiles, allowing each to 293 

be divided into two individual segments. On the other hand, sample 16CIO08 differs with its 294 

much more linear CSD profile (coloured curves in Fig. 4a), particularly for the mafic minerals. 295 

A downturn in the smallest crystal sizes can appear either from real population proportions 296 

or from analytical bias (Higgins 1996, 2002). Considered as representing a left-hand 297 

truncation effect, these bins were removed from analyses.  298 



Plots for plagioclase show the most prominent kinked CSDs (black curve, Fig. 4b). 299 

Each curve can be divided into two distinctive segments, defined by sizes <0.125 and > 1 300 

mm. Volumetric plagioclase proportions range from 29.5 to 38.0 vol% and maximum length 301 

(Lmax in Table 1) from 2.93 to 4.79 mm. Average characteristic length values, defined as the 302 

opposite of the inverse of the slope (Marsh 1988), are around 0.02 mm for the smaller 303 

populations and range from 0.65 to 2.12 mm for the larger ones.  304 

Mafic mineral (biotite) CSDs show concave-upward patterns that are smoother than 305 

those for plagioclase (grey curve, Fig. 4c) but kinked enough to divide trends into two slopes 306 

(<0.125 and > 1 mm). Volumetric mafic mineral proportions range from 7.9 to 12.3 vol% and 307 

Lmax from 1.39 to 2.08 mm. Average characteristic length values range from 0.016 to 0.025 308 

mm for the smaller mafic populations and from 0.32 to 0.50 mm for the larger ones. 309 

Using the method of Marsh (1988), and from the growth rates of plagioclase 310 

microphenocrysts estimated at around 1 × 10−10 mm s-1 (Higgins and Roberge 2007), 311 

residence times for these populations are around six years. Such delay cannot be related to 312 

the magma ascent (estimated at 12 days by Kiss et al., 2014), but to the magma storage 313 

preceding eruption (Kiss et al., 2014; Harangi et al., 2015b). 314 

CSD plots do not take into account more than 50 % of the total crystal volume (grey 315 

in Fig 4A insets). This is the population corresponding to grains smaller than 0.010 mm, and 316 

constitutes the microlitic groundmass. This population represents material that crystallised 317 

during the eruption.  318 

As the microlitic fraction and microphenocrystic populations not contain pre-eruption 319 

inherited argon that may bias results, it represents the ideal fraction for eruption age 320 

determination. We hereafter refer to this population as groundmass. The 0.125 – 1 mm 321 



fraction corresponds to the juvenile magma groundmass and the smaller phenocrysts, 322 

possibly inherited as xenocrysts. As a result, this population is not suitable for determining 323 

an eruption age. The > 1 mm fraction is mostly made up of pre-eruptive and, possibly, 324 

inherited-argon-rich minerals. As crushing would reduce the larger minerals into grains 325 

having the same size and almost the same density as the smaller minerals, simply crushing 326 

and separating them in a single-step procedure is not suitable. Groundmass aliquots were 327 

thus obtained during the two-step procedure described above (see also Fig. 3), with each 328 

separation step contributing to the maximum possible purification of the originally <0.125 329 

mm fraction by removing grains considered to have originated from phenocrysts or 330 

glomerocrysts, i.e. from any crystals initially larger than 0.125 mm.  331 

5.2 K-Ar ages 332 

K-Ar ages are reported in Table 2, with all uncertainties quoted at the one-sigma (1σ) 333 

level. Age calculations are based on the 40K abundance and decay constants 334 

recommendedby Steiger and Jager (1977). The argon content is calculated from two 335 

independent measurements. As a higher abundance of radiogenic 40Ar* means a lower 336 

uncertainty on the age, the average age and its 1-σ uncertainty have been calculated by 337 

weighting each independent age measurement with its amount of radiogenic 40Ar*. 338 

Percentages of 40Ar* range from 1.03% to 34.3 vol%, with respective relative uncertainties 339 

between 6.48% and 0.27%. Relative errors of the ages are between 12.6% and 1.44%, the 340 

latter value being near the limit of our method set at 1.42% for a 100% radiogenic sample, 341 

i.e. when only the relative uncertainties on K-content (1%) and argon calibration (1%) affect 342 

the result. With the exception of sample 16CIO04, all Ar analyses were successfully 343 

duplicated at the 1-σ level (Table 2). The poor reproducibility of sample 16CIO04 may reflect 344 



grain heterogeneity within the sample. In this case, the uncertainty of the age was calculated 345 

as the standard deviation of the duplicated age measurements. 346 

Even if our strict selection effectively removed phenocrysts, glomerocrysts and their 347 

fluid inclusions, greatly minimizing the risk of biasing ages by excess argon, we have to 348 

consider that the elimination of excess argon might not have been perfect. Such cases would 349 

induce eruption ages that are slightly younger than our results.  350 

5.2.1 South-eastern and northern domes 351 

Three new K-Ar ages constrain the emplacement time of the peripheral domes of the 352 

Ciomadul area (Table 2, Fig. 1 and Fig. 5) in addition to the somewhat older Dealul Mare. The 353 

radiogenic argon content (40Ar*) of the dated samples varies from 4 to 35 vol%, this latter 354 

value being related to the exceptional freshness of the sample, yielding very low 355 

atmospheric contamination. The groundmass K content is homogenous, from 3.23 to 3.59 356 

wt%.  357 

The two south-eastern peripheral domes of Muntele Puturosu (Büdös Hill) and 358 

Balvanyos (Bálványos Hill) represent relicts of apparently heavily eroded domes that cut 359 

through the Cretaceous flysch (Szakács et al., 1993, 2015). Muntele Puturosu was dated at 360 

704 ± 18 ka (16CIO08). The Balvanyos dome, which is the south-easternmost volcanic 361 

extrusion of the Ciomadul area (Fig. 1), is dated at 641 ± 9 ka (16CIO07) and 440 ± 12 ka 362 

(16CIO06). Based on the more proximal position of 16CIO07 the 641 ka age may better 363 

constrain the emplacement age of the Balvanyos dome, and the younger sample could be 364 

linked to another, nearby eruption source no longer morphologically visible. Due to the small 365 

error even at the 2σ level, it can be concluded that the two samples are from successive, 366 

adjacent eruptions separated by a long time gap. 367 



In the north, the groundmass separated from the sample collected from the Haramul 368 

Mic (Kis-Haram) dome (16CIO01) shows very high atmospheric contamination. Therefore, no 369 

trustworthy age could be obtained on the groundmass. Instead, plagioclase 370 

microphenocrysts, which crystallized shortly before eruption were processed, giving an age 371 

of 245 ± 24 ka. However, due to presence of glomerocrysts, the probability that the aliquots 372 

of plagioclase microphenocrysts contain inherited grains is not zero. As a consequence, the 373 

K-Ar age has to be considered a maximum value. Because Haramul Mic is the oldest part of 374 

the main dome complex, this age implies that most of the extrusive dome activity of 375 

Ciomadul was constrained within the past 250 ky. 376 

5.2.2 Western-central part of the dome complex 377 

The most important results of our work are related to the western-central main part of 378 

the dome complex, which represents the largest volume of Ciomadul (Karátson et al., this 379 

volume). Of these domes, only Haramul Mare (Nagy-Haram), Dealul Cetăţii (Vár-tető), Dealul 380 

Taca (Fáca) and Piscul Pietros (Köves Ponk) have been dated by applying the conventional K-381 

Ar technique (Pécskay et al. 1992, 1995; Szakács et al. 2015). In addition, Piscul Pietros was 382 

also dated by the U-Th/He method (Harangi et al. 2015a), whereas Dealul Cetăţii (Vár-tető) 383 

and Haramul Lerbos (Fű-Haram) were dated using uncorrected U-Th/He measurements 384 

(Karátson et al. 2013), only providing age ranges.  385 

The obtained ages define a 50 ky time span from about 184 ka to 133 ka (Table 2, Fig. 1 386 

and Fig. 5), showing that the majority of the Ciomadul domes were formed in a relatively 387 

short time interval. The K-content varies from 1.39 wt% (on plagioclase microphenocrysts) to 388 

3.72 wt% (groundmass), whereas radiogenic argon contents (40Ar*) range from 1.2 to 4.4 389 

vol%, inducing relative uncertainties between 3 and 14%. The Dealul Cetăţii (Vár-tető) dome 390 

in the north has been dated at 184 ± 5 ka (sample 15CIO01), whereas the Vârful Comlos 391 



