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We present the conception and analysis of a situation dealing with the principles of public-key 

cryptography and aiming at exploring informatics and mathematical concepts and methods. We rely 

on the Theory of Didactical Situations to design a situation (based on an unplugged activity) about 

public-key cryptography using graphs. After the preliminary analysis of the content, we conceived a 

didactical situation and developed its a priori analysis. The description of the associated solving 

strategies illustrates the interplay between mathematics and informatics, and the role of algorithms 

and algorithmic thinking. 

Keywords: Public-key cryptography, computer science unplugged, mathematics and informatics, 

didactical engineering, theory of didactical situations. 

Introduction 

Mathematics and Informatics have “strong links and a common history”, they have common 

backgrounds (e.g. logic), concepts (e.g. graphs, functions), and “fields developing at their interface”, 

and “a very similar relation to other sciences through modelling and simulation” (Modeste, 2016, pp. 

243-244). They are two autonomous and distinct disciplines, but their frontier is blurry, with mutual 

contributions. From an educational perspective, we consider it important to foster interdisciplinary 

teaching to make students aware of threads that both disciplines share. 

In the context of the IDENTITIES Project (https://identitiesproject.eu/), about interdisciplinarity in 

STEM education and pre-service teacher training, we have chosen to explore possibilities offered by 

cryptography. Our choice was motivated by the epistemological reason that cryptography is a deeply 

interconnected field between informatics and mathematics, involving many concepts from the two 

disciplines, but also “boundary objects” (Akkerman and Bakker, 2011) belonging to both. 

We hypothesize that the research methodology offered by the Theory of Didactical Situations 

(Brousseau & Warfield, 2020) is relevant to design didactical situations at the interface of 

mathematics and informatics. 

Our main research question is “How cryptography can foster mathematics-informatics interactions 

and algorithms, and what kind of learning activity can it generates?”. 

For exploring this question, we developed a didactical situation based on an activity on public-key 

cryptography as a central part of a module for pre-service teacher training. We present here the 

didactical situation that, in our view, can be adapted for various audiences: in-service teachers, high 

school students, undergraduates, PhD students, both from informatics or mathematics background. 
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After introducing the Theory of Didactical Situations, we will present the didactical situation, and its 

a priori analysis, which shows how the situation and its organization foster interactions between 

mathematics and informatics, and the role of algorithms and algorithmic thinking. 

Theory of Didactical Situations 

The Theory of Didactical Situations (TDS) offers conceptual tools for the design of teaching and 

learning Situations. Students’ learning is seen as the result of interactions in a system of relationships 

between students, a teacher and a milieu. The TDS core-conceptual tools that we will use in this paper 

are the following: the concepts of milieu and of adidacticity, and the notion of didactic variables 

(Brousseau & Warfield, 2020). The milieu of a situation is composed of the set of material objects, 

the available knowledge, and interactions with teacher and students. In a didactical situation, students 

rely on their available knowledge to engage in actions to solve the problem at stake. During this 

activity, the milieu provides retroactions. Adidacticity characterizes the phases in which students are 

able to interpret autonomously the retroactions of the milieu. A didactical variable is a variable of a 

situation for which changing the value may impede the solving strategies (validity, complexity) and 

their hierarchy, and on which the teacher can act according to his objectives. Identifying the didactical 

variables and their effects is the core of the a priori analysis. 

Presentation of the didactical situation  

Our didactical situation aims both at teaching the “core idea” (Lodi et al., 2022) of public-key 

cryptography and making participants interact with mathematical and informatics objects. We based 

on a public-key cryptography problem (Fellows, 1994) which uses a cryptosystem leveraging on the 

computationally hard problem of finding a perfect dominating set on a graph. 

