
HAL Id: hal-04420527
https://hal.science/hal-04420527

Preprint submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dissecting the software-based measurement of CPU
energy consumption: a comparative analysis

Guillaume Raffin, Denis Trystram

To cite this version:
Guillaume Raffin, Denis Trystram. Dissecting the software-based measurement of CPU energy con-
sumption: a comparative analysis. 2024. �hal-04420527�

https://hal.science/hal-04420527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

Dissecting the software-based measurement of CPU
energy consumption: a comparative analysis

Guillaume Raffin*†, Denis Trystram*
*Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France

† Bull SAS (Eviden, Atos group), France
{guillaume.raffin, denis.trystram}@univ-grenoble-alpes.fr

Abstract—Every day, we experience the effects of the global
warming: extreme weather events, major forest fires, storms,
global warming, etc. The scientific community acknowledges that
this crisis is a consequence of human activities where Information
and Communications Technologies (ICT) are an increasingly
important contributor.

Computer scientists need tools for measuring the footprint of
the code they produce. Running Average Power Limit (RAPL) is
a low-level interface designed by Intel that provides a measure
of the energy consumption of a CPU (and more) without the
need for additional hardware. Since 2017, it is available on most
computing devices, including non-Intel devices such as AMD
processors. More and more people are using RAPL for energy
measurement, mostly like a black box without deep knowledge
of its behaviour.

In this paper, we propose to come back to the basic mech-
anisms that allow to use RAPL measurements and present a
critical analysis of their operations. For each mechanism, we
release a reference implementation in Rust that avoids the
pitfalls we detected in existing tools, improving correctness,
timing accuracy and performance. In addition to long-established
methods, we explore the suitability of the recent eBPF technology
for working with RAPL.

We also provide an experimental study with multiple bench-
marks and processor models in order to evaluate the efficiency
of the various mechanisms and their impact on parallel software.
Our experiments show that no mechanism provides a significant
performance advantage over the others. However, they differ
significantly in terms of ease-of-use and resiliency.

We believe that this work will help the community to develop
correct, resilient and lightweight measurement tools, based on
the mechanism that suits their needs.

Index Terms—energy consumption, energy efficiency, perfor-
mance analysis, software measurement, RAPL library (Running
Average Power Limit)

I. INTRODUCTION

A. Context and motivation

The impact of ICT in the environmental crisis has unfortu-
nately increased and it is likely going to continue increasing [1,
2, 3, 4, 5]. The carbon footprint of the field was evaluated
to about 1.2 to 2.2 Giga tons equivalent CO2 (denoted in
short by GtCO2e) in 2020, which corresponds to about 2.1
to 3.9% of worldwide greenhouse gases (GHG) emission [6].
They are expected to reach 5.1 to 5.3 GtCO2e by 2040 [3].
Yet, ICT are also often presented as an effective solution
for decreasing the environmental footprint of other sectors,
mostly thanks to optimization and substitution effects [7, 8].
Some reports hence claim that ICT’s environmental benefits

can be several times greater than their own environmental
burden [9]. Nevertheless, the assessment of these benefits
generates a lot of controversy [6, 10, 11], as the global pressure
of humanity on the environment keeps on increasing [12,
13]. In this context, measuring the energy consumption of
ICT is required to become aware of its impact and establish
environmentally friendly practices such as optimization efforts,
power capping, restriction use, etc. In particular, knowing the
energy consumption of a system, be it a whole supercomputer
platform, a single node or a particular piece of software, allows
to estimate its carbon footprint.

Frontier was the first high performance computing (HPC)
platform to reach the real exascale in june 2023 [14], it needs
21.1 Megawatts of electricity, which generates 150 tons of
CO2e emissions a day. With such an impact, HPC systems
are more and more studied from the perspective of energy
efficiency. Since 2013, the supercomputers are ranked by
energy efficiency in the Green500 [15]. Section 4 of the paper
of Khan et al. [16] shows that energy efficiency is increasing
in the Top500, but at a lower rate as computing performance.
Assessing the energy efficiency calls for measuring the energy
consumption.

There are multiple families of tools that can be used
to collect the energy consumption ranging from physical
wattmeters (e.g. connected PDUs – Power Distribution Units
– or BMCs – Baseboard Management Controllers) to web
browser extensions that run estimation models. They have
different accuracy, acquisition frequency and ease-of-use.

In this paper, we focus on the Running Average Power
Limit (RAPL) technology [17], which is the basic building
block for many software measurement tools. RAPL measures
the electricity consumption of the CPU and more components
thanks to sensors integrated into the system-on-chip, and
exposes it to the operating system through model-specific
registers (MSR in short) designed by the CPU manufacturer.
The advantage of RAPL is that no external powermeter is
required, nor a privileged access to the BMC (which could be
used to power off the server). It also provides more details than
a PDU or a BMC, since it monitors internal components of the
node. Moreover, RAPL is more accurate than any statistical
estimation model, even though they can be tuned to reduce
their error [18, 19]. The underlying philosophy of software
measurement tools based on RAPL is that each device owner
monitors the software running on it.

Extracting the measurements from the CPU requires an



2

interface. One can either use the low-level RAPL MSR
directly, or choose a higher-level interface provided by the
operating system. Linux provides two of them, namely, the
Power Capping framework (powercap) and the Performance
Counters subsystem (perf-events). These software interfaces
query the processor registers provided by RAPL.

Sometimes, the same interface can be used in a number of
very different ways. This is the case with perf-events, which
can be read from user space or from kernel space using eBPF.
We propose to study these two ways separately. This makes
a total of four mechanisms that can be chosen to extract the
consumption measurements from the CPU: MSR, powercap,
perf-events in user space, and perf-events with eBPF. They are
described in section III.

Higher level software measurement tools, such as Code-
Carbon [20], PowerAPI [21] and Scaphandre [22], are based
on these raw mechanisms. They use RAPL measurements to
estimate the electricity consumption of each active process.

B. Objectives

The purpose of this work is threefold:

• provide RAPL users with a deep understanding of its
access mechanisms and of the associated best practices.

• highlight the qualitative differences between the mea-
surement mechanisms, based on criteria such as required
expertise level and resiliency. This highlights the features
and trade-offs of the mechanisms.

• evaluate the overhead of the various mechanisms. In
particular, we address the following questions:
What is the overhead on the other programs of measuring
the energy consumption of the CPU? What is the impact
of the measurement on an idle machine? Are some mech-
anisms more efficient than others? Is there a difference
between Intel and AMD processors?

To the best of our knowledge, these issues have not been
fully addressed yet.

C. Contributions

To achieve the previous objectives, we propose a minimal
measurement tool that includes an implementation of each
mechanism. We release it with an open-source license in order
to provide a reference implementation to the community. We
test different strategies to avoid the common mistakes that we
detected in other measurement tools. Furthermore, we analyze
and compare the four measurement mechanisms.

Using this minimal tool, we experimentally study the impact
of the measurement on parallel software and on an idle server.
Each mechanism has been benchmarked with several HPC
testbeds, CPU vendors and RAPL domains. The benchmark
results have been accumulated during approximately one
month, with the aim to reduce the uncertainty of the statistical
analysis.

In light of the comparative analysis and of the benchmark
results, we are able to give a recommendation on the choice
of the right mechanism.

II. RELATED WORKS

Hackenberg et al. evaluated the accuracy of RAPL measure-
ments, in 2013 [23] and 2015 [24], using the MSR mechanism.
Measurement overhead was not considered.

Huang et al. [25] showed that RAPL measurements were
quite accurate for Haswell-EP processors. They assessed the
performance overhead of the PAPI library. The different low-
level mechanisms were not investigated.

Descrochers et al. [26] compared the values returned by
RAPL for the RAM with power measurements obtained by
instrumenting the hardware. Like the previous papers, this one
concentrated on RAPL accuracy, not on its overhead.

In 2018, Khan et al. [27] evaluated the accuracy, update
frequency and performance overhead of RAPL measurements
on several parallel benchmarks. Their work focused on the
MSR mechanism and did not compare it with others.

Several works were dedicated to the construction of statis-
tical models that estimate the energy consumption of software
applications [19, 18, 28]. While they compared their results
with RAPL measurements, investing the various mechanisms
was out of their scope.

In 2021, Schole et al. analyzed the measurements of AMD’s
implementation of RAPL on the Zen 2 architecture, and
revealed that it provided fewer information than Intel’s [29].
One mechanism was operated, and the study concentrated on
assessing the reliability of AMD’s implementation.

More recently, Jay et al. [30] compared some high-level
tools that internally use RAPL. They evaluated their accuracy
and overhead on NAS parallel benchmarks. We also use
the NAS benchmarks, and conduct a more robust statistical
analysis of their results. A similar study was proposed by
Heguerte et al. for AI models [31]. We go deeper than both
papers and analyze the underlying mechanisms instead of the
higher level tools.

Due to the amount of work on RAPL measurements vali-
dation, we consider that this technology is reliable enough.
Therefore, we choose not to assess again the correlation
between RAPL values and external measurements. Instead, we
focus on a comparative analysis of the measurement mecha-
nisms, based on qualitative criteria as well as an experimental
evaluation of the performance and energy overhead of the
measurements.