(Komlós-tető) dome (sample 16CIO02) yielded an age of 144 ± 4 ka. Adjacent to Vârful 392 

Comlos, the dome of Ciomadul Mare (sample 16CIO04) represents the northern rim of the 393 

twin-craters of St. Ana and Mohoş, and may morphologically correspond to an older, larger 394 

explosion crater (Karátson et al. 2013; Szakács et al. 2015) created during the early Mohoş 395 

explosive eruptions. To minimize risk of contamination by gas released during the last 396 

explosive phase from the younger craters, and because the St. Ana crater area is still 397 

experiencing gas emanation, the material retained to date this dome consisted of plagioclase 398 

microphenocrysts. These were separated by the two-step procedure from the 40 – 80 µm 399 

grain size fraction obtained after crushing the 80 - 160 µm groundmass fraction. The very 400 

small grain size used in both steps allowed minimization of the traces of inherited minerals. 401 

The extracted plagioclase microlite fraction, which is expected to be contemporaneous with 402 

the eruption, provided an age of 133 ± 18 ka (Table 2), indistinguishable from the Vârful 403 

Comlos data, even at 1σ level. 404 

5.2.3 Eastern-central part of the dome complex 405 

After a quiescence lasting tens of thousands of years, volcanic activity resumed at 406 

around 100 ka to form the eastern-central domes (Fig. 1). The Haramul Mare dome (sample 407 

15CIO09), has been dated at 96 ± 2 ka (Table 2). At the southern rim of the Mohoş crater, a 408 

rock sampled on the active face of a quarry offered access to a fresh sample of the Piscul 409 

Pietros (Köves Ponk) dome, which is morphologically truncated by the Mohoş crater. It has 410 

been dated at 60 ± 5 ka (sample 16CIO09, Table 2).  411 

5.3 Geochemistry of the lava domes 412 

Representative chemical analyses of the dated samples are given in Table 3. 413 

Concentrations of SiO2 for the Ciomadul lava domes range between 62.8 and 68.4 wt%, and 414 

belong to the high-K calc-alkaline (HKCA) series. There is a dacitic composition for all but two 415 



samples of the Balvanyos dome (16CIO06 and 16CIO07), the latter straddling the boundary 416 

with the high-K andesite field (Fig. 6a). We note that the southern Dealul Mare dome, not 417 

studied here, also falls in this latter andesite field (Szakács et al., 2015). 418 

Major element contents (using SiO2 as a differentiation index; Fig. 6b) show that MgO, 419 

CaO, Al2O3, MnO, Fe2O3, P2O5 and TiO2 decrease with SiO2, whereas K2O slightly increases; as 420 

does Na2O but with a more scattered distribution. These evolutionary trends are consistent 421 

with fractional crystallization of plagioclase, amphibole, pyroxene, biotite and Ti-Fe oxides. 422 

Specifically, the decreasing trends of CaO and Al2O3 as SiO2 increases, for all samples but 423 

16CIO08, are explained by predominantly plagioclase fractionation.  424 

6 Discussion 425 

6.1 Timing of lava dome activity 426 

Our new K-Ar ages for the extrusive products of the Ciomadul lava dome complex 427 

allow better constraints on its dynamism. In particular, they reduce the age range previously 428 

suggested by Pécskay et al. (1995) and Szakács et al. (2015), showing that the mainly 429 

extrusive, dome-building activity occurred in two main stages and is younger than 1 Ma.  430 

Our derived ages indicate that two stages can be distinguished in the construction of 431 

the Ciomadul system. The first stage (Table 2) produced the south-eastern peripheral domes 432 

of Muntele Puturosu and Balvanyos (Figure 1). In addition to the somewhat older Dealul 433 

Mare (Szakács et al. 2015; Molnár et al. 2018), the duration of this stage is constrained 434 

between around 850 and 440 ka. The second, and volumetrically most significant, stage of 435 

Ciomadul, began around 200 ka with the Haramul Mic dome-forming eruption. This stage 436 

built the northern and central portions of the dome complex. In turn, the main lava domes 437 

that form this second stage can be divided into two phases, an older phase between 200 and 438 



130 ka and a younger phase beginning around 100 ka. Within the second phase, the 60 ka 439 

age of Piscul Pietros roughly coincides with the onset of the late-stage explosive eruptions 440 

(Harangi et al. 2015a; Karátson et al. 2016). Overall, the activity of the Ciomadul lava-dome 441 

complex is aligned approximately north-south, sub-parallel to a local fault (Matenco et al. 442 

2007). This suggests a tectonic control on magma extrusion which was characterized by two 443 

stages, separated by a long repose of ca. 440-200 ka. Dome eruptions over the main eruptive 444 

stage of Ciomadul (< 200 ka) point to a recurrence time of ca. 30 ka. Such an interval is in the 445 

same order of magnitude as the age of the latest volcanic event (Karátson et al., 2016), 446 

confirming the dormant (i.e. not extinct) status of the volcano as also suggested by fumarole 447 

activity (Vaselli et al. 2002; Kis et al. 2017), seismic tomography (Popa et al. 2012), and 448 

magnetotelluric surveys (Kiss et al. 2014; Harangi et al. 2015b).  449 

6.2 Comparison with previous radiometric results  450 

The issue of obtaining radiometric ages from whole-rock has been demonstrated 451 

elsewhere as possibly inducing biased results (Hofmann et al. 2000; Samper et al. 2007; 452 

Germa et al. 2011a). For instance, 40Ar/39Ar dating of lava domes on Montserrat yielded an 453 

age of 223 ± 7 ka using whole rock, whereas groundmass measurements produced an age of 454 

155 ± 5 ka (Harford et al. 2002). The same study on the active dome obtained a surprisingly 455 

old age of 426 ± 95 ka on pure plagioclase and only 21 ± 22 ka on the groundmass fraction. 456 

This bias is particularly significant for young samples where any contamination effect would 457 

be magnified proportionally to the small amount of in-grown radiogenic Ar. In contrast to 458 

various crystal phases, the groundmass is the last phase to crystallize when the lava cools 459 

upon eruption. It is thus enriched in incompatible elements, including potassium, and in 460 



elements which are in equilibrium with the atmosphere. Hence the initial argon isotopic 461 

ratios in the groundmass are atmospheric, and are devoid of radiogenic argon (40Ar*). 462 

Szakács et al. (2015) excluded the possibility of overestimated ages as they considered 463 

quartz phenocrysts as the most likely source of excess argon, which are very uncommon in 464 

the Ciomadul lavas (Kiss et al., 2014). However, as seen in Table 4 and Fig. 4, our groundmass 465 

ages contrast with those obtained from whole rock analyses by applying the conventional K-466 

Ar method (Pécskay et al. 1995; Szakács et al. 2015). Only one sample (16CIO08, M. Puturosu 467 

dome) has an age (704 ± 18 ka); compatible at 1-σ level with that obtained from whole rock 468 

by the conventional K-Ar technique (710 ± 40 ka, Table 4). For the remaining samples, 469 

considering the 2-σ level, only two out of the seven ages match, but these agreements are 470 

mostly due to the large uncertainties on conventional K-Ar results (Fig. 5; Table 4).  471 

Biotite from the Piscul Pietros dome, which was dated by both techniques, gave 472 

comparable ages of 290 ± 110 ka by conventional K-Ar (Szakács et al. 2015) and 196 ± 4 ka by 473 

the unspiked Cassignol-Gillot technique (this work); again the overlap of the ranges is only 474 

due to the very large error of the former. On the other hand, neither of these two ages are 475 

consistent with the age of 560 ± 110 ka initially proposed by Pécskay et al. (1992).  476 

Our groundmass dating of the Balvanyos dome, the south-easternmost Ciomadul 477 

dome (Fig. 1), yielded ages of 641 ± 9 ka (16CIO07) and 440 ± 12 ka (16CIO06), in contrast to 478 

previous ages of 920 ± 180 ka and 1020 ± 150 ka obtained by whole-rock K-Ar dating 479 

(Pécskay et al. 1995). Again, the minimal overlap (at 2) with the age obtained by the 480 

unspiked Cassignol-Gillot technique is only due to the very large error. Consequently, it is 481 

likely that these ages would not be coeval, if measured with the same range of uncertainties. 482 