Elements of preliminary analysis 

While the importance of teaching cryptography has been recognized in both graduate and K-12 

curricula (Joint Task Force on Cybersecurity Education, 2018; CSTA, 2017), often, it is treated as 

just one of the many topics of cybersecurity or with a too technical and instrumental focus rather than 

on its core ideas (for recent reviews, see Švábenský et al. (2020) and Lodi et al. (2022)). Research 

shows, however, that hands-on, cooperative, and inquiry-based activities can improve students’ self-

efficacy and problem-solving skills (Konak, 2018). Some authors proposed unplugged activities for 

students to experience cryptographic algorithms, protocols and attacks (e.g., Bell et al., 2003; Konak, 

2014). Moreover, communicating in secret and trying to decrypt messages without knowing the key 

is not only engaging and motivating for students (Lindmeier and Mühling, 2020), it has also, from a 

didactical perspective, a strong potential for adidacticity, allowing self-directed learning through 

autonomous engagement with the task (e.g., when you can easily verify if you have well decrypted a 

message or if your (de)crypting programs run correctly). 

A public-key cryptosystem using perfect dominating sets on graphs 

An encryption scheme allows for confidential communication between two parties over a public 

channel. A plaintext message is transformed into a ciphertext (i.e., an encrypted message) using an 

encryption algorithm, the security of which is dependent on one or more keys. There are two types of 

cryptosystems: symmetric (or secret-key) and asymmetric (or public-key). In a symmetric 



 

 

cryptosystem, the same key is used for both encryption and decryption. In an asymmetric 

cryptosystem, a different key is used for encryption (public key) and decryption (private key). 

In our case, we considered a public-key cryptosystem. The important components of a public-key 

encryption scheme include: a key generation algorithm (𝐺𝑒𝑛) that creates a pair of keys (𝑝𝑘, 𝑠𝑘) 

(public key and private key) for each user, an encryption algorithm (𝐸𝑛𝑐) that converts a plaintext 

message 𝑚 into a ciphertext 𝑐 = 𝐸𝑛𝑐𝑝𝑘(𝑚) using the recipient's public key, and a decryption 

algorithm (𝐷𝑒𝑐) that converts the ciphertext back into the original plaintext using the recipient's 

private key (𝑚 = 𝐷𝑒𝑐𝑠𝑘(𝑐)). 𝐸𝑛𝑐 and 𝐷𝑒𝑐 algorithms must be computationally efficient when the 

corresponding keys are known, and the scheme's security is based on the difficulty of computing the 

𝐷𝑒𝑐 function without having access to 𝑠𝑘.  

An asymmetric cryptosystem that leverages on the computationally difficult problem called Perfect 

Dominating Set (PDS in the following) problem has been proposed (Fellows and Koblitz, 1994). 

Given a graph 𝐺 = (𝑉, 𝐸) with a set of vertices  𝑉 and a set of edges 𝐸, a (closed) neighbourhood of 

a vertex 𝑢 ∈ 𝑉 is the set 𝑁[𝑢] = {𝑣 ∈ 𝑉 𝑢𝑣⁄ ∈ 𝐸} ∪ {𝑢} (that is, the vertices in V that are adjacent to 

𝑢, and 𝑢 itself). A dominating set of G is a subset of vertices 𝑆 ⊆ 𝑉 such that every vertex of V is 

included in the neighbourhood of a vertex in S. If S is a dominating set of 𝐺, then every vertex in V 

is a neighbour to at least one vertex in S, or it belongs to S. If each vertex of V is included in exactly 

one neighbourhood of a vertex of S, then S is said to be a perfect dominating set (often referred to 

also as perfect code). Figure 1 (left) gives an example of a graph with a PDS. Thus, the PDS problem 

is the following (Fellows and Hoover, 1991): given a graph 𝐺 = (𝑉, 𝐸), output a PDS of 𝐺, if one 

exists.  

Deciding whether a graph has a PDS is, in general, NP-complete (Klostermeyer, 2015, p. 107). 

Therefore, our PDS Problem is NP-hard, which means we only have algorithms that take exponential 

time in the number of nodes, and we may never be able to improve that. This feature can be used to 

design a cryptosystem, as we will see. 

The PDS problem can be used to develop an asymmetric cryptographic system because (1) starting 

from a set of vertices S, it is possible to construct a graph that has S as a PDS; but (2) given a graph 

that has a PDS, it is hard to find it by only knowing the graph.  

The PDS cryptosystem works as follows. Bob wants to confidentially communicate a secret message 

(an integer) m to Alice. They can use the following encryption protocol. 