III. COMPARATIVE ANALYSIS OF THE RAPL-BASED
MECHANISMS

A. Operation of the RAPL interface

RAPL, that stands for Running Average Power Limit, is a
power management technology first implemented by Intel in
the Sandy Bridge architecture, in 2011. It allows to measure
the energy consumption and to limit the power consumption
of various parts of the computer, called domains. In this paper,
we only look at the measurement interface, not the power limit.
AMD followed suit by implementing a similar measurement
interface in the first Zen architecture, in 2017. In fact, AMD’s
interface is so similar that it is used in the same way as Intel’s.
The difference lies in the addresses of the registers and in the
number of available domains.



3

Figure 1 represents all the RAPL domains known to date.
Khan et al. [27] published a similar figure, but we bring here
some precisions and corrections, especially with regards to the
role of psys.

Figure 1. Hierarchy of the possible RAPL domains and their corresponding
hardware components. Domain names are in italic, and grayed items do not
form a domain on their own. Items marked with an asterisk are not present
on servers.

First, see how the core and uncore domains are subsets of
the package domain. This means that their reported consump-
tion is included in the consumption of the package domain.
Second, let us take a look at the platform domain, also known
as psys. According to Intel [32], its content depends on the
manufacturer of the machine. To understand its actual scope,
we used two recent laptops (Lenovo Thinkpad L15 Gen1 and
Alienware m17 R3) and plugged each of them into an external
wattmeter. By comparing the energy consumption reported by
the wattmeter with the consumption reported by the RAPL
domains, we discovered that the platform domain reported the
same consumption as an external wattmeter, that is, the total
consumption of the laptop. This domain can therefore include
the display, dedicated GPU and all of the other domains. Third,
we want to make clear that, while the platform domain is
unique (i.e. there is only one platform for the entire system-
on-chip), the dram domain is linked to a specific CPU socket
(i.e. there is one dram per socket). This clarifies what the Intel
manual means by “directly-attached RAM”. Finally, AMD’s
microarchitectures Zen 1 to Zen 4 only support the package
and core domains.

Each domain has an energy counter. At regular intervals,
usually every 976 microseconds [17], the energy consumed
by the hardware components included in the domain since the
previous increment is added to the counter. Thus, reading the
counter just once is meaningless. Only the difference between
two values of the counter can be interpreted as an amount of
energy. Therefore, each counter needs to be read periodically.
It is allowed to read the counter more often than it updates, in
which case the last value is returned. Despite being possible,
querying RAPL faster than its update frequency is therefore
useless.

To query RAPL counters on Linux, several mechanisms
can be implemented. The possible choices are described and
analyzed in the following sections. Three of them are relatively
well-known, yet rarely understood in depth. We also offer a
new mechanism and compare it to the existing ones.

B. Comparison criteria

All the following mechanisms enable the same end result:
obtaining, at a given acquisition frequency and for a given set
of domains, the values of the energy consumption counters
provided by the CPU’s RAPL interface. A measurement tool
can be based on any of them, but that choice implies some
trade-offs. In order to compare the mechanisms, we have
retained the following criteria:

• the technical difficulty required for setting up the mech-
anism, i.e. the amount of time it takes to implement it,
and the experience required for someone to do it.

• the amount of knowledge required to implement the
mechanism properly, for instance whether we need to
know some details of the CPU’s microarchitecture or
not. It depends on the abstraction offered by the system
interface.

• the safeguards it offers to the developer, i.e. whether is
it easy to make mistakes when using the mechanism

• the privileges required to execute the mechanism, e.g.
whether the end user of the software tool that uses the
mechanism has to be root

• the resiliency of the mechanism, i.e. its ability to adapt
to changes, such as the release of a new generation of
processors, a new RAPL domain, etc.

C. Model Specific Registers

At the lowest level, the CPU provides model specific
registers (MSR) exposing the RAPL data[17]. A user program
can read them by opening /dev/cpu/N/msr, where N is
the number of the core (as given by the kernel), and reading
it at a specific offset. Intel and AMD use different offsets for
the energy-related registers and, as far as we know, the only
way to determine them is to check the processor model and to
read the corresponding documentation. Note that for the MSR
access to work, the msr kernel module has to be loaded.

The first register to read is MSR_RAPL_POWER_UNIT,
which provides the unit of the RAPL measurements. Then, we
can look at the MSR_d_ENERGY_STATUS registers, which
contain the value of the energy counter for each domain d.
For instance, the energy counter of the package domain lies
in MSR_PKG_ENERGY_STATUS. Its value needs to be con-
verted to Joules with the previously read unit. This conversion
is not a decisive point, because it is a simple step that needs
to be applied for each mechanism.

The MSR mechanism is low-level and provides no safeguard
to the developer. Reading the MSR at the wrong address, or
converting the bits read in the wrong way leads to a wrong
measurement that can be hard to detect. Thankfully, there
should be no risk of breaking the operating system nor the
hardware by misusing the MSR, because we only perform
reading operations, never writings. Another potential trap of



4

the MSR is that the energy counters overflow. These overflows
occur after approximately “60 seconds under heavy load”
according to Intel’s manual [17], and the only way to detect
them is to poll the value frequently enough (the CPU does
not signal them). It may appear as a trivial bug, however in
this case it can actually be hard to detect, because the overflow
frequency depends on the consumption of the machine. Testing
the program on a mainstream laptop or on a server that is
mostly idle can therefore make it invisible to the tester’s eyes.
Many software measurement tools have been affected by bugs
related to this overflow, and not all of them have resolved the
issue as of this writing [33, 34, 35]. A solution to this issue
is presented is section IV-B.

The kernel restricts access to the MSR because it can
contain sensitive information. It has been shown that the RAPL
counters could be used to perform side-channel attacks, turning
into a security risk [36]. For this reason, even reading the reg-
isters requires high privileges: the binary of the measurement
tool must be given the Linux capability CAP_SYS_RAWIO (or
CAP_SYS_ADMIN on old kernels) or must be run as root.
Furthermore, access control to the MSR is all-or-nothing: the
msr module offers no way to limit a program to a restricted
set of registers.

Implementing the MSR mechanism requires expert knowl-
edge about the processor. First, one needs to know the ad-
dresses of the registers for each microarchitecture. Fortunately,
CPU vendors tend to use the same addresses across successive
microarchitectures. At least, a distinction between AMD and
Intel has to be hardcoded. In addition, some microarchitectures
have “quirks” that require a special case. For instance, some
Intel processors use a fixed energy unit instead of the value
of MSR_RAPL_POWER_UNIT. The Intel Software Developer
Manual [17] gives a default value, but it does not apply when
there are “quirks”.

D. Power Capping Framework

The Power Capping framework (powercap) [37] is a soft-
ware interface provided by the Linux kernel on top of the
low-level RAPL interface. It allows to control RAPL from
userspace through the sysfs virtual file system.

The hierarchy of the sysfs under
/sys/devices/virtual/powercap/intel-rapl
resembles the hierarchy of the RAPL domains, allowing tools
to discover which domains are available on the computer. An
example of such a hierarchy is given by the figure 2. Each
sub-folder of ‘intel-rapl‘ corresponds to a domain.

In contrast to figure 1, we can see that the powercap
hierarchy puts the dram domain inside of the package domain.
We have found no justification of this fact in the other works
related to RAPL. We think that it can be explained by the fact
that, in a multi-socket system, each CPU typically has its own
directly-accessible memory. Since the MSR are provided by
the CPU, the dram energy counter of each CPU is different and
only reports the consumption of the memory that is attached
to it. Powercap’s authors would have chosen to reflect this
by putting the dram domain next to the core domain, for
each socket. Even so, our tests demonstrate that the energy

Figure 2. Folder hierarchy of the RAPL powercap sysfs on a recent
laptop with an Intel CPU. For each subfolder, we indicate the name of the
corresponding domain.

consumption of the memory is not included in the energy
consumption of the package.

Being a high-level interface, powercap is easier to use
than the MSR. On one hand, the measurements are provided
in text files, and the MSR unit conversion is automatically
applied. This is handy for testing or developing simple scripts.
On the other hand, overflows frequently occur, like with the
MSR mechanism. The correction to apply is slightly different
because of the unit conversion.

Almost no knowledge about the processor is required, even
if one must be careful with the meaning of the domains’
hierarchy, as previously explained. No special case is required,
because powercap takes care of all the “quircks”.

Powercap does not require any Linux capability, it just
needs read access on the intel-rapl directory. The file
permissions or access control lists can be adjusted accordingly,
or the tool can be run as root (the former is often preferred
for security reasons).

Finally, the resiliency of the mechanism is good, thanks to
an automatic adaptation of the hierarchy of the sysfs to the
available domains. Of course, to benefit from this advantage,
the hierarchy must not be hardcoded in the measurement
tool. Our reference implementation is able to adapt to the
availability of the domains.

E. perf-events

The “perf events” subsystem (hereafter “perf-events”) is
another Linux kernel interface. It provides event-oriented
performance monitoring capabilities[38]. There are two types
of events: counting events, whose latest values must be polled,
and sampling events, which are periodically added to a buffer.
With a sampling event, the overflows are automatically de-
tected. Unfortunately, the energy consumption counters have
been integrated as counting events. Therefore, periodically
polling the counters to detect the overflows seems to be
necessary. However, overflows are extremely unlikely when
using perf-events, because they are already corrected by the
subsystem. Of course, the value returned by perf-events has a
limited size (64 bits integer), so an overflow is still possible
in theory. Even without an overflow correction, the probability
of reporting erroneous measurements is much lower than with
MSR and powercap.