It thus involves a possible shift toward older ages for the whole-rock K-Ar measurements, 483 

mostly induced by inherited argon.  484 



One of the most controversial ages of Ciomadul was assigned to the northernmost 485 

dome, Haramul Mic (Kis-Haram), with an unpublished K-Ar age of 0.85 Ma (without reported 486 

uncertainties by Casta (1980), quoted in Szakács et al. 2015). Karátson et al. (2013) argued 487 

that the recent “pancake” shape of the dome (which is in contrast to other, high and steep-488 

sided Peléan domes and coulées of Ciomadul) is not due to the old age, but simply reflects 489 

the original flat dome shape. Indeed, we dated this dome at 245 ± 24 ka using plagioclase 490 

microphenocrysts, which provides a maximum age. Szakács et al. (2015) also reported a K-Ar 491 

age of 210 ± 50 ka obtained from a block 2 km west of the dome. In agreement with this 492 

date, our dating confirms that, after at least a ca. 250 ky-long quiescence, extrusive activity 493 

resumed at Haramul Mic less than 250 ka ago.  494 

The systematic offset between groundmass and whole rock ages can be related to an 495 

extraneous 40Ar component in the whole rock measurement, which comes from the 496 

inclusion of xenocrystic minerals. To evaluate the effect of extraneous 40Ar on age results, 497 

we conducted a component analysis on a thin section of sample 15CIO01 (Fig. 3a), whose 498 

groundmass was dated at 184 ± 5 ka. Our aim was to calculate a whole-rock age by 499 

combining ages of the groundmass and the plagioclase fraction (the two dominant phases) 500 

with respect to their proportions in the sample. For the calculation, the thin section image 501 

was converted to a black and white image by setting a threshold. Below a value of 20% on 502 

the gray scale pixel is converted in black, otherwise is converted in write. This allows us to 503 

distinguish plagioclase (in white in Fig. 7a) from groundmass (in black). Because of the 504 

sample grain size (200 µm), the composition was next simulated by averaging the tone of 505 

each 200 µm-wide subset (i.e. 40 pixel-wide square zones on the image). The composition 506 

was then defined on the grey scale, from a material of pure plagioclase (100% on grey scale, 507 

i.e. white on Fig. 7a), to one fully composed of groundmass (0% on grey scale, i.e. black on 508 



Fig. 7a), including mixed material defined by an intermediate tone on grey scale (Fig. 7a). In 509 

order to highlight the composition of each grain, a colour map is also proposed (Fig. 7b). 510 

Pure plagioclase and pure groundmass grains are coloured in yellow and blue, respectively. 511 

Mixed grains are illustrated by variation of red lightness: black for grain having a composition 512 

almost similar of a groundmass grain, red for the perfectly intermediate composition (50% 513 

groundmass - 50% plagioclase), white for grain having a composition almost similar of a 514 

plagioclase grain (Fig. 7b). The age of each grain population was then modelled by 515 

considering its plagioclase/groundmass ratio (dotted black curve in Fig. 7c). The thin section 516 

reveals a composition of about 11 vol% of pure plagioclase dated at 1.1 Ma (Table 5), 60 517 

vol% of pure groundmass dated at 184 ka (Table 1), and 29 vol% of mixed grains with mixed 518 

ages (Fig. 7c). Applying the mixing theory to our multiphase and multi-age sample (Boven et 519 

al. 2001), the whole rock age can be constrained by weighting each grain population age by 520 

its proportion of the total: 521 

A = ( ai × pi × Ki)/ ( pi  × Ki)   (Eq. 1)  522 

where ai, pi and Ki are ages (right Y-axis values in Fig. 7c), proportions, and K-contents of 523 

each grain population i, respectively. Such a calculation using a whole rock age model gives 524 

320 ± 8 ka, 74% older than the groundmass age of 184 ± 5 ka, and in agreement with the 400 525 

± 160 ka age previously obtained from whole rock data for the same dome (Szakács et al. 526 

2015). The whole rock model age shows the effect of only superficially removing the 527 

inherited xenocrysts from groundmass, as performed in the previous K-Ar studies. 528 

A relationship between the volume percentages of glomerocrysts and inherited 529 

radiogenic argon was also assessed (Table 4). To apply this, the volume percentage of 530 

glomerocrysts is obtained from thin section analysis, and a proxy of inherited radiogenic 531 

argon is calculated as follows: 532 



wrAri = (wrAge - gmAge ) / wrA   (Eq. 2)  533 

where wrAri is the percentage of radiogenic argon assumed to have originated from inherited 534 

minerals, and wrAge and gmAge are the ages obtained from whole rock and groundmass 535 

analyses, respectively. All samples dated by both techniques were considered. The sample 536 

with no glomerocrysts (16CIO08, M. Puturosu dome) is the only one that does not display 537 

inherited argon as the whole rock and groundmass ages are coeval. It is also the sample 538 

where the CSD plot presents the most linear relationship. This can be taken as a sign of a 539 

single crystal population, or a minimal proportion of inherited crystals (coloured curves in 540 

Fig. 4a). On the other hand, sample 15CIO09 (Haramul Mare dome) has a 25 % glomerocrysts 541 

content by volume, and 84 ± 35 % of its radiogenic argon originates from inherited argon 542 

(Table 4). A good correlation (Pearson correlation coefficient R ~ 0.95) exists between 543 

glomerocryst abundance and inherited radiogenic argon (Fig. 7). This correlation remains 544 

good even if the glomerocryst-free sample (of M. Puturosu) is omitted. The correlation 545 

between glomerocryst abundance and inherited radiogenic argon allows a corrected age for 546 

the Dealul Taţa dome to be derived. Thin section analysis of the same dome lava, as dated 547 

on whole rock at 430 ± 50 ka by Szakács et al. (2015), displays a 23 vol% glomerocryst 548 

content. It contains 85 ± 20 % of inherited argon (blue thin lines in Fig. 8) which implies an 549 

age of 64 ± 61 ka. This age is still poorly constrained but is consistent with those obtained 550 

here for the same area across which are younger than 144 ka (Fig. 1). 551 

Some of our new K-Ar ages are in good agreement with published (U–Th)/He ages 552 

(Karátson et al. 2013; Harangi et al. 2015a; Molnár et al. 2018). For the M. Puturosu dome, 553 

the (U–Th)/He age of 642 ± 44 ka (Molnár et al. 2018) is similar to both the conventional K-Ar 554 

age of 710 ± 40 ka (Szakács et al. 2015) and our new K-Ar age of 704 ± 18 ka, which are all 555 

coeval at 2. Also, our new ages for the Balvanyos dome, 641 ± 9 ka and 440 ± 12 ka, are 556 



similar to the 583 ± 30 ka (U-Th)/He age of Molnár et al. (2018). Note, however, that there is 557 

a strong alteration of the dome rocks of the Balvanyos summit, close to where the (U-Th)/He 558 

age was obtained (Molnár et al. 2018). Instead, both our dated samples were taken at the 559 

periphery of the dome from talus debris containing fresh rocks. Of these samples, the 560 

position of 16CIO07 is the most proximal to the dome, and therefore the 641 ± 9 ka date is 561 

that proposed to constrain the Balvanyos dome extrusion; overlapping with the 583 ± 30 ka 562 

(U-Th)/He age at 2.  563 

The Haramul Mic dome was dated at 163 ± 11 ka by (U–Th)/He by Molnár et al. (2018). 564 

This is only slightly different (at 2) from our age obtained from plagioclase 565 

microphenocrysts (245 ± 24 ka). In this case, because our age was considered as a maximum, 566 

the younger (U–Th)/He age is more likely. The similar age obtained by both methods 567 

confirms the conclusion that the main lava dome activity of Ciomadul started at around 200 568 

ka.  569 

On the other hand, there are also a number of (U–Th)/He ages which are not in 570 

agreement with our dates. Of these, the results proposed for the Dealul Cetăţii dome are not 571 

coeval even at 2: 184 ± 5 ka (this study) and ca. 116 – 142 ka (Karátson et al., 2013). Also, 572 

the Piscul Pietros (Köves Ponk) dacitic dome yielded an age of 60 ± 5 ka (this study), which is 573 

older than the (U–Th)/He age obtained from zircon (42.9 + 1.4 - 1.5 ka) by Harangi et al. 574 