 Alice creates a graph G = (V, E) (where 𝑉 = {𝑣1, 𝑣2, . . . 𝑣𝑘}) that has S as PDS. G is Alice’s 

public key, and the PDS S is Alice’s private key. 

 Bob writes 𝑚 as the sum of random integers 𝑚1, 𝑚2, . . . , 𝑚𝑘  (𝑚1 +𝑚2+. . . +𝑚𝑘 = 𝑚) 

 Bob assigns an 𝑚𝑖  to each vertex 𝑣𝑖 of V. 𝑚𝑖 is now called the secret value 𝑣𝑖. 

 Bob calculates a public value 𝑝𝑖 of each vertex 𝑣𝑖 by summing the secret values of 𝑣𝑖’s closed 

neighbourhood (i.e. including 𝑣𝑖 own secret value).  

 Bob creates the encrypted message by writing on each vertex 𝑣𝑖 of the graph its public value 

𝑝𝑖 (and removing its secret value 𝑚𝑖).  

Figure 1 (right) shows the previous graph with public (grey) and secret values (black underlined). 



 

 

 
Fig. 1 (left): The subset {I, K, F} is a PDS for the graph ; (right): The secret message 𝒎 = 𝟏𝟗 

encrypted using the same graph. Secret values in black underlined, and public values in grey. 

To decrypt the encrypted message (the graph G with public values) that Bob sent her, Alice calculates 

the sum of the public values of the nodes in the PDS (the PDS is her private key). 

In principle, the graph G (public key) and the encrypted message can freely circulate: a priori, the 

system is secure because finding the PDS from the graph is computationally challenging (NP-hard). 

However,  algebraic attacks can be performed (Fellows & Koblitz, 1994), which makes it not a good 

cryptosystem in real life, but very interesting for a didactical situation. 

While the cryptosystem is known (Fellows and Koblitz, 1994) and has been used in teaching activities 

(e.g., Bell et al., 2003), our main contribution is the design of an original didactical situation around 

it, with an organization of its milieu, an identification of the didactical variables, and an detailed a 

priori analysis, that foster its learning potential in mathematics and informatics. 

In our didactical situation, participants are given a complex task (decrypting a secret message 

encrypted with the PDS cryptosystem). Due to the careful choice of didactical variables, participants 

have to devise solving strategies that involve understanding and applying concepts and methods from 

mathematics and informatics and sometimes the change of semiotic registers.  

The didactical situation and elements of the a priori analysis 

The objectives of the didactical situation are (1) Introduce some general concepts and terminology 

from cryptography (e.g., plaintext and ciphertext, encryption and decryption algorithms, attack 

models, private and public keys, difficult-to-reverse problem, one-way function) and make students 

understand and explore the ideas and challenges of public-key cryptography; (2) Make students 

explore and interact with mathematical and informatics concepts and interdisciplinary objects (e.g., 

graphs, algorithms, matrices).  

The didactical situation is organised as follows: 

Phase 1: Encryption. Participants are shown the encryption algorithm using the graph G (the public 

key). They are neither taught what a PDS is (not needed for encryption) nor that G has a PDS. 

Phase 2: Cryptanalysis. Participants are divided into three groups. The same encrypted message (i.e., 

the graph G with public values) is given to everyone, and they are asked to decrypt it. Each group is 

given different information to solve the problem, as detailed in the following. 



 

 

The aim of making three groups, sharing and debating their results after the research phase, is to make 

them grasp the issues of asymmetric cryptography, the role of the public and secret keys, and that 

attacks can be done with different levels of information about the protocols. For each group, we 

present the information given and the position in which students are put. Then we describe the main 

strategies, highlighting mathematical, informatics, and algorithmics contents and thinking involved. 

Group A – Available information: the PDS definition and a PDS for the graph G. No information on 

using the PDS to decrypt is given: they should find by themselves the decryption algorithm using the 

PDS. They are put in the position of engineers trying to design a decryption protocol. 

Strategy: Identify the neighbourhoods of all vertices that belong to the given PDS. Then observe that 

the intersection of these neighbourhoods is empty and that the union of these neighbourhoods covers 

graph G. The neighbourhoods can be represented as lists of vertices or graphically as ‘stars’ on the 

graph. By the cryptosystem construction, the public value of each vertex is the sum of the secret 

values of its neighbourhood. Thus, the sum of the public values of the vertices of the PDS is equal to 

the sum of the secret values of all the nodes, which is the plaintext message. In order to elaborate this 

strategy, it is needed to interpret the definition of PDS (expressed using terminology from set theory) 

on the graphical representation of the graph, and make the connection with the encryption procedure. 