5

Usually, polling the events is done from userspace. First,
the list of available events can be read from the sysfs, by in-
specting the /sys/devices/power/events/ directory.
Each event corresponds to a RAPL domain, and needs to be
opened by calling perf_event_open [39]. The obtained
file descriptor can then be read periodically to access the
energy consumption measurements. Unlike powercap, perf-
events does not organize the events in a hierarchy matching
the different CPU sockets. Care must be taken to open each
event exactly once for each socket, by giving the number of
the first core on the socket to perf_event_open. Doing
so requires no expert knowledge and allows to operate at a
higher level of abstraction than the MSR mechanism.

In terms of resiliency, perf-events is less versatile than
powercap, because one needs to call perf_event_open.
It is therefore not available in every language, and it is much
harder – though not impossible – to use it in Bash scripts. Yet,
when used in a compatible environment, perf-events is as easy
to maintain over time as powercap, and can easily be adapted
to support new domains and microarchitectures.

It demands some privileges: either the CAP_PERFMON
capability (since Linux 5.8, for older kernels
use CAP_SYS_ADMIN) or the kernel setting
perf_event_paranoid set to 0 or −1.

Another way of handling the events is to read the file de-
scriptors from kernel space using the recent eBPF technology,
as described in the following section. As far as we know, this
technique has not been investigated yet.

F. perf-event via eBPF

Originally, eBPF was an abbreviation for “extended Berke-
ley Packet Filter”, but it is now a standalone name [40]. It
refers to a technology that allows to inject code into a kernel,
in particular the Linux kernel since version 3.15 [41]. Thanks
to eBPF, a user program can be attached to an existing function
of the kernel, which has proven to be useful for implementing
fast packet filtering [42] and profiling.

In this context, we want to examine whether eBPF is a good
fit for measuring the energy consumption with RAPL. The idea
is that, under the hood, the aforementioned mechanisms will
lead to a call to the rdmsr x86 instruction, which needs to
be done from the kernel. By reading the values with eBPF, all
our measurement code would be executed by the kernel, and
we would not need to switch from user mode to kernel mode.
This could lower the overhead of the measurement. We test
this hypothesis by designing a new measurement mechanism
based on eBPF and benchmarking its implementation (see
section V-A).

Figure 3 illustrates the inner workings of this new mecha-
nism. As a preliminary step, perf_event_open is called
and the returned file descriptors are passed to the eBPF
program. This program is then injected into the Linux kernel
and attached to a SF_CPU_CLOCK event. At a given fre-
quency (1000 Hz in our implementation), the clock triggers
the program, which reads the RAPL energy counters via
perf-events and pushes the measurements into a buffer. At
a regular interval managed by another timer, the userspace

program polls the content of the buffer and obtains the energy
consumption measurements.

Figure 3. Measurement mechanism based on perf-events and eBPF

Using eBPF is significantly more complicated than using
the “regular” userspace variant of perf-events, that is why we
evaluate its technical difficulty to “high” (see section III-G).

In terms of safeguards, it is just as robust to overflows as
the regular perf-events, but other types of errors can occur,
especially when transferring values between user and kernel
space. For example, we hit multiple difficulties related to the
computation of the size of the buffers and of its elements.
Our implementation is written in Rust, which prevents certain
types of error. We believe that it would have been even more
challenging to write it in C.

Using eBPF, for any purpose, requires to have the capa-
bility CAP_BPF (available since Linux 5.8, on older kernels
CAP_SYS_ADMIN can be used instead) or to be run as root.

This mechanism demands a bit more work to adapt to
changes, because the sizes of the buffers must be adjusted,
and the injected code must be updated in consequence. In fact,
old versions of the linux kernel are still used in production,
and they do not support loops in eBPF kernel code. That is
why the implementation we propose uses a match-case on the
number of RAPL domains. Supporting a new domain hence
requires to update the code.

G. Synthesis

The following table summarizes the results of the previous
comparative analysis.

IV. IMPLEMENTATION OF A MINIMAL TOOL

A. Architecture

We implemented a minimal measurement tool with the four
previously described measurement mechanisms. Its architec-
ture is depicted on figure 4.

It features a command-line interface that allows the user
to choose the RAPL domains to measure, the mechanism to
use, the acquisition frequency of the polling loop, and the
output file. We chose to always write the measurements during
our benchmarks, in the CSV format, in order to be more



6

mechanism technical
diffi-
culty

required
knowl-
edge

safeguards privileges resiliency

MSR medium CPU
knowl-
edge

none SYS RAWIO
cap. +
msr
module

poor

perf-
events
+ eBPF

high
(long,
compli-
cated
code)

limited overflows
unlikely,
many
other
possible
mistakes

PERFMON
and BPF
capabili-
ties

manual
tweaks
necessary
for adap-
tation

perf-
events

low limited good,
overflows
unlikely

PERFMON
capability

good

powercap low limited beware of
overflows

read
access to
one dir

good,
very
flexible

Table I
QUALITATIVE COMPARISON OF THE MEASUREMENT MECHANISMS

representative of a real situation. Indeed, discarding the values
as soon as we read them would be useless. Thus, the impact
that we evaluate in section V includes the cost of saving
the measurements. To limit this cost when the acquisition
frequency is high, while regularly making the data available
to the user, we chose to flush the measurements to the output
file once per second.

Figure 4. Architecture of our measurement tool

Compared to the existing tools, our implementation has
several advantages.

First, it allows to access the “raw” energy consumption
measurements, not a derived product like Code Carbon [20].
We believe that this is more rigorous and that it gives more
freedom to use the measurements in a way that is suited to
the context.

Second, it offers all the available mechanisms, which is
useful to run experiments like the ones described in section V.
Having the choice is also more robust when there is a bug in
one of the mechanisms. We found that, on the AMD server
used to conduct our benchmarks, powercap and perf-events did
not list the same available RAPL domains. Powercap listed
two domains: package and core, whereas perf-events listed
all the possible domains. A manual check of each domain
revealed that both lists were probably wrong, because most
of the domains were unusable, and the core domain reported

extremely low values of about 0.001 Joule per second, which
we found dubious. The perf-events sysfs has been fixed in
Linux version 6.6 [43].

Finally, we took care of the previously mentioned difficulties
such as overflows, and ensured that our measurement were
done at the right frequency. The applied techniques are ex-
plained in the next subsections. More information is available
on a public Git repository 1.

B. Correcting the overflow of the counters

As mentioned in section III-C, RAPL energy measurements
are prone to overflows, whose frequency depends not only
on the energy consumption of the domains but also on the
measurement mechanism, because they store the values in vari-
ables of different sizes and sometimes apply transformations
on them. To ensure the correctness of the measurements, two
conditions must be met. First, the time between two readings
of the energy consumption must be smaller than the time
it takes for an overflow to occur. This allows to detect an
overflow between two successive measurements mprev and
mcurrent, as highlighted by previous work on RAPL. Second,
the following correction must be applied:

∆m =

{
mcurrent −mprev + C if mcurrent < mprev

mcurrent −mprev otherwise

where C is a correction constant that depends on the chosen
mechanism. Table II gives the right value of C for each
mechanism. Only then can ∆m be used as a measure of the
energy consumption of the RAPL domain during the small
time period between the two measurements.

mechanism constant C
MSR u32::MAX i.e. 0xFFFFFFFF
perf-events u64::MAX i.e. 0xFFFFFFFFFFFFFFFF
perf-events
with eBPF u64::MAX i.e. 0xFFFFFFFFFFFFFFFF

powercap value given by the file max_energy_uj in the sysfs
folder of the RAPL domain

Table II
TABLE OF THE OVERFLOW CORRECTION CONSTANT FOR EACH

MEASUREMENT MECHANISM

C. Ensuring the accuracy of the acquisition frequency

As stressed previously, the acquisition frequency is a key
point of a RAPL-based measurement tool. Besides the over-
flow correction, one could wish to increase the frequency
in order to capture a more precise profile of the running
appplications. For example, estimating the consumption of a
single function has been proven to be possible in 2012 [44].
For these reasons, it is necessary to give control of the
frequency to the end user, and to make the tool precisely follow
the supplied frequency.

1https://github.com/TheElectronWill/cpu-energy-consumption-comparative-
analysis: minimal measurement tool with an implementation of each studied
RAPL-based mechanism



7

When we implemented our tool, we found that using a
traditional std::thread::sleep (nanosleep in C) in
the polling loop was not reliable enough. The variations
between each sleep were big enough to be detectable, and it
was impossible to reach the highest frequency of 1000 Hz. To
solve this issue, we replaced the standard sleep by timerfd.
While it cannot guarantee to perfectly respect the frequency in
all conditions, especially on a non-realtime kernel, we assessed
its superiority over a standard sleep.

In addition to using a more precise sleep function, we de-
signed the tool so that the polling loop only does the minimum
amount of work required to gather the measurements. Writing
the data to a file is delegated to another thread. This way, the
polling loop is not impacted by I/O latency.