(2015b). In this latter case, that the (U–Th)/He age is possibly too young could be due to 575 

three reasons. First, the (U–Th)/He age is significantly lower than the 380 ka-long U–Th 576 

secular equilibrium (Farley et al. 2002), consequently it correction of the U-Th concentration 577 

at the scale of each dated zircon (Schmitt et al. 2010; Danisik et al. 2012), making the ages 578 

very sensitive to the accuracy of such a correction. Secondly, for the Piscul Pietros dome, 579 



only four zircons were dated, and only the three oldest are coeval, thus the youngest age 580 

should not be considered when calculating the average age. Using only the 3 coeval zircon 581 

ages yields an age of about 46 ± 4 ka which is closer to, and compatible with, our K-Ar age at 582 

2. Thirdly, extraneous argon from an incomplete removal of xenocrysts for the 583 

overestimation of the K-Ar age, as well as partial loss of helium for the underestimation of 584 

the (U–Th)/He age, cannot be totally excluded. However, extraneous Ar effects, based on 585 

the careful sample preparation are considered minor, if not negligible.  586 

6.3 Difference between groundmass and xenocryst mineral ages 587 

To demonstrate the occurrence of inherited argon, a whole-rock age determination 588 

was carried out for the Haramul Mare dome (sample 15CI009, Table 4) following our unspiked 589 

K-Ar technique. Several K-bearing phases were also dated to identify which of them were the 590 

most susceptible to bias by inherited argon (Table 5 and Fig. 8). With the exception of 591 

plagioclase from M. Puturosu dome, all ages were significantly older than the groundmass 592 

ages (Tables 2 and 5). Consequently, the younger the juvenile lava of the dome is, the more 593 

important the influence of the xenocrysts is on the biased whole-rock age. 594 

The effect of single-step or two-step separation has been assessed by processing two 595 

aliquots of sample 15CIOO1. The groundmass obtained from single-step separation gave an 596 

age of 202 ± 6 ka, whereas an age of 184 ± 5 ka (i.e. 10% younger) was obtained from the 597 

two-step separation (Fig. 10). This age difference can be related to inherited argon from the 598 

plagioclase fraction remaining after the single-step separation, assuming that the crystals 599 

originate from grains larger than 0.125 mm, i.e. from the size range on the CSD plot that 600 

corresponds to the mixing between grains from both grain-size populations (Fig. 4b). As the 601 

plagioclases from the glomerocrysts are significantly older (~ 1.4 Ma, see below) than the 602 



eruption age (184 ± 5 ka), even a tiny remnant of them within the dated groundmass will 603 

produce an overestimated age. 604 

The same issue of inherited glomerocrysts can also be encountered for the late-stage 605 

pyroclastic deposits that drape the lower flanks of the Ciomadul dome complex (Karátson et 606 

al., 2016). The BIX-2 block-and-ash flow deposit, ~3 km south of Lake St. Ana and ~1 km east 607 

of Bixad village (Fig. 1), for instance, is considered younger than 50 ka (Vinkler et al., 2007; 608 

Harangi et al., 2010; Karátson et al., 2016), whereas biotite phenocrysts contained within the 609 

sample of lava-dome rock yielded an age of 561 ± 19 ka (15CIOX2), categorizing them as 610 

xenocrysts. We note that this age is coeval with the age obtained from biotite xenocrysts 611 

(569 ± 9 ka, Table 5) from the Dealul Cetăţii dome (184 ± 4 ka, Table 1 and Fig. 1) located 4 612 

km to the north, suggesting that for both eruptions (BIX-2 block-and-ash flow and Dealul 613 

Cetăţii dome) the xenocrysts were inherited material originating from the same crystal 614 

mush. 615 

The most extreme shift is encountered for the plagioclase glomerocrysts of the Vârful 616 

Comlos dome (16CIO02, Table 5). These were dated at 1848 ± 27 ka, compared to 144 ± 4 ka 617 

from the groundmass. Considering the freshness of the sample, the loss of potassium (which 618 

would increase the age) can be ruled out and, consequently, these plagioclases are 619 

considered as the oldest inherited phase incorporated in any rock sample of Ciomadul. 620 

Notably, their old age is in the range obtained for the adjacent Pilişca volcano (Pécskay et al., 621 

1995; Szakács et al., 2015; Molnár et al., 2018; Karátson et al., this volume). 622 

The presence of inherited glomerocrysts indicates that the dated lava dome samples 623 

do not have a single crystallization age. Furthermore, theses lavas contain minerals having 624 

experienced a multi-stage crystallization history, as also confirmed by the abundance of 625 



oscillatory zoning in the larger plagioclase population (see, for instance, those in Fig. 3a). 626 

Similar assimilation of inherited argon in plagioclase, hornblende and biotite has been 627 

reported for the Youngest Toba Tuff eruption (74 ± 4 ka), where these minerals show K-Ar 628 

ages predating the eruption by as much as 1.5 Ma (Gardner et al. 2002). In the context of 629 

Ciomadul, it has previously been suggested that the crystal mush residing beneath the 630 

volcano was rapidly (in < 100 y) remobilized by mafic magmas prior to the latest eruptions 631 

after tens of thousands of years of quiescence (Harangi et al. 2015a), as also observed in 632 

New Zealand at Taupo (Cole et al. 2014).  633 

The following two arguments suggest that the older ages are due to the presence of 634 

argon inherited from the most retentive mineral phases: (1) the rather good correlation 635 

between K-Ar ages from the groundmass and the (U-Th)/He ages, and (2) the contrast 636 

between groundmass ages and pure mineral phase ages. This latter contrast would not be so 637 

important in case of a generalized contamination of the magma by excess argon. Indeed, 638 

excess argon tends to be relatively uncommon in minerals from silicic volcanic rocks largely 639 

because argon is highly incompatible in all major igneous minerals (Kelley 2002). As already 640 

described for Ciomadul (Kiss et al. 2014) and elsewhere (Singer et al. 1998; Stewart 2010; 641 

Doherty et al. 2012), the presence of glomerocrysts suggests a long-residence storage of 642 

silicic crystal mush in an upper crustal storage zone about 8-12 km below the surface. This 643 

may have been remobilized by any subsequent eruption of the dacitic magma (Kiss et al. 644 

2014). At Ciomadul, our geochronological data show that a significant proportion of the 645 

‘phenocrysts’ in the porphyritic dacites of Ciomadul are in fact old glomerocrysts.  646 

Magma mixing is a widespread igneous phenomenon of variable importance, 647 

particularly evident in systems where a vapor-saturated magma reservoir occurs (Anderson 648 

1976). Such mixing between highly crystallized remnant magma of preceding activity with 649 



newly injected hot magma prior to eruption has been observed in other volcanic settings 650 

such as Unzen (Nakamura 1995), the Mascota - Amatlán de Cañas volcanic fields (Luhr et al. 651 

1989; Gomez-Tuena et al. 2011) and the Palma Sola volcanic field (Gomez-Tuena et al. 2003) 652 

in the Trans-Mexican Volcanic Belt volcanism. Of these cases, the Los Azufres volcanic field 653 

(Mexico) shows evidence of the presence of a quartzo-feldspathic crystal-mush, located at a 654 

depth of around 5 – 10 km (Rangel et al. 2018). Large sanidine, quartz, plagioclase, and 655 

amphibole phenocrysts and mineral clots were assimilated from this mush by a melt 656 

extraction process, probably triggered by the arrival of a hotter magma at the base of the 657 

crystal-mush. This juvenile magma in turn caused reheating and partial melting of the 658 

quartzo-feldspathic crystal-mush (Rangel et al. 2018). 659 

The size effect of the analysed minerals has also been checked by dating of 660 

plagioclases from samples 16CIO02, 16CIO04 and 16CIO09 (250-500 µm fraction from single-661 

step preparation and 63-125 µm fraction from two-step separation). In all cases (Table 5 and 662 