More precisely, it is needed to deduct what the perfect domination property means for the public 

values of the nodes. This procedure is not trivial and requires an intuitive understanding of the proof 

of correctness of the cryptosystem, i.e., the decryption of an encrypted message returns the plaintext 

message: 𝐷𝑒𝑐𝑠𝑘 (𝐸𝑛𝑐𝑝𝑘(𝑚)) = 𝑚. This can involve making the decryption algorithm explicit and 

proving the encryption’s correctness. 

Group B – Available information: the definition of PDS and the decryption algorithm (which uses 

the PDS). Group B knows that there is a PDS in graph G, but they do not know it. This incites the 

group to try to find the private key (the PDS) using the encrypted message and the public key. Group 

B is thus confronted with an instance of the difficult problem of finding a PDS in a graph. They are 

put in the position of attackers who know completely the protocols but not the private key. 

Strategies: we describe three possible strategies, using different semiotic registers (Duval, 2017): the 

graph representation, the lists of vertices, and the graph's adjacency matrix. These three strategies 

amount to a structured, exhaustive search of the subsets of vertices to find the PDS.  

Strategy 1: Finding stars. Given a graph G = (V, E), we have to find a set S that is a PDS of G.  

Let v be a vertex of V. By the PDS definition, in the neighbourhood N[v], there exists exactly one 

vertex that belongs to S. Thus, if v vertex is not in S, then exactly one of its neighbours is in S. 

If a vertex u belongs to S, then: i) the neighbouring vertices of u do not belong to S, and ii) for any 

neighbour u′ of u, the neighbouring vertices of u′ do not belong to S either (otherwise u′ would be 

linked to two vertices that belong to S). Thus, if we find a vertex in S, we can deduce that its 

neighbours and the neighbours of its neighbours are not in S. 

We iteratively add vertices to a set S to find a PDS. If we do not succeed, we backtrack to the vertices' 

choices to continue exploring potential PDSs. In informatics, backtracking is a ‘systematic way to 



 

 

run through all the possible configurations of a search space’, especially useful when ‘we must 

generate each possible configuration exactly once’ (Skiena, 2020, p. 281): we build a solution 

incrementally, and when we reach a partial solution that cannot become a correct solution anymore, 

we abandon the path and backtrack to explore other paths. Elaborating this strategy first requires 

understanding the definition of a PDS and then interpreting the definition on the graphical 

representation of the graph. Systematising the steps of the algorithm requires an understanding of 

both the properties of domination and perfect domination and a intuitive idea of backtracking.  

Strategy 2: Lists. For each vertex of G, we write its neighbourhood as a list of neighbour vertices. We 

then study these lists in order to find a set of lists whose intersection is empty and whose union covers 

graph G. The basic idea of this strategy is that each vertex of graph G belongs to exactly one 

neighbourhood of a vertex of S. The idea is to incrementally build a collection L of lists, such that 

their intersection is empty, while their union contains all the vertices of G. More technically, L is a 

LIFO stack, a data structure that implements the LIFO (last-in, first-out) policy: the last list added on 

top of L is the first to be removed when it is not suitable for building the PDS S. Elaborating this 

strategy requires understanding the perfect domination properties, expressing these properties using 

lists, and an intuitive understanding of a LIFO stack (even if not recognised as such). 

Strategy 3: Adjacency matrix of the graph. This strategy consists in writing the adjacency matrix of 

the graph G: for a vertex i, in the corresponding row 𝑙𝑖 = [𝑎𝑖1, 𝑎𝑖2. . . , 𝑎 ] the coefficients 𝑎𝑖𝑗 = 1 if 

the vertices j and i are connected and 0 otherwise. Note that here 𝑎𝑖𝑖 = 1 for all vertex i (because, in 

the PDS definition, we are considering closed neighbourhoods). If we find a set of rows whose sum 

is [1, 1, ..., 1], the vertices corresponding to these lines constitute a PDS (because each vertex of G is 

adjacent to exactly one of the chosen vertices). This idea is very close to Strategy 2:  we go through 

the set of rows of the matrix, including or excluding rows, to find a subset of rows whose sum is [1, 

1, ..., 1] - but the register of representation is different. Elaborating this strategy requires 

understanding the properties of the PDS and expressing these properties using the adjacency matrix. 