To evaluate the effect of these two optimizations, we created
three versions of the tool:

• “fully optimized” (in red): the final version of our
minimal measurement tool, which includes the afore-
mentioned optimizations (precise timer and separate I/O
thread)

• “badsleep” (in blue): a version of the tool with a stan-
dard sleep call, and a dedicated I/O thread. This is
what many existing tools use (Scaphandre, CodeCarbon,
PowerAPI, etc.).

• “badsleep-st” (in green): a version of the tool with a
standard sleep call, and a single thread (no separate
I/O thread).

We executed each version with a target frequency of 1000
Hz for at least 5 minutes, and computed the actual output
rate, i.e. the number of measurements per second in the
result file. The first and last second were removed from
the data, in order not to skew the statistics with incomplete
measurement periods. Figure 5 demonstrates the benefit of our
optimizations.

Figure 5. Boxplot of the number of measurements per domain per second, for
each tested equipment (node) and version: fully optimized, without timerfd
(badsleep) and withour timerfd nor the I/O thread (badsleep-st)

As shown on the plot above, only the fully optimized
version is able to consistently reach the target frequency of
1000 Hz. Without the two optimizations, the actual frequency
decreases by 10% to 18%.

A surprising result is that moving the writing operations to
another thread did not improve the output frequency on the two

tested servers. This can be explained by the fact that calling
flush only flushes the software buffer, not the OS disk cache,
which is larger on those servers than on the tested laptop.
Calling fsync or running an I/O-intensive application in the
background could make the I/O overhead more visible. Chang-
ing std::thread::sleep for tokio::time::sleep
does not change the results, since the multithreaded version
uses two threads with a thread pool size of two.

In any case, the experiments show that the two simple
optimizations of the measurement tool have made it accurate,
and allowed it to achieve a high measurement frequency. This
is a clear improvement over existing RAPL-based tools, whose
frequency is too often limited to a maximum of 1 or 10 Hz.

D. Brief discussion about limitations

Although it allowed us to perform extensive experiments,
the minimal tool that we built is limited in some ways.

First, the tool does not support the hot-plugging of CPUs,
because this feature was useless for our experiments. It could
be added by using the Linux hotplug API to be notified when
a CPU goes offline or online [45].

In addition, our work is strictly limited to Linux. Although
the MSR should be accessible from other operating systems,
we have not tried to use them. The low-level access of the
registers would be similar but the higher-level interfaces,
if any, would be different. To the best of our knowledge,
Windows does not provide a sysfs-like interface to access
RAPL measurements.

Finally, we have focused here on x86 Intel and AMD
processors. ARM processors have not been studied because,
as far as we know, most of them do not provide a RAPL-
like interface. It seems to be possible on some platforms,
though, since the powermetrics tool [46] is able to report
the instantaneous power of Apple’s ARM chips. Incorporating
another OS and another low-level interface into the minimal
tool would require more exploratory and technical work.

V. EXPERIMENTAL STUDY OF THE MEASUREMENT
OVERHEAD

A. Benchmarking Protocol

We describe here the protocol of the experimental study we
conducted in order to assess the impact of the measurement
mechanisms. We are interested in the performance overhead
on the other running applications, but also on the energy
consumption of the machine when it is idle.

1) Test Environment: To run the benchmarks, we used
two dedicated server-class machines in Atos’ datacenters. The
first one was equipped with two AMD EPYC 7702 64-cores
processors and RHEL (Red-Hat Enterprise Linux) 8.7. The
second was composed of two Intel Xeon E5-2680 v4 14-
cores processors and ran RHEL 8.5. Both servers were running
the Linux kernel version 4.18.0. On the AMD machine, the
only domain available in every mechanism was the package
domain. On the Intel machine, we were able to measure both
package and dram domains.

We chose to run the well-known NAS benchmarks [47],
mainly to allow our results to be compared with other papers



8

such as the experiments of Jay et al. [30]. In order get various
types of parallel applications, we used three NAS benchmarks:
BT (block tri-diagonal solver), CG (conjugate gradient) and EP
(embarassingly parallel).

2) Inputs and Outputs: We recorded the running time of
the NAS program, as reported by itself. Thus, this metric only
includes the time it takes to solve the benchmark’s problem,
not the call to posix_spawn, nor the final clean-up of
the program’s memory, etc. We also performed some runs
with a sleep of 20 minutes instead of a NAS program in
order to evaluate the impact of the measurement on an idle
CPU. During such a sleep, we gathered statistics about the
state of the CPU with the turbostat command. During
the experiments, we used a script to change the following
variables:

• the NAS benchmark to execute (BT, CG, EP, or a 20-
minutes sleep)

• the measurement mechanism to use (MSR, powercap,
perf-events userspace, perf-events eBPF)

• the frequency of the measurement (0 i.e. no measurement,
or 0.1Hz, 1Hz, 10Hz, 100Hz or 1000Hz)

• the RAPL domains to measure (package only, or package
and dram)

That makes 96 combinations to test on the AMD server,
and 192 on the Intel server. For every run of a combination,
we recorded the aforementioned metrics, the variables, and the
current time. At the same time, we recorded the evolution of
the power consumption of each server by querying their BMC.
This was done from another server, in order not to interfere
with the benchmarks.

3) Benchmark repetitions: We ran the benchmarks for
approximately one month, for as long as we could reserve
the servers for our experiments. Instead of running many rep-
etitions of one combination, then many repetitions of another
combination, and so on for every combination until the end,
we spread the repetitions over time. As illustrated by figure 6,
we ran 3 repetitions of the first combination, then 3 repetitions
of the next one, etc. Once all the combinations were done, we
started all over again: 3 repetitions of the first combination
(the rightmost green square on figure 6), and so on.

Figure 6. Benchmark repetitions spread over time

The goal of this spreading is to avoid bias we cannot
control, such as another user executing something, a technical
problem in the datacenter, a change in weather that affects the
temperature of the room, etc. These external factors are likely
to happen at a specific point in time, and thanks to this way
of benchmarking they have a lower chance to spoil the results
of a specific combination.

4) Outliers: After the execution of the benchmarks, we
analyzed them with statistical tools. The first step was to
eliminate the outliers in each combination. To identify them,
we used the usual interquartile range. A value was considered
to be an outlier if it was outside of the range [q1 − 3(q3 −

q1), q3 + 3(q3 − q1)], where q1 is the first quartile and q3
is the third quartile. After this step, we were left with 2186
observations for the AMD server and 2564 for the Intel one.

B. Results

1) Impact on parallel software: Figures 7 and 8 show the
running time of the three NAS benchmarks on the AMD and
Intel server respectively. Our goal here is to determine whether
some mechanisms are more efficient than others, and whether
increasing the frequency makes the potential performance
overhead more visible.

Figure 7. Performance impact of the measurement on NAS benchmarks
(AMD server). The leftmost column contains the baseline.

Figure 8. Performance impact of the measurement on NAS benchmarks (Intel
server). The leftmost column contains the baseline.

Visually, it is difficult to see an overhead effect, even with
a high measurement frequency. To test the existence of an
overhead in a more rigorous way, we conducted a statistical
test on each group. A group here is a subset of the data
referring to the same server, NAS benchmark and RAPL
mechanism. Our data did not meet the criteria for an ANOVA
test, therefore we applied a one-sided Wilcoxon rank sum
test. We used the standard value of 5% for the significance
level α and applied the Holm-Bonferroni correction on the
p-values. For each group we compared the running time of
each frequency to the running time obtained without any
measurement. The latter is represented on the left of the



9

figures, by red boxplots. Our alternative hypothesis for the
statistical test is then “the running time with measurement is
higher than without”.

The test shows that the overhead is statistically significant
on the “ep.E” benchmark on the AMD server, at a frequency
of 1000 Hz for msr, powercap and eBPF, and a at frequency of
100 Hz for powercap. While significant, the overhead remains
small, with a location shift estimated at 1.5 to 3.4 seconds,
that is, 0.5% to 1.2% (see appendix A). The location shift is
an estimator of the median of the difference between a sample
of the first group (with some measurement frequency) and a
sample of the second group (without any measurement). Sur-
prisingly, perf-events seems to have a smaller overhead than
the other mechanisms on this benchmark. In particular, the
low-level MSR interface seems slower than perf-events, which
is counter-intuitive. We discuss this point in section V-D.
Regarding the other benchmarks, there is not enough evidence
to say that the measurement operation increases the running
time.

The AMD server is not impacted by the measurement on
all benchmarks. Only the “ep.E” benchmark, which consist
of heavy floating-point operations is slowed down. The other
benchmarks, which use more memory operations, are not
significantly affected. Interestingly, the Intel server does not
exhibit this behavior, since the only significant differences are
on “cg.D” and msr, and “bt.D” and ebpf, with a location shift
of respectively 5.6 seconds (1.6%) and 5.7 seconds (0.7%).
An acquisition frequency of 10 Hz or less causes a negligible
impact on the running time in every tested configuration.

Note that figure 8 does not make a difference between the
benchmarks ran while measuring one RAPL domain and the
benchmarks ran while measuring two RAPL domains. This is
because, according to our analysis, that there is insufficient ev-
idence to conclude in favor of a difference between these two
cases. In other words, measuring one more domain does not
change the overhead of the measurement on the benchmarks.