Fig. 8), the larger-sized fraction size gave the oldest ages. This systematic shift toward older 663 

ages of large grains substantiates that the population of large plagioclase crystals contains 664 

inherited glomerocrysts. The case of sample 16CIO09 is extreme, as the small plagioclase 665 

grains gave an age of 201 ± 5 ka,  three times older than the groundmass age (60 ± 5 ka) but 666 

also five times younger than that obtained on large plagioclase xenocrysts (981 ± 15 ka). This 667 

finding implies that in the two-step fraction a significant amount of inherited plagioclase 668 

remained in addition to juvenile minerals that crystallised during lava dome cooling. These 669 

inherited minerals are either anhedral glomerocrysts (Fig. 3a), or euhedral and zoned 670 

individual phenocrysts of plagioclase (Fig. 3a) that must have formed in the magma storage 671 

system prior to eruption. Unfortunately, because of the contrast between eruption and 672 

inherited mineral ages (which has a difference by a factor of up to 16 in sample 16CIO09), 673 



even a small portion of inherited plagioclase remaining in the microphenocrystic fraction 674 

extracted from the two-step separation will significantly increase the age obtained. This is 675 

the reason why we suggest considering the ages obtained on plagioclase microphenocrysts 676 

as maximum ages (16CIO01 on Haramul Mic and 16CIO04 on Ciomadul Mare domes). A 677 

similar age range (1 Ma) between multiple dated fractions has been observed on a single 678 

basaltic lava sample (from the Tihany Maar Volcanic Complex, Western Hungary) from eight 679 

groundmass aliquots showing various density and magnetic properties (Balogh and Nemeth 680 

2005). In this later case, due to a much older eruption age (7.92 ± 0.22 Ma), the difference 681 

between the different dated fractions shows less contrast (only 20% of excess). However, as 682 

in our study, the oldest age comes from aliquots showing the highest contamination by 683 

inherited minerals, while the groundmass aliquot, whose age is closest to that of the 684 

eruption, i.e. almost free of inherited minerals, is light and magnetic.  685 

6.4 Magmatic origin of inherited minerals 686 

The apparent presence of inherited argon in the minerals of Ciomadul leads to 687 

questions regarding their origin with respect to the argon diffusion law in silicate minerals. 688 

Closure temperatures calculated for volume diffusion (e.g. Dodson, 1973) predict that at 689 

supra-solidus temperatures, and with extended residence time (> 1 ky), every major mineral 690 

phase in these magmas should have remained fully open to argon loss prior to eruption. To 691 

explain the presence of inherited argon in magmas, it has been suggested that the 692 

incompletely reset minerals were xenocrysts with short (~ 10 years) residence times 693 

(Gansecki et al., 1996; Singer et al., 1998; Gardner et al., 2002). This mechanism is 694 

particularly likely for relatively small (< 10 km3) magma bodies (Singer et al. 1998), such as 695 

those of Ciomadul. Similar processes operating over similar time scales has been observed at 696 



different volcanic context, for instance : (1) the Taupo Volcanic Zone, New Zealand, where a 697 

large variations in crystallinity and long magma time residence (up to 250 ky, i.e. same order 698 

of magnitude as in Ciomadul) are shown (e.g. Brown et al., 1998; Brown and Fletcher, 1999; 699 

Matthews et al., 2012); (2) ongoing eruption of Unzen (Japan) where dacite is formed by 700 

mixing of relatively high- and low-temperature end-member magmas (Nakamura 1995; 701 

Nishimura et al. 2005). Thermo-mechanical considerations suggest that an effective 702 

reactivation of crystal mush is possible when the melt content in the magma reservoir 703 

increases to ~60%, allowing eruptible magma to coalesce (Bachmann and Bergantz 2004; 704 

Huber et al. 2011).  705 

At Ciomadul, the source of glomerocrysts may be from previous crystallised magma of 706 

Ciomadul, i.e. from a disrupted crystal mush (Kiss et al., 2014). The thermobarometrical 707 

analysis of amphibole (hornblende and pargasite) crystallisation present in Ciomadul rocks 708 

shows that hornblende is xenocrystic, despite the importance of this phase in some domes 709 

(Kiss et al. 2014). Plagioclase is present both as inherited glomerocrysts and phenocrysts, 710 

because it displays ages either older than (samples 15CIO01, 16CIO02, 16CIO09) or similar 711 

(16CIO08) to the groundmass ages. Crystal clots of hornblende and plagioclase observed in 712 

some domes (samples 15CIO01, 16CIO02, 16CIO03, 16CIO04, and 16CIO09) suggest that the 713 

glomerocrystic material came from sources up to 1.85 Ma old (the oldest age obtained at 714 

Ciomadul). Such populations of older crystals contain variably argon-inherited content, 715 

explaining spuriously old ages that are common in differentiated lava domes in an arc 716 

context (Harford et al. 2002; Zimmerer et al. 2016).  717 

The dominant mechanism for the generation of kinked CSD profiles is magma mixing. 718 

This preserves a steep slope for small-sized grains and adds a gentler slope for larger sized 719 

crystals, regardless of their proportions (Higgins, 2006). The larger population 720 



(phenocrysts/glomerocrysts) can be identified as crystals inherited from one of the parental 721 

magmas (crystal mush), whereas the finer population (microphenocrysts) originated from 722 

the juvenile parent magma, in addition to the microlitic groundmass. Profiles of CSD data 723 

that are particularly kinked validate such a scenario. The fact that both mafic mineral phases 724 

and plagioclase show exceedingly similar kinked CSD spectra (i.e. an abnormally large 725 

amount of coarse grains) in the Ciomadul lavas strongly supports deep-seated storage as a 726 

common feature of this magmatic contribution (Armienti et al. 1994). 727 

The oldest reliable eruption age of the dacitic domes of Ciomadul is around 700 ka 728 

(Muntele Puturosu dacitic dome). Another Ciomadul-type dacite dome adjacent to the 729 

Pilişca volcano, Bába Laposa (942 ± 65 ka), and the andesitic dome of Dealul Mare (842±53 730 

ka), both dated by (U-Th)/He method (Molnár et al., 2018), are just slightly older. Therefore, 731 

the old age obtained on the inherited plagioclase phase (1.85 Ma) points to assimilation of 732 

xenocrysts from earlier magmatism, possibly that of the Pilişca volcano itself (Fig. 1). 733 

Incorporation of quite old xenocrysts from a crystal mush into dacitic magmas similar to 734 

those of Ciomadul has been observed in other volcanic systems. For instance, Nevado de 735 

Toluca (Mexico) experienced an eruption at ~13 ka where biotite, up to 4 Ma old, was 736 

incorporated and resided in the magma for only a short period of time before it erupted 737 

(Arce et al. 2006). One can note that in this example, as well as at Ciomadul, mafic-738 

intermediate magma replenished the system since ∼ 1 Ma and contributed to the eruption 739 

of new domes as well as effusive-explosive activity (Torres-Orozco et al., 2017a).  740 

From amphibole thermobarometrical studies, Kiss et al. (2014) suggested a complex 741 

and multi-zonal context of polybaric crystallization of amphibole in the mid- to upper crust 742 

beneath Ciomadul. Crystallisation of these minerals occurred in a long-lived shallow storage 743 

zone (possibly shared with the neighbouring Pilişca volcano) filled with a cold crystal mush 744 



(Kiss et al. 2014) that was subsequently remobilized by the injection of a hot mafic magma, 745 

as observed at Unzen, Montserrat or Ruapehu volcanoes (Nakamura 1995; Murphy et al. 746 

2000; Gamble et al. 2003). 747 

Repose periods as long as those occurring between Ciodamul eruptions are frequently 748 

observed at these volcanoes fed by intermediate magmas. Illustrated by zircon 749 

crystallization ages ranging from 10s to 100s of thousands of years, these volcanoes have 750 

experienced prolonged and recurrent presence of melt-bearing magma (Cooper and Reid 751 

2008; Schmitt et al. 2010; Reid et al. 2011; Rubin et al. 2016). The operation of such volcanic 752 

plumbing systems generates a large amount of glomerocrystic aggregates made up of 753 

minerals, which begin to store radiogenic argon prior to eruption. At Ciomadul, at the depth 754 

of 8-12 km proposed by Kiss et al. (2014), the expected crystal-mush temperatures (240 – 755 

300 °C) are in the same order of magnitude as the closure temperature for argon gas in the 756 

mineral constituting the crystal clots: ~ 225-300 °C for plagioclase, ~ 350 °C for biotite and K-757 

feldspar, and ~ 600 °C for hornblende ( assuming a cooling rate of 10°C/Ma; e.g. McDougall 758 

and Harrison, 1999; Cassata et al., 2009; Baxter, 2010). Consequently, these minerals likely 759 

began to store radiogenic argon in the crystal mush prior to the eruption. The newly injected 760 

magma batches of Ciomadul’s eruptions, provided the heat to remobilise the crystal mush 761 

and its constituent mineral phases that had crystallised earlier from an evolved (silica-rich) 762 

magma. The biotite ages are significantly younger than those obtained on plagioclase and 763 

amphibole (Fig. 9). This can be interpreted as reflecting either a difference in the crystal clot 764 

ages from which the mineral originated (younger for biotite than plagioclase/amphibole). 765 