Group C – Available information: no information other than the encrypted message. They only know 

the encryption algorithm. This is expecting them to try to break the system without searching for the 

key, but exploiting other vulnerabilities. Thus, they are put in the position of attackers who do not try 

to solve the PDS problem, but explore other approaches to decrypt the message. 

Strategy: Starting from the encrypted message, a linear system can be constructed as follows: for each 

vertex v, of public value 𝑝𝑣 and neighbourhood 𝑁[𝑣] = [𝑣, 𝑣1, . . . 𝑣𝑘], write the equation 𝑥𝑣 +

𝑥𝑣1+. . . +𝑥𝑣𝑘 = 𝑝𝑣 where 𝑥𝑖 is the secret value of vertex i. This equation translates the encryption 

step that allowed passing from private values to public values. The linear system of those equations 

will have as many equations and unknowns as vertices in G. The solution of the linear system is the 

tuple of all secret values [𝑥1, 𝑥2, . . . , 𝑥𝑛], whose sum is the plaintext message m. Note that, in this 

case, there is a correspondence between the adjacency matrix (one of the standard ways to represent 

the graph data structure in informatics (Cormen et al., 2022, p. 549)) and the matrix equation that can 

be used to solve the linear system created. Unfolding this strategy requires interpreting the 

cryptosystem as a linear system and examining its resolution. Note that the solution to the problem 



 

 

does not necessitate the resolution of the linear system but just finding the sum of all secret values; 

among others possibilities, this can be done by finding the rows corresponding to the PDS nodes. 

Principal didactical variables 

The principal didactical variables identified, and their values for our learning objectives, are: 

 Access to information: it is our main variable since each group has different information. 

 The type of graph: it should be hard to find the PDS. Certain types of graph, for which it is 

known that the PDS problem is not hard (e.g., trees (Klostermeyer, 2015, p. 107)), should be 

excluded. Moreover, while the PDS problem is hard for planar graphs, we observed that using 

non-planar graphs makes the problem visually more difficult for the participants.  

 The size of the graph: it should be large enough so that an exhaustive search of the PDS is 

tedious, but small enough so that writing the linear system is still be feasible by hand.  

 The graph's maximum degree and the degrees of the vertices: a too visible difference of 

degrees between the vertices could influence the starting point and Strategy 1 (starting with 

vertices with higher or lower degree). The graph should be “almost regular” (but not with all 

nodes of same degree k, as in this case you can get the plaintext message without the PDS). 

Conclusion: learning potential and links with algorithms 

We have presented elements of the a priori analysis of a didactical situation in cryptography, 

highlighting the potential of cryptography to deal with contents in mathematics, informatics, and their 

links. A first observation from our analysis, is that the frontier between informatics and mathematics 

is blurry, and many concepts and ways of reasoning are shared at their interface. Among these 

concepts, we see that many algorithms or drafts of algorithms are at stake: in the asymmetric 

cryptography principle, as it is based on the notion of algorithmic problem complexity, but also 

through the notions and procedures involved in the solving. We see also that the algorithms support 

most of the reasoning in the strategies. We consider this as algorithmic thinking, in the sense of 

reasoning with and about algorithms (designing effective procedures to solve problems, formalizing 

and proving algorithms, use and combine them as tools in exploring an solving problems). One key 

point is that these learning potentials, in this cryptography problem, can only be realized with a careful 

organization of the didactical situation, based on a detailed a priori analysis. 

We have experimented our situation in various contexts (science teachers education, mathematics 

students, in-service teachers education...) and data collected is under analysis. We have already 

noticed a strong stability of strategies developed in these different contexts. The next step is to 

validate the learning potentials identified in this paper, in terms of interactions between mathematics 

and informatics, algorithms, and algorithmic thinking.  
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