In addition to the running time, we recorded the power
consumption of the entire servers, using their BMC. As can be
seen on figures 9 and 10, we found that the measurement op-
eration does not impact the average power when the machine
is under heavy load.

Figure 9. Impact of the measurement on power consumption during NAS
benchmarks (AMD server). The leftmost column contains the baseline.

Figure 10. Impact of the measurement on power consumption during NAS
benchmarks (Intel server). The leftmost column contains the baseline.

This lack of overconsumption under heavy load can be
explained by the fact that, when running the benchmarks, the
OS puts the CPUs at their maximum power. Hence, it cannot
increase further.

2) Impact on idle CPU: We have just showed that the im-
pact of RAPL energy measurements on a loaded CPU was low.
In this section, we show that there can be a significant impact
on an idle CPU, depending on the measurement frequency.
To evaluate this impact, we used the data collected during the
“sleep” runs, which consist of a simple sleep of 20 minutes. In
addition to the total power read with the BMC, we collected
the C-States of the processor. The state “C0” indicates that the
processor is active and executing instructions. Other states are
idle states, during which a subset of the CPU is disabled in
order to save power.

First, let us look at the average power consumption of the
server during each run of the benchmarks. As we can see in
figure 11, the two servers do not react in the same way.

Figure 11. Relationship between acquisition frequency and idle power
consumption (AMD and Intel server)

On the AMD server, the power increases starting at a
measurement frequency of 1000 Hz, for which the machine
draws around 2.7 to 3.3 Watts more than without measurement.
On the Intel server, a Wilcoxon rank sum test indicates that
the effect is significant starting at 10 Hz for powercap and



10

msr, and 100 Hz for perf-events and eBPF. The details are
available in appendix B. At the highest frequency, the average
power increases by 48.6 Watts for powercap, 40.0 for msr, 27.2
for perf-events and 25.4 for eBPF. These last two mechanisms,
both based on the perf-events interface, have a clear advantage
when the Intel processor is idle.

This difference between the two processors could be ex-
plained by the fact that the Intel one has more CPU states
than the AMD one (note in general, Intel provides more C-
States states than AMD as of 2023). As confirmed by the the
figure 12, querying the RAPL counters too frequently forces
the Intel CPU to spend less time in C6, which consumes the
least power, and more time in the higher levels, in particular
C0, which consumes the most. Increasing the measurement
frequency naturally causes more instructions to be executed,
hence the increase of the time spent in C0. Interestingly, a high
frequency of 1000 Hz makes the CPU use the intermediary
states more often (C1, C1E and C3 on the Intel CPU), to the
detriment of the deepest state (C6 on the Intel CPU). This
means that the system determined that it was less appropriate
to use the deepest state, perhaps because of its higher exit
latency (it takes more time to exit C6 than to exit C3, C1E or
C1). Whether Intel’s or AMD’s state management is optimal
is not in the scope of this work, but it is interesting to know
that using high measurement frequencies while the CPU is
idle forces it to reduce its use of the deepest C-States. A
good strategy would therefore be to dynamically adapt the
measurement frequency to the CPU load.

Figure 12. Relationship between acquisition frequency and idle CPU states
(Intel server)

The AMD CPU also spends less time in C2 and more
time in C1 and C0, as can be seen on figure 13. But there
is obviously less differences between AMD C2 and C0 than
Intel C6 and C0. The different mechanisms behave similarly
with regards to the C-States.

Figure 13. Relationship between acquisition frequency and idle CPU states
(AMD server)

C. Measurement reading latency

The last experiment is a microbenchmark, that aims to
assess the time it takes to read one value of a RAPL
counter, using the various mechanisms. To build and run
the microbenchmark, we used the Rust benchmarking tool
Criterion [48] on on three machines: the two previously
mentioned servers, and a Lenovo Thinkpad L15 Gen1 laptop
running Ubuntu 22.04 LTS with Linux 6.1.

Table III reveals that perf-events is the fastest mechanism,
followed by MSR. Not only does perf-events has the lowest
latency, but it also has the lowest variance, which means that
its performance is more stable than the other mechanisms.
This better performance may explain the surprising result of
section V-B1 on the AMD server. We see that powercap and
MSR are faster on the laptop than on the servers. This could
be due to the more recent kernel version of the laptop, i.e.
these interfaces could have been optimized after Linux 4.18.

mechanism time to read one RAPL counter
(95% confidence interval, microseconds)

recent laptop AMD server Intel server

powercap [1.966, 2.106] [6.083, 6.117] [4.230, 4.463]

perf-
events [0.5371, 0.5385] [0.4990, 0.4993] [0.7376, 0.7377]

msr [0.5391, 0.5688] [4.437, 4.448] [2.149, 2.348]

ebpf N/A N/A N/A

Table III
TABLE OF THE COST OF POLLING ONE MEASUREMENT FROM RAPL

As indicated by “N/A”s in the last row, we have chosen to
exclude eBPF from this microbenchmark because of its non-
representative results. In the novel eBPF-based mechanism
presented in section III-F, the reading of the counter, as
most of the work, happens in the kernel, and thus cannot be
measured by the Criterion benchmark tool.

D. Synthesis and recommendations

Our experiments reveal that reading the RAPL energy
consumption counters does not decrease the throughput of



11

parallel software in almost all tested configurations. A small
but significant overhead has been observed on an AMD server
for the cpu-intensive NAS benchmark “embarrassingly paral-
lel”. All four tested mechanisms have a small or negligible
impact on the running time of the benchmarks, even when
the acquisition frequency is high. The differences reported by
the microbenchmarks are less visible in the long benchmark.
Compared to existing software tools, our work is significantly
more lightweight. Other tools studied by prior work [30]
exhibit a higher overhead (2-7%) at lower frequencies (1-
10 Hz).

However, we found that measuring at high frequencies had
a significant impact on the idle consumption. In particular, it
reduces the time spent by the processor in low-power states,
which increases the energy consumption, especially on the
tested Intel processor. We hence recommend to adapt the
acquisition frequency to the state of the node. Under heavy
load, a high frequency can be used in order to capture more
information about the running processes. On the opposite,
when it is lightly loaded a lower frequency should be used.
In addition, the perf-events and eBPF mechanisms seem to be
the most energy-efficient when the processor is idle.

While eBPF can be used to obtain the energy consumption
reported by RAPL, it has no advantage over the other mech-
anisms. In light of its complexity, analyzed in section III-F,
we recommend not to use eBPF for this task. We make the
same recommendation about MSR: unless there is no choice,
that is if the OS does not provide any interface on top of the
registers (like Windows), the user will prefer a higher-level
mechanism.

A counter-intuitive result of our experiments is that MSR is
actually slower than perf-events for energy measurement. Ana-
lyzing the implementation of the MSR module may provide an
explanation. As detailed in section III-C, reading the counters
is achieved by reading the file /dev/cpu/N/msr, where
N is the id of the CPU core. The module relies on the file’s
metadata to determine on which CPU core the rdmsr x86
instruction must be executed, and fetches some information
related to the inode on every read. On the contrary, perf-events
keeps track of the relevant information in a simple structure
initialized on perf_event_open, not on every read.

Perf-events and powercap have similar qualities, yet impor-
tant differences. On one hand, perf-events is almost immune
to overflows, consumes less on idle and has a lower latency.
On the other hand, powercap uses the more friendly sysfs
API, which allows to get the measurements by simply reading
a text file. If possible, perf-events should be preferred for its
efficiency, but can be harder to use in some contexts like Bash
scripts. The choice is therefore in the hands of the developer.

VI. CONCLUSION

In this work, we considered the different software mecha-
nisms that allow to access RAPL energy counters, including a
new eBPF-based mechanism that we designed. We provided a
precise understanding of their operations and compared them
on the basis of qualitative criteria, namely, technical difficulty,
required knowledge, provided safeguards, necessary privileges

and resiliency. To highlight their differences and help the
developers of software measurements tools, we released a new
minimal tool with a reference implementation of each studied
mechanism. We explained how difficulties such as overflows,
inaccurate timing and I/O jitter could be overcome. Using
this minimal tool, we conducted an experimental study on
two processor models. Our results showed that, despite their
differences, the mechanisms had a similar performance and
energy overhead when the machine was loaded. Under nearly
all benchmark configurations, running the tool had a negligible
impact on the running time and power consumption, even with
a high acquisition frequency of 1000 Hz. This indicates that
our implementation is more lightweight and more efficient
than existing software tools. It would therefore be interesting
to add more features to the minimal tool, such as the estimation
of the consumption of each individual process, while keeping
its overhead small. The aim would then be to extend the
minimal tool in order to make it better suited for end users.

We found notable differences of overhead between the
mechanisms on an idle server and in microbenchmarks. In
light of the experimental results and qualitative comparison,
we were able to provide recommendations on the choice of
the most adequate mechanism. Our main recommendation is
that, quite unexpectedly, one does not need to use the most
complex mechanisms (MSR, eBPF) in order to be efficient.
Prefer to use the perf-events interface whenever it is possible.