Alternatively, it may reflect a different behaviour of these minerals which come from a single 766 

source but which have a contrasting response to argon degassing when they are in contact 767 

with the replenishing magma. The former hypothesis is more speculative as incorporation of 768 



xenocrysts would include all mineral phases present in the crystal mush without segregation, 769 

whereas the latter is easily obtained by consideration of diffusion processes.  770 

The coexistence of hornblende and plagioclase in the crystal clots support the 771 

interpretation that the xenocrysts came from the same-aged source, and the diffusional Ar 772 

loss model implies a complete reset of radiogenic argon in the plagioclases (Gardner et al., 773 

2002). Such results from the 74 ka Toba Tuff were interpreted incompatible with a long 774 

storage of xenocrystic minerals in the magma reservoir but, instead, were explained by 775 

contamination of the plutonic crystals, preceding the eruption by only a few years (Gardner 776 

et al. 2002). Models of diffusion in similar contexts (Gansecki et al. 1996; Gardner et al. 777 

2002; Bachmann et al. 2007) suggest that the magma of most Ciomadul monogenetic domes 778 

assimilated the solidified and cooled crystal-mush material (with trapped argon) shortly 779 

before extrusion. Consequently, the more than doubling of the xenocryst volume in the 780 

Ciomadul lava domes with time (from an average of 7% at 700 ka to ~ 17% at 60 ka, Fig. 11) 781 

can be interpreted as increasing assimilation of crystal mush, as it became increasingly 782 

fragmented and remobilised (Fig. 11). 783 

6.5 Geochemical evolution of the Ciomadul lava domes 784 

With regard to the new geochronological constraints, we can consider the main 785 

petrological and geochemical features of magma evolution through time. Samples with ages 786 

> 450 ka seem to be characterized by a higher concentration (~23 vol.%) of plagioclase 787 

crystals, whereas their concentration slightly decreases toward the younger domes (~ 15 %) 788 

(Fig. 11). This can be attributed to shorter magmatic storage for the progressively younger 789 

rocks, limiting the growth of large plagioclase phenocrysts. On the other hand, over the 700 790 



ky long history of Ciomadul’s effusive volcanism, the proportion of xenocrysts or 791 

glomerocrystic aggregates slightly increases with time (Fig. 11). 792 

While small groundmass microlites grew from their carrier liquid during the final phase 793 

of pre-eruptive or post-eruptive crystallization, large glomerocrysts were entrained from a 794 

crystal mush. Material erupted in later episodes contains proportionally more mush-derived 795 

material (Fig. 11), in relation to a larger amount of assimilation of the silicic crystal mush 796 

located beneath the volcano (cf. Kiss et al., 2014). Changes in phase proportions (Table 4 and 797 

Fig. 11) between Ciomadul eruptions highlight an increase of the glomerocryst entrainment 798 

efficiency during the whole Ciomadul history. With time, the proportion of crystal mush, 799 

fragmented during interaction with the new magma, increases. This induces an increasing 800 

mobility of the glomerocrysts, allowing them to be more readily remobilised, and eventually 801 

assimilated, during the injection of fresh magma. Such a scenario would explain the 802 

inherited argon increase through time as more and more inherited crystals are incorporated 803 

into the magma reaching the surface (Fig. 11). 804 

Since 250 ka (i.e. over the main phase of Ciomadul dome activity), a temporal 805 

evolution in major element oxide concentrations can be seen (Fig. 12). With time, SiO2 and 806 

Na2O concentrations significantly increase, as does, to a lesser extent, K2O. On the other 807 

hand, elements such as Fe2O3, MgO, as well as Al2O3, CaO and TiO2 concentrations slightly 808 

decrease. The evolution through time for these oxides highlights the effect of fractional 809 

crystallization and the increase of the influence of crystal mush assimilation since 250 ka. 810 

The relatively good correlation between the degree of differentiation and time, as well as 811 

the general trends in the major element data, support a dual control by crystal-melt 812 

fractionation and crystal mush assimilation. Slightly decreasing of the plagioclase content 813 

through time as well as the concentrations of CaO and Al2O3 could be considered as 814 



paradoxical. However, geochemical data provided here are from whole-rock, i.e. from 815 

crystal-rich lavas where both plagioclase phenocrysts and xenocrysts influence element 816 

oxide concentration. Consequently, the total concentration of plagioclase (phenocryst + 817 

xenocryst) present in the lavas increases through time, which is in accordance with the 818 

expected behaviour of CaO and Al2O3. 819 

7 Conclusions 820 

New unspiked K-Ar dates acquired mostly from the groundmass of lava samples, 821 

complemented by major elements geochemistry, provide new insights into the 822 

geochronological evolution of the extrusive history of the Late Quaternary Ciomadul 823 

volcano. Our dating effort mainly focused on the central, most voluminous, part of 824 

Ciomadul, which was hitherto poorly constrained. Following a rigorous process of sample 825 

selection and preparation by a two-step separation, we managed to obtain groundmass 826 

aliquots avoiding any traces of xenocrysts. Most ages obtained on these groundmass 827 

fractions contradict those obtained by whole-rock K-Ar dating reported in previous studies 828 

and largely agree with (U-Th)-He ages. Based on the new results, the timing of the extrusive 829 

activity at Ciomadul can be summarised as follows: 1) a first stage from ca. 850 ka to 440 ka 830 

during which minor extrusive activity occurred in the area of the Puturosu Hills; followed by 831 

2) a shorter but more voluminous second stage from ca. 200 ka to 30 ka. During this second  832 

stage, volcanism began (between ca. 200 ka to 130 ka) when the northern and western-833 

central parts of Ciomadul were constructed. Then, after a few tens of thousands of years of 834 

quiescence, predominantly effusive activity resumed at ~ 100 ka when the eastern-central 835 

part of the dome complex grew. This second phase of activity partly overlapped with the 836 

final, highly explosive eruptive phase that began at ~ 51 ka and ended around 29 ka 837 



(Karátson et al. 2016). As the current quiescence period of the volcano is shorter than 838 

quiescence periods occurring in its earlier history, Ciomadul cannot be considered extinct. 839 

In addition to the groundmass ages presented here, dating efforts focussing on pure 840 

mineral phases highlight that a large amount of inherited argon is responsible for the 841 

obvious shift from the systematically older whole-rock to the younger groundmass ages, 842 

showing a more or less linear relationship between excess argon and the abundance of 843 

inherited crystals. These crystals are more abundant in the younger rocks, indicating 844 

increasing contamination of magma by inherited crystals from a crystal mush during volcanic 845 

activity at Ciomadul. Some of the inherited crystals must have formed up to 2 Ma ago and 846 

may be associated with the neighbouring Pilişca volcano. Such a dual source of composition 847 

for the erupted material is noticeable on the kinked CSD plots of the Ciomadul dacitic lavas. 848 

Contrasting behaviour of the mineral phases during partial degassing inside the crystal mush, 849 

from their formation to the eruption and during their incorporation into the juvenile magma, 850 

can explain the wide range of ages obtained in a single sample. Comparison with the 851 

geochemical data suggests a magmatic evolution towards more SiO2-rich products and 852 

increasing assimilation and incorporation with time of an earlier-formed crystal mush. 853 

In summary, Ciomadul’s initial, sporadic dome extrusions in the SE of the volcanic 854 

complex were followed by much larger scale extrusive activity in the central part. The good 855 

spatial resolution of the obtained ages provides the basis for an assessment of magma 856 

extrusion volumes through time (Karátson et al., this volume). The rigorous sample 857 

preparation methodology, the small errors, and a complete analysis of all previously 858 

published radiometric ages, validates the reliability of the newly obtained K-Ar ages. This 859 

approach, when coupled with CSD and geochemical studies, demonstrates how such an 860 



integrated approach can inform on the evolution of magmatic systems, the activity they 861 

feed, and the time scales of evolution over hundreds to hundreds-of-thousands of years 862 
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Figure captions 1246 

