

Ontology mapping for wheat trait information management

Claire Nédellec, Sophie Aubin, Liliana Ibanescu, Clara Sauvion, Sonia Bravo, Jacques Le Gouis, Thierry C. Marcel, Cyril Pommier, Robert Bossy, Michael Alaux

▶ To cite this version:

Claire Nédellec, Sophie Aubin, Liliana Ibanescu, Clara Sauvion, Sonia Bravo, et al.. Ontology mapping for wheat trait information management. Séminaire résidentiel INRAE Semantic Linked Data, 2023. hal-04420465

HAL Id: hal-04420465

https://hal.science/hal-04420465

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ontology mapping for wheat trait information management

Claire Nédellec¹, Sophie Aubin², Clara Sauvion^{1,5}, Liliana Ibanescu³, Sonia Bravo², Jacques Le Gouis⁴, Thierry Marcel⁵, Cyril Pommier⁶, Robert Bossy¹, Michaël Alaux⁶

- 1. MaIAGE, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
- 2. DiPSO, INRAE, Angers, France
- 3. MIA-Paris-Saclay, INRAE, AgroParisTech, Université Paris-Saclay, Palaiseau, France
- 4. BIOGER, INRAE, Université Paris-Saclay, Thiverval-Grignon, France
- 5. GDEC, INRAE, Clermont-Ferrand, France
- 6. URGI, INRAE, Université Paris-Saclay, Versailles, France

Our interoperability ambition for the WheatIS knowledge base system focuses on the phenotypic values observed in-field or in controlled conditions and described in the scientific literature. They differ by their scope and types. The document traits mostly qualify the general properties of wheat varieties or cultivars. On the other hand, experimental data qualify given measurable properties of the plant within a limited spatial and temporal scope that need to be aggregated and experimentally confirmed to derive the general properties of the observed wheat variety.

In the WheatIS framework, the two types of data are indexed by two different ontologies, respectively, the Wheat Trait and Phenotype Ontology (WTO; http://agroportal.lirmm.fr/ontologies/WHEATPHENOTYPE) (Nédellec et al., 2019) and the Wheat Crop Ontology (CO_321; https://cropontology.org/ontology/CO_321). Irrespective of the differences in ontology structures and the resulting inference choices, we encountered differences in the trait classes stemming from the two ontology purposes and expert disagreements that prevent the use of automatic mapping tools.

The highly technical nature of the phenotyping field calls for the participation of two cutting-edge experts and five knowledge engineers who elicit the knowledge of the domain experts and represent it according to the formal framework. Characterizing the relationship between the two ontology sets of classes involves broad expertise not only in phenotyping measurement but also in plant biology, physiology, pathology, agronomy, and food processing.

We manually defined a set of mappings that meet the requirements of the target knowledge base. Approximated and multiple mappings were needed to deal with the ontology differences in class granularity and disagreements on pathogen agents causing diseases. A set of rules and a mapping typology formalize the mapping principles for the sake of consistency and traceability. Table 1 shows an example of mappings. We represent the mapping dataset in the *Simple Standard for Sharing* Ontological *Mappings* (SSOM) TSV-based and made it available on the National Research Data portal. 435 mappings involve 262 WTO classes and 366 CO_321 classes, among which 226 WTO classes and 308 CO_321 classes are mapped through formal equivalence or subsumption inference. The remaining mappings represent complex relationships.

Table 1. Example of mapping between WTO and CO_321 classes

	WTO class			Mapping	CO_321	CO_321 trait		Reason for	
WTO_ID	name(PrefLabel)	WTO synonyms	Authors	type	ID	name	CO321 definition	alignement	Rules
0000484	resistance to Helminthosporium Leaf Blight	resistance to HLB	Clara et al.	1.4	0000686	Helminthosporium species severity	The disease severity in the plants caused by the agent Helminthosporium species.	Helminthosporium leaf blight is a general term for several diseases caused by several fungi formerly known as Helminthosporium spp.	Bio_Severity
0000488	resistance to Sclerotium Wilt	resistance to Southern Blight, resistance to Sclerotium rolfsii, resistance to Corticum rolfsii	Clara et al.	1.4, 1.5	0000115	Southern blight plant response	Southern blight response in the plants caused by the agent Corticum rolfsii (Sclerotium rolfsii).	Sclerotium wilt is a synonym of Southern blight according to WTO. Same fungal pathogen name.	Bio_Plant_response
0000489	resistance to Sharp Eyespot	resistance to Rhizoctonia cerealis, resistance to Ceratobasidium cereale	Clara et al.	1.4	0000683	Sharp eyespot incidence	Main shoots are assessed for sharp eyespot disease.		Bio_Incidence