Dynamically adapting the acquisition frequency to the load
is also recommended. It could be particularly useful to limit
the energy consumption of edge devices while collecting
precise measurements. This idea could be explored in a future
work, with more diverse benchmarks.

This study did not consider GPUs nor TPUs. It looks like
there are fewer choices to make since GPU vendors provide
a relatively high-level software library (NVML for NVidia,
ROCm for AMD) and impose an underlying mechanism.
Nevertheless, a natural research extension is to conduct a sim-
ilar comparative and experimental study on these specialized
hardware.



12

REFERENCES

[1] Jens Malmodin and Dag Lundén. “The Energy and
Carbon Footprint of the Global ICT and E&M Sectors
2010–2015”. In: Sustainability 10.9 (2018). ISSN: 2071-
1050. DOI: 10.3390/su10093027. URL.

[2] Anders Andrae. “Prediction Studies of Electricity Use
of Global Computing in 2030”. In: 8 (Mar. 2019),
pp. 27–33.

[3] Lotfi Belkhir and Ahmed Elmeligi. “Assessing ICT
global emissions footprint: Trends to 2040 & recom-
mendations”. In: Journal of Cleaner Production 177
(2018), pp. 448–463. ISSN: 0959-6526. DOI: https : / /
doi.org/10.1016/j.jclepro.2017.12.239. URL.

[4] David Bol, Thibault Pirson, and Rémi Dekimpe.
“Moore’s Law and ICT Innovation in the Anthro-
pocene”. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition. 2021, pp. 19–24. DOI: 10 .
23919/DATE51398.2021.9474110.

[5] The Shift Project. Environmental impacts of digital
technology : 5-year trends and 5G governance. Apr.
2023. URL.

[6] Charlotte Freitag et al. “The real climate and transfor-
mative impact of ICT: A critique of estimates, trends,
and regulations”. In: Patterns 2.9 (2021), p. 100340.
ISSN: 2666-3899. DOI: https://doi.org/10.1016/j.patter.
2021.100340. URL.

[7] Lorenz M. Hilty et al. “The relevance of informa-
tion and communication technologies for environmental
sustainability – A prospective simulation study”. In:
Environmental Modelling & Software 21.11 (2006).
Environmental Informatics, pp. 1618–1629. ISSN: 1364-
8152. DOI: https://doi.org/10.1016/j.envsoft.2006.05.
007. URL.

[8] Lorenz M. Hilty and Bernard Aebischer. “ICT for
Sustainability: An Emerging Research Field”. In: ICT
Innovations for Sustainability. Ed. by Lorenz M. Hilty
and Bernard Aebischer. Cham: Springer International
Publishing, 2015, pp. 3–36. ISBN: 978-3-319-09228-7.

[9] James DeLoss. “AI helping to unravel complexity of
climate, weather and land use, find solutions to climate
change”. In: (2023). URL.

[10] Aina Rasoldier et al. “How realistic are claims about
the benefits of using digital technologies for GHG emis-
sions mitigation?” In: Eighth Workshop on Computing
within Limits 2022. LIMITS. June 2022. URL.

[11] Vlad C. Coroamă et al. “A Methodology for Assess-
ing the Environmental Effects Induced by ICT Ser-
vices: Part I: Single Services”. In: Proceedings of the
7th International Conference on ICT for Sustainabil-
ity. ICT4S2020. Bristol, United Kingdom: Association
for Computing Machinery, 2020, pp. 36–45. ISBN:
9781450375955. DOI: 10.1145/3401335.3401716. URL.

[12] IPCC. Climate Change 2022: Mitigation of Climate
Change. Contribution of Working Group III to the Sixth
Assessment Report of the Intergovernmental Panel on
Climate Change. Ed. by P.R. Shukla et al. Cambridge,

UK and New York, NY, USA: Cambridge University
Press, 2022. DOI: 10.1017/9781009157926. URL.

[13] Will Steffen et al. “Planetary boundaries: Guiding hu-
man development on a changing planet”. In: Science
347.6223 (2015), p. 1259855. DOI: 10 .1126/science .
1259855. eprint: https://www.science.org/doi/pdf/10.
1126/science.1259855. URL.

[14] Top500 list. URL.
[15] Green500 list. URL.
[16] Awais Khan et al. “An Analysis of System Balance and

Architectural Trends Based on Top500 Supercomput-
ers”. In: The International Conference on High Perfor-
mance Computing in Asia-Pacific Region. HPC Asia
2021. Virtual Event, Republic of Korea: Association
for Computing Machinery, 2021, pp. 11–22. ISBN:
9781450388429. DOI: 10.1145/3432261.3432263. URL.

[17] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manuals, Volume 3B. 2023.

[18] Franz Christian Heinrich et al. “Predicting the energy-
consumption of MPI applications at scale using only a
single node”. In: 2017 IEEE International Conference
on Cluster Computing (CLUSTER). Sept. 2017, pp. 92–
102. DOI: 10.1109/CLUSTER.2017.66.

[19] Guillaume Fieni, Romain Rouvoy, and Lionel Sein-
turier. “SmartWatts: self-calibrating software-defined
power meter for containers”. en. In: 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID). Melbourne, Aus-
tralia: IEEE, May 2020, pp. 479–488. ISBN: 978-1-
72816-095-5. DOI: 10 . 1109 / CCGrid49817 . 2020 . 00 -
45.

[20] Victor Schmidt et al. “CodeCarbon: estimate and track
carbon emissions from machine learning computing”.
In: Zenodo (2021).

[21] Aurélien Bourdon et al. “Powerapi: A software library
to monitor the energy consumed at the process-level”.
In: ERCIM News 2013.92 (2013).

[22] Benoit Petit. Scaphandre. 2020. URL.
[23] Daniel Hackenberg et al. “Power measurement tech-

niques on standard compute nodes: a quantitative com-
parison”. en. In: 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (IS-
PASS). Austin, TX, USA: IEEE, Apr. 2013, pp. 194–
204. ISBN: 978-1-4673-5779-1 978-1-4673-5776-0 978-
1-4673-5778-4. DOI: 10.1109/ISPASS.2013.6557170.

[24] Daniel Hackenberg et al. “An energy efficiency feature
survey of the Intel Haswell processor”. en. In: 2015
IEEE International Parallel and Distributed Processing
Symposium Workshop. Hyderabad, India: IEEE, May
2015, pp. 896–904. ISBN: 978-1-4673-7684-6. DOI: 10.
1109/IPDPSW.2015.70.

[25] Song Huang et al. “Measurement and Characterization
of Haswell Power and Energy Consumption”. In: Pro-
ceedings of the 3rd International Workshop on Energy
Efficient Supercomputing. E2SC ’15. Austin, Texas:
Association for Computing Machinery, 2015. ISBN:
9781450339940. DOI: 10.1145/2834800.2834807. URL.

https://doi.org/10.3390/su10093027
https://www.mdpi.com/2071-1050/10/9/3027
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.239
https://doi.org/https://doi.org/10.1016/j.jclepro.2017.12.239
https://www.sciencedirect.com/science/article/pii/S095965261733233X
https://doi.org/10.23919/DATE51398.2021.9474110
https://doi.org/10.23919/DATE51398.2021.9474110
https://theshiftproject.org/wp-content/uploads/2023/04/Environmental-impacts-of-digital-technology-5-year-trends-and-5G-governance_March2021.pdf
https://doi.org/https://doi.org/10.1016/j.patter.2021.100340
https://doi.org/https://doi.org/10.1016/j.patter.2021.100340
https://www.sciencedirect.com/science/article/pii/S2666389921001884
https://doi.org/https://doi.org/10.1016/j.envsoft.2006.05.007
https://doi.org/https://doi.org/10.1016/j.envsoft.2006.05.007
https://www.sciencedirect.com/science/article/pii/S1364815206001204
https://source.colostate.edu/how-can-ai-help-in-climate-change
https://limits.pubpub.org/pub/real
https://doi.org/10.1145/3401335.3401716
https://doi.org/10.1145/3401335.3401716
https://doi.org/10.1017/9781009157926
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf
https://doi.org/10.1126/science.1259855
https://doi.org/10.1126/science.1259855
https://www.science.org/doi/pdf/10.1126/science.1259855
https://www.science.org/doi/pdf/10.1126/science.1259855
https://www.science.org/doi/abs/10.1126/science.1259855
https://www.top500.org/lists/top500/2023/06/
https://www.top500.org/lists/green500/
https://doi.org/10.1145/3432261.3432263
https://doi.org/10.1145/3432261.3432263
https://doi.org/10.1109/CLUSTER.2017.66
https://doi.org/10.1109/CCGrid49817.2020.00-45
https://doi.org/10.1109/CCGrid49817.2020.00-45
https://hubblo-org.github.io/scaphandre-documentation/
https://doi.org/10.1109/ISPASS.2013.6557170
https://doi.org/10.1109/IPDPSW.2015.70
https://doi.org/10.1109/IPDPSW.2015.70
https://doi.org/10.1145/2834800.2834807
https://doi.org/10.1145/2834800.2834807


13

[26] Spencer Desrochers, Chad Paradis, and Vincent M.
Weaver. “A validation of DRAM RAPL power measure-
ments”. en. In: Proceedings of the Second International
Symposium on Memory Systems. Alexandria VA USA:
ACM, Oct. 2016, pp. 455–470. ISBN: 978-1-4503-4305-
3. DOI: 10.1145/2989081.2989088.