Fig. 1 A) DEM in shaded relief of Eastern Carpathian; B) Location of the main East Carpathian 1247 

volcanic massifs; C) Ciomadul dome complex. Sample locations (squares) are color-coded 1248 

according to their sector: red squares: peripheral south-eastern and northern domes; green 1249 

squares: western-central part of the dome complex; purple squares: eastern-central part of 1250 

the dome complex. Ages and uncertainties are in ka. St. Ana and Mohoş: uneroded twin 1251 

craters. 1252 

Fig. 2 Photomicrograph of a thin section of the Haramul Mare dome in plane-polarised (A) 1253 

and cross-polarised (B) view. Plag.: plagioclase; Biot.: biotite; Amp.: amphibole; Glom.: 1254 

glomerocrysts, mostly composed of plagioclase phenocrysts and small hornblende (Hb.), 1255 

appear in the upper part as a crystal clot. Width is 10 mm. C) Close-up view of the microlitic 1256 

groundmass and microphenocrysts. 1257 

Fig. 3 Illustration of the procedure of the two-step sample separation from a 1258 

photomicrograph of sample 15CIO01. Mosaics b, c and d simulate the results of the 1259 

separation. Each square in these mosaics represents a fraction of the crushed sample that is 1260 

either kept (visible) or removed (hidden by green squares) during the separation. a) Thin 1261 

section in cross-polarised light (field of view is 8 mm wide). Labels highlight characteristic 1262 

anhedral glomerocryst (anh. glom.) and euhedral plagioclase (enh. plag.). b) Grains selected 1263 

by the first step. Note the small diamond-like phenocryst (at the center left), the peripheral 1264 

part of large phenocrysts, and the abundance of microphenocrysts (in the upper half) that 1265 

remain after this first step. c) Grains that remain selected after the second step of 1266 



preparation. d) Grains that would not be removed from the groundmass in the case of a 1267 

single-step of separation.  1268 

Fig. 4 Semi-log crystal size distribution (CSD) plots for mineral phases in the Ciomadul lava 1269 

dome A) Plagioclase (black curves) and mafic (amphibole and biotite, grey curves) crystal 1270 

CSD plot. All but those for sample 16CIO08 (coloured curves) show kinked profiles. Insets 1271 

show analysed micro-photographs used in the CSD plots in B) and C) (plagioclase in white, 1272 

mafic crystals in black, groundmass in grey) B) Fitting of a mixture of two magmas with linear 1273 

CSDs to the observed CSD from samples 16CIO01 and 15CIO09 for plagioclases focussed on 1274 

the kink zone between the two linear segments for the fine and coarse grains. Regressions 1275 

though coherent populations, for which assumptions of near-uniform morphologies are 1276 

valid, are shown as dotted lines. Values for the equation of these regressed lines and R2 1277 

values are given (same box colour as the corresponding line). Inset shows the complete CSD 1278 

graph. C) Same graph as B) but for mafic (biotite) crystals. 1279 

Fig. 5 Graph comparing K-Ar results and those proposed in previous studies. Each dome on 1280 

this diagram is plotted according to the age obtained by this work (X-axis) vs. the age 1281 

obtained in previous studies (Y-axis). Error bars and black squares show 2 (95%) confidence 1282 

interval. 1283 

Fig. 6 A) K2O vs SiO2 diagram (Peccerillo and Taylor; 1976), for Ciomadul lava dome samples; 1284 

B) Harker diagrams showing the variations of major element oxides as a function of SiO2. 1285 

Fig. 7 Whole-rock age model from thin section analysis (sample 15CIO01, same as Fig. 3). a) 1286 

Upper left: Identification of the mineral phases by binarization; lower right: Mosaicing of 1287 

previous image to simulate 200 µm grain size. b) Grain composition analysis from their 1288 

grayscale properties (converted to colour for easier identification). Yellow: pure plagioclase; 1289 



blue: groundmass; shaded white to red to black: mixed grains with increasing proportion of 1290 

groundmass grains. c) Distribution of the grain density proportion (left Y-axis) and ages 1291 

modelled for each grain composition (dotted black curve scaled on the right Y-axis). Bottom 1292 

scale defines the expected density of the respective grain populations.  1293 

Fig. 8 Graph of the inherited argon abundance (deduced from whole-rock ages) versus 1294 

abundance of glomerocrysts (in vol%). Heavy lines display a ± 1 correlation trend. Thin 1295 

horizontal lines are the estimation (± 1) of inherited argon abundance for the Dealul Cetăţii 1296 

dome obtained from the analysis of its thin section in order to propose a corrected eruption 1297 

age.  1298 

Fig. 9 Compilation of the ages obtained on groundmass and separated minerals. Samples are 1299 

sorted with respect to the distance to the ~2 Ma old Pilişca volcano. 1300 

Fig. 10 Map of the ages (in ka) obtained from the different phases of the Dealul Cetăţii dome 1301 

(15CIO01). The small and large grids correspond to the two-step and single-step procedure, 1302 

respectively.  1303 

Fig. 11 Graph of the evolution of abundance of phenocrysts, glomerocrysts (in vol% of dome, 1304 

on left axis) and amount of argon inherited from xenocrysts (in %, on right axis) versus 1305 

eruption age. Boxes show global trends for each parameter. Schematic cartoon summarizing 1306 

a scenario for the assimilation of xenocrysts by dacitic magma based on crystal mush 1307 

disaggregation and increasing incorporation of inherited crystals in juvenile magma trough 1308 

time (modified from Neave et al., 2017). The figures are not to scale. 1309 

Fig. 12 Geochemical evolution of major element oxides (in wt. %) of dacitic domes of 1310 

Ciomadul through time (eruption ages in ka). 1311 



Table 1 CSD input parameters and results, including crystal habit and Lmax. 

Sample Mineral Count Crystal Habit Shape Lmax Phase 
proportion       Short Interm. Long R2 values   (mm) 

16CIO08 Plagioclase 8164 1 1.5 3 0.86 Tabular 2.93 35.2% 

16CIO08 Mafic m. 5454 1 1.5 3 0.85 Columnar 1.58 12.3% 

15CIO01 Plagioclase 3465 1 1.3 2.1 0.88 Tabular 4.20 29.5% 

15CIO01 Mafic m. 2781 1 1.25 2.1 0.83 Columnar 1.39 7.9% 

15CIO09 Plagioclase 5720 1 1.25 2.1 0.86 Tabular 4.79 38.0% 

15CIO09 Mafic m. 2008 1 1.5 3 0.88 Columnar 2.08 11.3% 

16CIO09 Plagioclase 3020 1 1.3 2.2 0.87 Tabular 4.31 33.7% 

16CIO09 Mafic m. 3486 1 1.6 2.9 0.88 Columnar 1.55 7.4% 
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Table 2 K-Ar ages obtained in this study for Ciomadul lava domes. (G.M.: groundmass; : Plag. µP.: plagioclase microphenocrysts; D.S.: two-step 1009 

separation; S.S.: single-step separation); Sample coordinates are projected using the Universal Transverse Mercator (UTM) projection (zone 35 1010 

N). 1011 

st
ag

e 

Sample code 
Dome Name 

Easting 
(in m) 

Northing 
(in m) 

Eleva-
tion 

(m asl) 

Dated 
phase 

Fraction 
Size (µm) 

K% 40Ar* ± 1σ 
(in % of total 

40Ar) 

40Ar* 
relative 

uncertainty 

40Ar* ± 1σ 
×1011 at/g 

 

Age ± 1σ 
(in ka) 

 

Weighted 
mean age 

± 1σ 

1
st

 s
ta

ge
 

16CIO08 418645 5107909 1099 G.M. 63-125 3.226 5.233 0.169 0.726% 23.29 0.885 691 17 

Muntele Puturosu       4.489 0.108 0.446% 24.26 0.485 720 19 704 ± 18 

16CIO07 419620 5107472 846 G.M. 63-125 3.585 29.213 0.089 0.373% 23.78 2.592 635 10 

Balvanyos       34.293 0.065 0.268% 24.19 2.225 646 9 641 ± 9 

16CIO06 419673 5107443 856 G.M. 63-125 3.449 4.283 0.043 0.280% 15.45 0.185 429 12 

Balvanyos       4.488 0.101 0.624% 16.24 0.455 451 12 440 ± 12 

2
n

d
 s

ta
ge

 

16CIO01 416986 5114107 866 Plag. 
µP. 

63-125 1.336 1.025 0.201 6.438% 3.127 0.206 224 26 
Haramul Mic      1.211 0.076 2.065% 3.680 0.092 264 23 245 ± 24 

15CIO01 413713 5110905 994 G.M. 63-125 3.722 4.399 0.084 1.182% 7.139 0.371 184 5 
Dealul Cetăţii       4.170 0.075 1.055% 7.132 0.314 183 5 184 ± 5 

16CIO02 413146 5109912 1242 G.M. 63-125 3.471 4.266 0.055 1.055% 5.220 0.235 144 4 
Vârful Comlos       4.234 0.016 0.307% 5.209 0.068 144 4 144 ± 4 

16CIO04 413873 5109760 1260 Plag. 
µP. 

40-80 1.391 1.209 0.029 1.655% 1.725 0.034 119 10 
Ciomadul Mare      1.508 0.049 2.322% 2.102 0.074 145 10 133 ± 18 

15CIO09 416664 5111953 902 G.M. 63-125 3.668 6.414 0.042 1.107% 3.754 0.267 98 2 
Haramul Mare       12.020 0.073 2.005% 3.639 0.877 95 2 96 ± 2 

16CIO09 415362 5108313 1101 G.M. 63-125 3.441 1.162 0.058 2.840% 2.042 0.067 57 5 
Piscul Pietros       1.323 0.063 2.797% 2.239 0.083 62 5 60 ± 5 

 1012 
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Table 3 Major element concentrations for the Ciomadul lava domes (in wt%%). 1015 

Sample 15CIO09 16CIO01 16CIO02 16CIO03 16CIO04 16CIO05 16CIO06 16CIO07 16CIO08 16CIO09 16CIO11 

SiO2 65.26 66.18 66.59 65.60 66.87 66.50 61.80 61.74 64.68 67.07 67.36 

TiO2 0.45 0.35 0.38 0.37 0.32 0.32 0.52 0.53 0.53 0.31 0.29 

Al2O3 16.85 16.46 16.62 16.62 16.29 16.20 17.35 17.43 17.82 16.15 16.26 

Fe2O3 2.86 2.41 2.47 2.51 2.28 2.28 3.54 3.65 2.22 2.11 1.99 

MnO 0.06 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.04 0.05 0.04 

MgO 1.93 1.54 1.64 1.67 1.52 1.51 2.18 2.22 1.33 1.39 1.32 

CaO 4.03 3.55 3.66 3.65 3.22 3.26 4.78 4.94 3.56 3.00 2.89 

Na2O 4.34 4.07 4.34 4.24 4.30 4.31 4.22 4.33 4.36 4.43 4.67 

K2O 3.36 3.46 3.32 3.21 3.61 3.57 3.40 3.20 3.28 3.55 3.50 

P2O5 0.20 0.12 0.16 0.14 0.13 0.14 0.18 0.18 0.13 0.11 0.12 

LOI 0.3 1.5 0.4 1.6 1.1 1.5 1.6 1.3 1.6 1.5 1.2 

Sum 99.64 99.69 99.63 99.66 99.69 99.64 99.64 99.59 99.55 99.67 99.64 

 1016 
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Table 4 Comparison between new and previously proposed ages. For each dated dome, abundance (in vol%) are given for: K-bearing minerals 1017 

(P.: plagioclase; B.: biotite; A.: amphibole), total of K-bearing phenocrysts (T. Ph.:); glomerocrysts (Glom.); and groundmass (G.M.);; W.-R. Age: 1018 

previously proposed age on whole-rock for the same lava dome; Arinherited: fraction (in %) of the total of radiogenic argon assumed to be inherited; 1019 

Source: references for whole rock and (U–Th)/He ages: 1: Casta (1980); 2: Pécskay et al. (1992); 3: Pécskay et al. (1995b); 4: Karátson et al., 1020 

(2013); 5 : Szakács et al. (2015); 6: Harangi et al. (2015b); 7: Molnár et al. (2018); 8: this work 1021 

Location New measurements (this work) Previously proposed ages  

Cassignol-Gillot (unspike) method Traditional K-Ar method (U–Th)/He method 

Sample Phenocryst vol% T. Ph. 

vol% 

Glom. 

vol% 

G.M. 

vol% 

Age 

(in ka) 

W.-R. age Sour-

ce 

Arinherited 

(%) 

(U–Th)/He 

Age 

Sour-

ce P. B. A. 

Puturosul 16CIO08 19 2 5 26 1 65 704 ± 18 710 ± 50 5 1 ± 7 642 ± 44 7 

Bálványos 16CIO07 25 3 8 36 14 39 641 ± 9 1020 ± 150 3 37 ± 16 583 ± 30 7 

Bálványos 16CIO06 23 1 7 31 13 47 440 ± 12 920 ± 180 3 52 ± 22   

Haramul Mic 16CIO01 10 2 7 19 18 54 245 ± 24 850 ± 200 1 71 ± 29 154 ± 16 7 

Dealul Cetăţii 15CIO01 11 2 6 19 17 56 184 ± 5 400 ± 160 5 54 ± 45 116 – 142 4 

Haramul Mare 15CIO09 12 4 6 22 16 44 96 ± 2 590 ± 160 

231 ± 5 

3 

8 

 

58 ± 3 

  

Piscul Pietros 16CIO09 21 2 8 30 23 47 60 ± 5 560 ± 110 2 89 ± 26 42.9 ± 1.5 6 

Vârful Comlos 16CIO02 14 2 8 22 8 59 144 ± 4      

Ciomadul Mare 16CIO04 22 2 10 34 13 41 133 ± 18      

 1022 

Table_04



Table 5 K-Ar ages obtained on separated pure phases, larger grain size groundmass, and whole rock. Dated phases: Amp.: Amphibole; Biot.: 1023 

Biotite; Gr.M.: groundmass; Plag. µL.: plagioclase microlites; Plag. Gl.: plagioclase glomerocrysts; W.R.: whole rock 1024 

Sample 
code 

Dated 
phase 

Me-
thod 

Fraction 
Size (µm) 

K% 40Ar* ± 1σ 
(in % of total 40Ar) 

 40Ar*  
relative 

uncertainty 

40Ar* ± 1σ 
×1011 at/g 

Age  ± 1σ 
(in ka) 

Weighted 
mean age 

± 1σ 
15CIO01 Amp. S.S. 125-250 0.931 11.113 0.030 0.270% 13.85 0.037 1423 24   

     27.431 0.153 0.558% 13.34 0.074 1371 21 1386 37 

15CIO01 Plag. Gl. S.S. 125-250 0.822 7.353 0.053 0.721% 9.72 0.070 1132 24 1132 24 

15CIO01 Biot. S.S. 125-250 6.532 20.605 0.024 0.116% 38.88 0.045 570 9   

     16.920 0.029 0.171% 38.81 0.067 569 9 569 9 

15CIO01 Gr.M. S.S. 125-250 3.612 4.039 0.038 0.941% 7.70 0.072 204 6   

     3.874 0.056 1.446% 7.52 0.109 199 7 202 6 

16CIO02 Plag. Gl. S.S. 250-500 0.655 24.750 0.087 0.352% 12.66 0.044 1848 28 1848 28 

16CIO02 Plag. µL. D.S. 63-125 0.654 7.503 0.036 0.480% 7.32 0.035 1071 21 1071 21 

16CIO09 Plag. Gl. S.S. 250-500 0.757 35.123 0.139 0.396% 7.55 0.030 955 14   

     35.222 0.114 0.324% 7.96 0.026 1007 15 981 15 
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16CIO09 Plag. µL. D.S. 63-125 1.714 6.101 0.039 0.639% 3.60 0.023 201 5 201 5 

16CIO09 Biot. S.S. 125-250 6.762 8.071 0.037 0.458% 13.87 0.064 196 4 196 4 

16CIO08 Plag. µL. D.S. 63-125 1.568 4.834 0.031 0.641% 12.01 0.077 733 19   

     4.585 0.047 1.025% 12.19 0.125 744 21 739 20 

16CIO04 Plag. µL. D.S. 63-125 1.104 1.422 0.039 2.742% 1.96 0.054 170 13   

     1.523 0.042 2.758% 1.84 0.051 160 12 165 12 

15CIO09 W.R. S.S. 40-500 2.119 7.907 0.120 1.518% 5.10 0.077 230 6   

     7.874 0.036 0.457% 5.11 0.023 231 5 231 5 

15CIOX2 Biot. S.S. 125-250 5.720 3.242 0.048 1.481% 33.54 0.497 561 21 561 21 

 1025 
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