[27] Kashif Nizam Khan et al. “RAPL in Action: Experi-
ences in Using RAPL for Power Measurements”. In:
ACM Trans. Model. Perform. Eval. Comput. Syst. 3.2
(Mar. 2018). ISSN: 2376-3639. DOI: 10.1145/3177754.
URL.

[28] Eva Garcı́a-Martı́n et al. “Estimation of energy con-
sumption in machine learning”. en. In: Journal of
Parallel and Distributed Computing 134 (Dec. 2019),
pp. 75–88. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2019.
07.007.

[29] Robert Schöne et al. “Energy efficiency aspects of the
AMD Zen 2 architecture”. en. In: 2021 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER)
(Sept. 2021), pp. 562–571. DOI: 10.1109/Cluster48925.
2021.00087.

[30] Mathilde Jay et al. “An experimental comparison of
software-based power meters: focus on CPU and GPU”.
In: CCGrid 2023 - 23rd IEEE/ACM international sym-
posium on cluster, cloud and internet computing. Ban-
galore, India: IEEE, May 2023, pp. 1–13. URL.

[31] Lucia Bouza Heguerte, Aurélie Bugeau, and Loı̈c Lan-
nelongue. “How to estimate carbon footprint when
training deep learning models? A guide and review”. In:
Environmental Research Communications (2023). DOI:
10.1088/2515-7620/acf81b. URL.

[32] Srinivas Pandruvada. 2016. URL (visited on
09/01/2023).

[33] Guillaume Raffin. Detect and correct overflows of
the RAPL microjoule counter. 2023. URL (visited on
09/01/2023).

[34] Martin Pollard. 2022. URL (visited on 09/01/2023).
[35] Thomas Gruber. Review overflow handling for RAPL

counters. 2015. URL (visited on 09/01/2023).
[36] Zhenkai Zhang et al. “Red Alert for Power Leakage:

Exploiting Intel RAPL-Induced Side Channels”. In:
May 2021, pp. 162–175. DOI: 10 . 1145 / 3433210 .
3437517.

[37] The Linux Kernel - Powercap Documentation. URL.
[38] The Linux Kernel - perf wiki. URL.
[39] Linux manual - perf event open. URL.
[40] What is eBPF? An introduction and deep dive into the

eBPF technology. URL (visited on 09/21/2023).
[41] BPF Features by Linux Kernel Version. URL.
[42] Dominik Scholz et al. “Performance Implications of

Packet Filtering with Linux eBPF”. In: 2018 30th
International Teletraffic Congress (ITC 30). Vol. 01.
2018, pp. 209–217. DOI: 10.1109/ITC30.2018.00039.

[43] Stephane Eranian. perf/x86/rapl: fix AMD event han-
dling (commit 0036fb0). 2022. URL.

[44] Marcus Hähnel et al. “Measuring energy consumption
for short code paths using RAPL”. In: ACM SIGMET-
RICS Performance Evaluation Review 40.3 (Jan. 2012),

pp. 13–17. ISSN: 0163-5999. DOI: 10.1145/2425248.
2425252.

[45] The Linux Kernel - CPU hotplug in the Kernel. URL.
[46] MacOS General Commands Manual - powermetrics.

URL.
[47] David Bailey et al. The NAS parallel benchmarks 2.0.

Tech. rep. Technical Report NAS-95-020, NASA Ames
Research Center, 1995.

[48] A statistics-driven micro-benchmarking library written
in Rust. URL (visited on 09/01/2023).

Guillaume Raffin is a PhD student at the institute
of technology of Univ. Grenoble-Alpes and at the
R&D department of Bull SAS, which is part of
Eviden (Atos group). He is working on distributed
multi-site scheduling and measurement techniques,
with a focus on environmental impact and industrial
applications in both traditional HPC and cloud com-
puting.

,

Denis Trystram is a distinguished professor at the
institute of technology of Univ. Grenoble-Alpes. He
is an honorary member of the Institut Universitaire
de France. He was working for a long time on
resource management in parallel and distributed
platforms (including HPC clusters, clouds, Internet
of Things) and multi-objective optimization with a
special focus on minimizing the energy consump-
tion. Since 2019, he is leading a research program
at the multi-disciplinary AI institute in Grenoble on
edge intelligence and frugal AI. His academic record

is composed of more than 100 publications in international peer reviewed
journals and more than 150 conferences. More details can be found at:
http://datamove.imag.fr/denis.trystram/index.php

https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.1109/Cluster48925.2021.00087
https://doi.org/10.1109/Cluster48925.2021.00087
https://inria.hal.science/hal-04030223
https://doi.org/10.1088/2515-7620/acf81b
https://hal.science/hal-04120582
https://patchwork.kernel.org/project/linux-pm/patch/1460930581-29748-2-git-send-email-srinivas.pandruvada@linux.intel.com/
https://github.com/hubblo-org/scaphandre/issues/280
https://github.com/mlco2/codecarbon/issues/322
https://github.com/RRZE-HPC/likwid/issues/13
https://doi.org/10.1145/3433210.3437517
https://doi.org/10.1145/3433210.3437517
https://www.kernel.org/doc/html/next/power/powercap/powercap.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://ebpf.io/what-is-ebpf
https://github.com/iovisor/bcc/blob/32be0a338e9fc89f21168ac7fa3eb6557baa9ba1/docs/kernel-versions.md
https://doi.org/10.1109/ITC30.2018.00039
https://github.com/torvalds/linux/commit/0036fb00a756a2f6e360d44e2e3d2200a8afbc9b
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1145/2425248.2425252
https://docs.kernel.org/core-api/cpu_hotplug.html
https://www.unix.com/man-page/osx/1/powermetrics/
https://bheisler.github.io/criterion.rs/book/getting_started.html


14

APPENDIX A
RESULTS OF THE WILCOXON RANK-SUM TEST ON THE

RUNNING TIME OF THE BENCHMARKS

The adj.pvalue column contains the corrected p-values. The
shift refers to the location shift estimator.

nas bench mechanism freq pvalue adj.pvalue shift
ep.E msr 0.10 0.85 1.00 -0.22
ep.E msr 1.00 0.96 1.00 -0.39
ep.E msr 10.00 0.88 1.00 -0.29
ep.E msr 100.00 < 0.01 0.22 1.08
ep.E msr 1000.00 < 0.01 < 0.01 1.94
ep.E powercap 0.10 0.80 1.00 -0.20
ep.E powercap 1.00 0.25 1.00 0.18
ep.E powercap 10.00 0.53 1.00 -0.02
ep.E powercap 100.00 < 0.01 < 0.01 2.97
ep.E powercap 1000.00 < 0.01 < 0.01 1.47
ep.E perf-events 0.10 0.03 1.00 0.45
ep.E perf-events 1.00 0.89 1.00 -0.25
ep.E perf-events 10.00 0.54 1.00 -0.02
ep.E perf-events 100.00 0.02 1.00 0.54
ep.E perf-events 1000.00 0.01 0.51 0.75
ep.E eBPF 0.10 0.91 1.00 -0.26
ep.E eBPF 1.00 0.47 1.00 0.01
ep.E eBPF 10.00 0.95 1.00 -0.48
ep.E eBPF 100.00 < 0.01 0.10 1.26
ep.E eBPF 1000.00 < 0.01 < 0.01 3.43
cg.D msr 0.10 0.87 1.00 -2.24
cg.D msr 1.00 0.44 1.00 0.50
cg.D msr 10.00 0.76 1.00 -1.18
cg.D msr 100.00 0.65 1.00 -0.77
cg.D msr 1000.00 0.63 1.00 -0.78
cg.D powercap 0.10 0.79 1.00 -1.65
cg.D powercap 1.00 0.77 1.00 -2.01
cg.D powercap 10.00 0.47 1.00 0.16
cg.D powercap 100.00 0.02 0.97 5.69
cg.D powercap 1000.00 0.39 1.00 0.45
cg.D perf-events 0.10 0.47 1.00 0.21
cg.D perf-events 1.00 0.28 1.00 1.22
cg.D perf-events 10.00 0.21 1.00 2.43
cg.D perf-events 100.00 0.45 1.00 0.55
cg.D perf-events 1000.00 0.39 1.00 0.72
cg.D eBPF 0.10 0.24 1.00 1.74
cg.D eBPF 1.00 0.62 1.00 -0.73
cg.D eBPF 10.00 0.66 1.00 -0.88
cg.D eBPF 100.00 0.90 1.00 -3.06
cg.D eBPF 1000.00 0.12 1.00 2.61
bt.D msr 0.10 0.22 1.00 1.37
bt.D msr 1.00 0.33 1.00 0.71
bt.D msr 10.00 0.77 1.00 -1.45
bt.D msr 100.00 0.07 1.00 2.75
bt.D msr 1000.00 0.10 1.00 2.21
bt.D powercap 0.10 0.04 1.00 3.02
bt.D powercap 1.00 0.36 1.00 0.83
bt.D powercap 10.00 0.86 1.00 -1.52
bt.D powercap 100.00 0.04 1.00 3.04
bt.D powercap 1000.00 0.17 1.00 1.65
bt.D perf-events 0.10 0.96 1.00 -2.58
bt.D perf-events 1.00 0.52 1.00 -0.09
bt.D perf-events 10.00 0.67 1.00 -0.73
bt.D perf-events 100.00 0.54 1.00 -0.17
bt.D perf-events 1000.00 0.01 0.30 4.05
bt.D eBPF 0.10 0.41 1.00 0.32
bt.D eBPF 1.00 0.24 1.00 1.10
bt.D eBPF 10.00 0.69 1.00 -0.76
bt.D eBPF 100.00 0.14 1.00 1.88
bt.D eBPF 1000.00 0.06 1.00 2.61

Table IV
WILCOXON RANK-SUM TESTS COMPARING THE RUNNING TIME WITH A

MEASUREMENT AT A GIVEN FREQUENCY TO THE RUNNING TIME OF THE
BENCHMARKS WITHOUT ANY MEASUREMENT (AMD SERVER).

nas bench mechanism freq pvalue adj.pvalue shift
ep.E msr 0.10 0.19 1.00 1.59
ep.E msr 1.00 0.17 1.00 1.67
ep.E msr 10.00 0.12 1.00 2.14
ep.E msr 100.00 0.51 1.00 -0.03
ep.E msr 1000.00 0.26 1.00 1.13
ep.E powercap 0.10 0.30 1.00 0.87
ep.E powercap 1.00 0.94 1.00 -2.56
ep.E powercap 10.00 0.13 1.00 2.09
ep.E powercap 100.00 0.17 1.00 1.67
ep.E powercap 1000.00 0.04 1.00 3.24
ep.E perf-events 0.10 0.32 1.00 0.77
ep.E perf-events 1.00 0.02 1.00 3.75
ep.E perf-events 10.00 0.28 1.00 0.96
ep.E perf-events 100.00 0.12 1.00 2.18
ep.E perf-events 1000.00 0.05 1.00 3.00
ep.E eBPF 0.10 0.15 1.00 1.98
ep.E eBPF 1.00 0.68 1.00 -0.68
ep.E eBPF 10.00 0.31 1.00 0.79
ep.E eBPF 100.00 0.64 1.00 -0.56
ep.E eBPF 1000.00 0.02 0.94 3.94
cg.D msr 0.10 0.07 1.00 1.99
cg.D msr 1.00 0.04 1.00 2.66
cg.D msr 10.00 0.31 1.00 0.73
cg.D msr 100.00 0.07 1.00 1.60
cg.D msr 1000.00 < 0.01 < 0.01 5.58
cg.D powercap 0.10 0.35 1.00 0.56
cg.D powercap 1.00 0.48 1.00 0.07
cg.D powercap 10.00 0.80 1.00 -0.97
cg.D powercap 100.00 0.35 1.00 0.52
cg.D powercap 1000.00 < 0.01 0.09 4.17
cg.D perf-events 0.10 0.38 1.00 0.41
cg.D perf-events 1.00 0.39 1.00 0.34
cg.D perf-events 10.00 0.53 1.00 -0.16
cg.D perf-events 100.00 0.19 1.00 1.09
cg.D perf-events 1000.00 0.01 0.42 3.07
cg.D eBPF 0.10 0.40 1.00 0.39
cg.D eBPF 1.00 0.69 1.00 -0.60
cg.D eBPF 10.00 0.36 1.00 0.44
cg.D eBPF 100.00 0.31 1.00 0.49
cg.D eBPF 1000.00 0.03 1.00 1.97
bt.D msr 0.10 0.93 1.00 -2.48
bt.D msr 1.00 0.28 1.00 0.90
bt.D msr 10.00 0.83 1.00 -1.38
bt.D msr 100.00 1.00 1.00 -4.38
bt.D msr 1000.00 0.16 1.00 1.94
bt.D powercap 0.10 0.82 1.00 -1.64
bt.D powercap 1.00 0.81 1.00 -1.56
bt.D powercap 10.00 0.58 1.00 -0.27
bt.D powercap 100.00 0.41 1.00 0.35
bt.D powercap 1000.00 0.01 0.82 3.21
bt.D perf-events 0.10 0.69 1.00 -0.76
bt.D perf-events 1.00 0.67 1.00 -0.87
bt.D perf-events 10.00 0.28 1.00 0.87
bt.D perf-events 100.00 0.12 1.00 1.89
bt.D perf-events 1000.00 0.03 1.00 3.11
bt.D eBPF 0.10 0.53 1.00 -0.12
bt.D eBPF 1.00 0.84 1.00 -1.58
bt.D eBPF 10.00 0.08 1.00 2.10
bt.D eBPF 100.00 0.17 1.00 1.65
bt.D eBPF 1000.00 < 0.01 0.02 5.71

Table V
WILCOXON RANK-SUM TESTS COMPARING THE RUNNING TIME WITH A

MEASUREMENT AT A GIVEN FREQUENCY TO THE RUNNING TIME OF THE
BENCHMARKS WITHOUT ANY MEASUREMENT (INTEL SERVER).

APPENDIX B
RESULTS OF THE WILCOXON RANK-SUM TEST ON THE

IDLE POWER CONSUMPTION



15

mechanism freq pvalue adj.pvalue shift
1 powercap 0.10 0.45 1.00 0.04
2 powercap 1.00 0.64 1.00 -0.13
3 powercap 10.00 0.75 1.00 -0.24
4 powercap 100.00 0.26 1.00 0.24
5 powercap 1000.00 < 0.01 < 0.01 2.69
6 msr 0.10 0.51 1.00 -0.01
7 msr 1.00 0.91 1.00 -0.44
8 msr 10.00 0.73 1.00 -0.23
9 msr 100.00 0.17 1.00 0.30

10 msr 1000.00 < 0.01 < 0.01 2.88
11 perf-events 0.10 0.91 1.00 -0.48
12 perf-events 1.00 0.61 1.00 -0.11
13 perf-events 10.00 0.35 1.00 0.13
14 perf-events 100.00 0.10 1.00 0.46
15 perf-events 1000.00 < 0.01 < 0.01 2.77
16 eBPF 0.10 0.51 1.00 -0.01
17 eBPF 1.00 0.17 1.00 0.35
18 eBPF 10.00 0.51 1.00 -0.01
19 eBPF 100.00 0.61 1.00 -0.08
20 eBPF 1000.00 < 0.01 < 0.01 3.31

Table VI
DETAILED RESULTS OF THE WILCOXON RANK-SUM TESTS THAT

COMPARES THE POWER OF THE MACHINE WITH A MEASUREMENT AT A
GIVEN FREQUENCY TO THE POWER WITHOUT ANY MEASUREMENT (AMD

SERVER).

mechanism freq pvalue adj.pvalue shift
1 powercap 0.10 0.63 1.00 -0.06
2 powercap 1.00 0.14 0.95 0.27
3 powercap 10.00 < 0.01 < 0.01 1.44
4 powercap 100.00 < 0.01 < 0.01 4.63
5 powercap 1000.00 < 0.01 < 0.01 48.61
6 msr 0.10 0.67 1.00 -0.15
7 msr 1.00 0.73 1.00 -0.13
8 msr 10.00 < 0.01 < 0.01 1.64
9 msr 100.00 < 0.01 < 0.01 4.24

10 msr 1000.00 < 0.01 < 0.01 39.96
11 perf-events 0.10 0.14 0.95 0.27
12 perf-events 1.00 0.45 1.00 0.03
13 perf-events 10.00 0.06 0.56 0.35
14 perf-events 100.00 < 0.01 < 0.01 2.54
15 perf-events 1000.00 < 0.01 < 0.01 27.23
16 eBPF 0.10 0.33 1.00 0.09
17 eBPF 1.00 0.11 0.92 0.31
18 eBPF 10.00 0.05 0.47 0.44
19 eBPF 100.00 < 0.01 < 0.01 3.10
20 eBPF 1000.00 < 0.01 < 0.01 25.42

Table VII
DETAILED RESULTS OF THE WILCOXON RANK-SUM TESTS THAT

COMPARES THE POWER OF THE MACHINE WITH A MEASUREMENT AT A
GIVEN FREQUENCY TO THE POWER WITHOUT ANY MEASUREMENT (INTEL

SERVER).


	Introduction
	Context and motivation
	Objectives
	Contributions

	Related Works
	Comparative analysis of the RAPL-based mechanisms
	Operation of the RAPL interface
	Comparison criteria
	Model Specific Registers
	Power Capping Framework
	perf-events
	perf-event via eBPF
	Synthesis

	Implementation of a minimal tool
	Architecture
	Correcting the overflow of the counters
	Ensuring the accuracy of the acquisition frequency
	Brief discussion about limitations

	Experimental study of the measurement overhead
	Benchmarking Protocol
	Test Environment
	Inputs and Outputs
	Benchmark repetitions
	Outliers

	Results
	Impact on parallel software
	Impact on idle CPU

	Measurement reading latency
	Synthesis and recommendations

	Conclusion
	Biographies
	Guillaume Raffin
	Denis Trystram

	Appendix A: Results of the Wilcoxon rank-sum test on the running time of the benchmarks
	Appendix B: Results of the Wilcoxon rank-sum test on the idle power consumption

